godot/thirdparty/embree/kernels/common/scene_instance_array.h

386 lines
14 KiB
C++

// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "geometry.h"
#include "accel.h"
namespace embree
{
struct MotionDerivativeCoefficients;
/*! Instanced acceleration structure */
struct InstanceArray : public Geometry
{
//ALIGNED_STRUCT_(16);
static const Geometry::GTypeMask geom_type = Geometry::MTY_INSTANCE_ARRAY;
public:
InstanceArray (Device* device, unsigned int numTimeSteps = 1);
~InstanceArray();
private:
InstanceArray (const InstanceArray& other) DELETED; // do not implement
InstanceArray& operator= (const InstanceArray& other) DELETED; // do not implement
private:
LBBox3fa nonlinearBounds(size_t i,
const BBox1f& time_range_in,
const BBox1f& geom_time_range,
float geom_time_segments) const;
BBox3fa boundSegment(size_t i, size_t itime,
BBox3fa const& obbox0, BBox3fa const& obbox1,
BBox3fa const& bbox0, BBox3fa const& bbox1,
float t_min, float t_max) const;
/* calculates the (correct) interpolated bounds */
__forceinline BBox3fa bounds(size_t i, size_t itime0, size_t itime1, float f) const
{
if (unlikely(gsubtype == GTY_SUBTYPE_INSTANCE_QUATERNION))
return xfmBounds(slerp(l2w(i, itime0), l2w(i, itime1), f),
lerp(getObjectBounds(i, itime0), getObjectBounds(i, itime1), f));
return xfmBounds(lerp(l2w(i, itime0), l2w(i, itime1), f),
lerp(getObjectBounds(i, itime0), getObjectBounds(i, itime1), f));
}
public:
virtual void setBuffer(RTCBufferType type, unsigned int slot, RTCFormat format, const Ref<Buffer>& buffer, size_t offset, size_t stride, unsigned int num) override;
virtual void* getBuffer(RTCBufferType type, unsigned int slot) override;
virtual void updateBuffer(RTCBufferType type, unsigned int slot) override;
virtual void setNumTimeSteps (unsigned int numTimeSteps) override;
virtual void setInstancedScene(const Ref<Scene>& scene) override;
virtual void setInstancedScenes(const RTCScene* scenes, size_t numScenes) override;
virtual AffineSpace3fa getTransform(size_t, float time) override;
virtual void setMask (unsigned mask) override;
virtual void build() {}
virtual void addElementsToCount (GeometryCounts & counts) const override;
virtual void commit() override;
public:
/*! calculates the bounds of instance */
__forceinline BBox3fa bounds(size_t i) const {
if (!valid(i))
return BBox3fa();
if (unlikely(gsubtype == GTY_SUBTYPE_INSTANCE_QUATERNION))
return xfmBounds(quaternionDecompositionToAffineSpace(l2w(i, 0)),getObject(i)->bounds.bounds());
return xfmBounds(l2w(i, 0),getObject(i)->bounds.bounds());
}
/*! gets the bounds of the instanced scene */
__forceinline BBox3fa getObjectBounds(size_t i, size_t itime) const {
if (!valid(i))
return BBox3fa();
return getObject(i)->getBounds(timeStep(itime));
}
/*! calculates the bounds of instance */
__forceinline BBox3fa bounds(size_t i, size_t itime) const {
if (!valid(i))
return BBox3fa();
if (unlikely(gsubtype == GTY_SUBTYPE_INSTANCE_QUATERNION))
return xfmBounds(quaternionDecompositionToAffineSpace(l2w(i, itime)),getObjectBounds(i, itime));
return xfmBounds(l2w(i, itime),getObjectBounds(i, itime));
}
/*! calculates the linear bounds of the i'th primitive for the specified time range */
__forceinline LBBox3fa linearBounds(size_t i, const BBox1f& dt) const {
if (!valid(i))
return LBBox3fa();
LBBox3fa lbbox = nonlinearBounds(i, dt, time_range, fnumTimeSegments);
return lbbox;
}
/*! calculates the build bounds of the i'th item, if it's valid */
__forceinline bool buildBounds(size_t i, BBox3fa* bbox = nullptr) const
{
if (!valid(i))
return false;
const BBox3fa b = bounds(i);
if (bbox) *bbox = b;
return isvalid(b);
}
/*! calculates the build bounds of the i'th item at the itime'th time segment, if it's valid */
__forceinline bool buildBounds(size_t i, size_t itime, BBox3fa& bbox) const
{
if (!valid(i))
return false;
const LBBox3fa bounds = linearBounds(i,itime);
bbox = bounds.bounds ();
return isvalid(bounds);
}
/* gets version info of topology */
