godot/core/math/transform_interpolator.cpp
lawnjelly 522bce1159 Fixed Timestep Interpolation (3D)
Adds fixed timestep interpolation to the visual server.
Switchable on and off with project setting.

This version does not add new API for set_transform etc, when nodes have the interpolated flag set they will always use interpolation.
2022-02-16 09:41:23 +00:00

370 lines
13 KiB
C++

/*************************************************************************/
/* transform_interpolator.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "transform_interpolator.h"
void TransformInterpolator::interpolate_transform(const Transform &p_prev, const Transform &p_curr, Transform &r_result, real_t p_fraction) {
r_result.origin = p_prev.origin + ((p_curr.origin - p_prev.origin) * p_fraction);
interpolate_basis(p_prev.basis, p_curr.basis, r_result.basis, p_fraction);
}
void TransformInterpolator::interpolate_basis(const Basis &p_prev, const Basis &p_curr, Basis &r_result, real_t p_fraction) {
Method method = find_method(p_prev, p_curr);
interpolate_basis_via_method(p_prev, p_curr, r_result, p_fraction, method);
}
void TransformInterpolator::interpolate_transform_via_method(const Transform &p_prev, const Transform &p_curr, Transform &r_result, real_t p_fraction, Method p_method) {
r_result.origin = p_prev.origin + ((p_curr.origin - p_prev.origin) * p_fraction);
interpolate_basis_via_method(p_prev.basis, p_curr.basis, r_result.basis, p_fraction, p_method);
}
void TransformInterpolator::interpolate_basis_via_method(const Basis &p_prev, const Basis &p_curr, Basis &r_result, real_t p_fraction, Method p_method) {
switch (p_method) {
default: {
interpolate_basis_linear(p_prev, p_curr, r_result, p_fraction);
} break;
case INTERP_SLERP: {
r_result = _basis_slerp_unchecked(p_prev, p_curr, p_fraction);
} break;
case INTERP_SCALED_SLERP: {
interpolate_basis_scaled_slerp(p_prev, p_curr, r_result, p_fraction);
} break;
}
}
Quat TransformInterpolator::_basis_to_quat_unchecked(const Basis &p_basis) {
Basis m = p_basis;
real_t trace = m.elements[0][0] + m.elements[1][1] + m.elements[2][2];
real_t temp[4];
if (trace > 0.0) {
real_t s = Math::sqrt(trace + 1.0f);
temp[3] = (s * 0.5f);
s = 0.5f / s;
temp[0] = ((m.elements[2][1] - m.elements[1][2]) * s);
temp[1] = ((m.elements[0][2] - m.elements[2][0]) * s);
temp[2] = ((m.elements[1][0] - m.elements[0][1]) * s);
} else {
int i = m.elements[0][0] < m.elements[1][1]
? (m.elements[1][1] < m.elements[2][2] ? 2 : 1)
: (m.elements[0][0] < m.elements[2][2] ? 2 : 0);
int j = (i + 1) % 3;
int k = (i + 2) % 3;
real_t s = Math::sqrt(m.elements[i][i] - m.elements[j][j] - m.elements[k][k] + 1.0f);
temp[i] = s * 0.5f;
s = 0.5f / s;
temp[3] = (m.elements[k][j] - m.elements[j][k]) * s;
temp[j] = (m.elements[j][i] + m.elements[i][j]) * s;
temp[k] = (m.elements[k][i] + m.elements[i][k]) * s;
}
return Quat(temp[0], temp[1], temp[2], temp[3]);
}
Quat TransformInterpolator::_quat_slerp_unchecked(const Quat &p_from, const Quat &p_to, real_t p_fraction) {
Quat to1;
real_t omega, cosom, sinom, scale0, scale1;
// calc cosine
cosom = p_from.dot(p_to);
// adjust signs (if necessary)
if (cosom < 0.0f) {
cosom = -cosom;
to1.x = -p_to.x;
to1.y = -p_to.y;
to1.z = -p_to.z;
to1.w = -p_to.w;
} else {
to1.x = p_to.x;
to1.y = p_to.y;
to1.z = p_to.z;
to1.w = p_to.w;
}
// calculate coefficients
// This check could possibly be removed as we dealt with this
// case in the find_method() function, but is left for safety, it probably
// isn't a bottleneck.
if ((1.0f - cosom) > (real_t)CMP_EPSILON) {
// standard case (slerp)
omega = Math::acos(cosom);
sinom = Math::sin(omega);
scale0 = Math::sin((1.0f - p_fraction) * omega) / sinom;
scale1 = Math::sin(p_fraction * omega) / sinom;
} else {
// "from" and "to" quaternions are very close
// ... so we can do a linear interpolation
scale0 = 1.0f - p_fraction;
scale1 = p_fraction;
}
// calculate final values
return Quat(
scale0 * p_from.x + scale1 * to1.x,
scale0 * p_from.y + scale1 * to1.y,
scale0 * p_from.z + scale1 * to1.z,
scale0 * p_from.w + scale1 * to1.w);
}
Basis TransformInterpolator::_basis_slerp_unchecked(Basis p_from, Basis p_to, real_t p_fraction) {
Quat from = _basis_to_quat_unchecked(p_from);
Quat to = _basis_to_quat_unchecked(p_to);
Basis b(_quat_slerp_unchecked(from, to, p_fraction));
return b;
}
void TransformInterpolator::interpolate_basis_scaled_slerp(Basis p_prev, Basis p_curr, Basis &r_result, real_t p_fraction) {
// normalize both and find lengths
Vector3 lengths_prev = _basis_orthonormalize(p_prev);
Vector3 lengths_curr = _basis_orthonormalize(p_curr);
r_result = _basis_slerp_unchecked(p_prev, p_curr, p_fraction);
// now the result is unit length basis, we need to scale
Vector3 lengths_lerped = lengths_prev + ((lengths_curr - lengths_prev) * p_fraction);
// keep a note that the column / row order of the basis is weird,
// so keep an eye for bugs with this.
r_result[0] *= lengths_lerped;
r_result[1] *= lengths_lerped;
r_result[2] *= lengths_lerped;
}
void TransformInterpolator::interpolate_basis_linear(const Basis &p_prev, const Basis &p_curr, Basis &r_result, real_t p_fraction) {
// interpolate basis
r_result = p_prev.lerp(p_curr, p_fraction);
// It turns out we need to guard against zero scale basis.
// This is kind of silly, as we should probably fix the bugs elsewhere in Godot that can't deal with
// zero scale, but until that time...
for (int n = 0; n < 3; n++) {
Vector3 &axis = r_result[n];
// not ok, this could cause errors due to bugs elsewhere,
// so we will bodge set this to a small value
const real_t smallest = 0.0001f;
const real_t smallest_squared = smallest * smallest;
if (axis.length_squared() < smallest_squared) {
// setting a different component to the smallest
// helps prevent the situation where all the axes are pointing in the same direction,
// which could be a problem for e.g. cross products..