unsigned int getTopologyVersion() const {
return numPrimitives;
}
/* returns true if topology changed */
bool topologyChanged(unsigned int otherVersion) const {
return numPrimitives != otherVersion;
}
/*! check if the i'th primitive is valid between the specified time range */
__forceinline bool valid(size_t i) const
{
if (object) return true;
return (object_ids[i] != (unsigned int)(-1));
}
/*! check if the i'th primitive is valid between the specified time range */
__forceinline bool valid(size_t i, const range<size_t>& itime_range) const
{
for (size_t itime = itime_range.begin(); itime <= itime_range.end(); itime++)
if (!isvalid(bounds(i,itime))) return false;
return true;
}
__forceinline AffineSpace3fa getLocal2World(size_t i) const
{
if (unlikely(gsubtype == GTY_SUBTYPE_INSTANCE_QUATERNION))
return quaternionDecompositionToAffineSpace(l2w(i,0));
return l2w(i, 0);
}
__forceinline AffineSpace3fa getLocal2World(size_t i, float t) const
{
if (numTimeSegments() > 0) {
float ftime; const unsigned int itime = timeSegment(t, ftime);
if (unlikely(gsubtype == GTY_SUBTYPE_INSTANCE_QUATERNION))
return slerp(l2w(i, itime+0),l2w(i, itime+1),ftime);
return lerp(l2w(i, itime+0),l2w(i, itime+1),ftime);
}
return getLocal2World(i);
}
__forceinline AffineSpace3fa getWorld2Local(size_t i) const {
return rcp(getLocal2World(i));
}
__forceinline AffineSpace3fa getWorld2Local(size_t i, float t) const {
return rcp(getLocal2World(i, t));
}
template<int K>
__forceinline AffineSpace3vf<K> getWorld2Local(size_t i, const vbool<K>& valid, const vfloat<K>& t) const
{
if (unlikely(gsubtype == GTY_SUBTYPE_INSTANCE_QUATERNION))
return getWorld2LocalSlerp<K>(i, valid, t);
return getWorld2LocalLerp<K>(i, valid, t);
}
__forceinline float projectedPrimitiveArea(const size_t i) const {
return area(bounds(i));
}
inline Accel* getObject(size_t i) const {
if (object) {
return object;
}
assert(objects);
assert(i < numPrimitives);
if (object_ids[i] == (unsigned int)(-1))
return nullptr;
assert(object_ids[i] < numObjects);
return objects[object_ids[i]];
}
private:
template<int K>
__forceinline AffineSpace3vf<K> getWorld2LocalSlerp(size_t i, const vbool<K>& valid, const vfloat<K>& t) const
{
vfloat<K> ftime;
const vint<K> itime_k = timeSegment<K>(t, ftime);
assert(any(valid));
const size_t index = bsf(movemask(valid));
const int itime = itime_k[index];
if (likely(all(valid, itime_k == vint<K>(itime)))) {
return rcp(slerp(AffineSpace3vff<K>(l2w(i, itime+0)),
AffineSpace3vff<K>(l2w(i, itime+1)),
ftime));
}
else {
AffineSpace3vff<K> space0,space1;
vbool<K> valid1 = valid;
while (any(valid1)) {
vbool<K> valid2;
const int itime = next_unique(valid1, itime_k, valid2);
space0 = select(valid2, AffineSpace3vff<K>(l2w(i, itime+0)), space0);
space1 = select(valid2, AffineSpace3vff<K>(l2w(i, itime+1)), space1);
}
return rcp(slerp(space0, space1, ftime));
}
}
template<int K>
__forceinline AffineSpace3vf<K> getWorld2LocalLerp(size_t i, const vbool<K>& valid, const vfloat<K>& t) const
{
vfloat<K> ftime;
const vint<K> itime_k = timeSegment<K>(t, ftime);
assert(any(valid));
const size_t index = bsf(movemask(valid));
const int itime = itime_k[index];
if (likely(all(valid, itime_k == vint<K>(itime)))) {
return rcp(lerp(AffineSpace3vf<K>((AffineSpace3fa)l2w(i, itime+0)),
AffineSpace3vf<K>((AffineSpace3fa)l2w(i, itime+1)),
ftime));
} else {
AffineSpace3vf<K> space0,space1;
vbool<K> valid1 = valid;
while (any(valid1)) {
vbool<K> valid2;
const int itime = next_unique(valid1, itime_k, valid2);
space0 = select(valid2, AffineSpace3vf<K>((AffineSpace3fa)l2w(i, itime+0)), space0);
space1 = select(valid2, AffineSpace3vf<K>((AffineSpace3fa)l2w(i, itime+1)), space1);
}
return rcp(lerp(space0, space1, ftime));
}
}
private:
__forceinline AffineSpace3ff l2w(size_t i, size_t itime) const {
if (l2w_buf[itime].getFormat() == RTC_FORMAT_FLOAT4X4_COLUMN_MAJOR) {
return *(AffineSpace3ff*)(l2w_buf[itime].getPtr(i));
}
else if(l2w_buf[itime].getFormat() == RTC_FORMAT_QUATERNION_DECOMPOSITION) {
AffineSpace3ff transform;
QuaternionDecomposition* qd = (QuaternionDecomposition*)l2w_buf[itime].getPtr(i);
transform.l.vx.x = qd->scale_x;
transform.l.vy.y = qd->scale_y;
transform.l.vz.z = qd->scale_z;
transform.l.vy.x = qd->skew_xy;
transform.l.vz.x = qd->skew_xz;
transform.l.vz.y = qd->skew_yz;
transform.l.vx.y = qd->translation_x;
transform.l.vx.z = qd->translation_y;
transform.l.vy.z = qd->translation_z;
transform.p.x = qd->shift_x;
transform.p.y = qd->shift_y;
transform.p.z = qd->shift_z;
// normalize quaternion
Quaternion3f q(qd->quaternion_r, qd->quaternion_i, qd->quaternion_j, qd->quaternion_k);
q = normalize(q);
transform.l.vx.w = q.i;
transform.l.vy.w = q.j;
transform.l.vz.w = q.k;
transform.p.w = q.r;
return transform;
}
else if (l2w_buf[itime].getFormat() == RTC_FORMAT_FLOAT3X4_COLUMN_MAJOR) {
AffineSpace3f* l2w = reinterpret_cast<AffineSpace3f*>(l2w_buf[itime].getPtr(i));
return AffineSpace3ff(*l2w);
}
else if (l2w_buf[itime].getFormat() == RTC_FORMAT_FLOAT3X4_ROW_MAJOR) {
float* data = reinterpret_cast<float*>(l2w_buf[itime].getPtr(i));
AffineSpace3f l2w;
l2w.l.vx.x = data[0]; l2w.l.vy.x = data[1]; l2w.l.vz.x = data[2]; l2w.p.x = data[3];
l2w.l.vx.y = data[4]; l2w.l.vy.y = data[5]; l2w.l.vz.y = data[6]; l2w.p.y = data[7];
l2w.l.vx.z = data[8]; l2w.l.vy.z = data[9]; l2w.l.vz.z = data[10]; l2w.p.z = data[11];
return l2w;
}
assert(false);
return AffineSpace3ff();
}
inline AffineSpace3ff l2w(size_t i) const {
return l2w(i, 0);
}
private:
Accel* object; //!< fast path if only one scene is instanced
Accel** objects;
uint32_t numObjects;
Device::vector<RawBufferView> l2w_buf = device; //!< transformation from local space to world space for each timestep (either normal matrix or quaternion decomposition)
BufferView<uint32_t> object_ids; //!< array of scene ids per instance array primitive
};
namespace isa
{
struct InstanceArrayISA : public InstanceArray
{
InstanceArrayISA (Device* device)
: InstanceArray(device) {}
LBBox3fa vlinearBounds(size_t primID, const BBox1f& time_range) const {
return linearBounds(primID,time_range);
}
PrimInfo createPrimRefArray(PrimRef* prims, const range<size_t>& r, size_t k, unsigned int geomID) const
{
PrimInfo pinfo(empty);
for (size_t j = r.begin(); j < r.end(); j++) {
BBox3fa bounds = empty;
if (!buildBounds(j, &bounds) || !valid(j))
continue;
const PrimRef prim(bounds, geomID, unsigned(j));
pinfo.add_center2(prim);
prims[k++] = prim;
}
return pinfo;
}
PrimInfo createPrimRefArrayMB(mvector<PrimRef>& prims, size_t itime, const range<size_t>& r, size_t k, unsigned int geomID) const
{
PrimInfo pinfo(empty);
for (size_t j = r.begin(); j < r.end(); j++) {
BBox3fa bounds = empty;
if (!buildBounds(j, itime, bounds))
continue;
const PrimRef prim(bounds, geomID, unsigned(j));
pinfo.add_center2(prim);
prims[k++] = prim;
}
return pinfo;
}
PrimInfo createPrimRefArrayMB(PrimRef* prims, const BBox1f& time_range, const range<size_t>& r, size_t k, unsigned int geomID) const
{
PrimInfo pinfo(empty);
const BBox1f t0t1 = BBox1f::intersect(getTimeRange(), time_range);
if (t0t1.empty()) return pinfo;
for (size_t j = r.begin(); j < r.end(); j++) {
LBBox3fa lbounds = linearBounds(j, t0t1);
if (!isvalid(lbounds.bounds()))
continue;
const PrimRef prim(lbounds.bounds(), geomID, unsigned(j));
pinfo.add_center2(prim);
prims[k++] = prim;
}
return pinfo;
}
PrimInfoMB createPrimRefMBArray(mvector<PrimRefMB>& prims, const BBox1f& t0t1, const range<size_t>& r, size_t k, unsigned int geomID) const
{
PrimInfoMB pinfo(empty);
for (size_t j = r.begin(); j < r.end(); j++) {
if (!valid(j, timeSegmentRange(t0t1)))
continue;
const PrimRefMB prim(linearBounds(j, t0t1), this->numTimeSegments(), this->time_range, this->numTimeSegments(), geomID, unsigned(j));
pinfo.add_primref(prim);
prims[k++] = prim;
}
return pinfo;
}
};
}
DECLARE_ISA_FUNCTION(InstanceArray*, createInstanceArray, Device*);
}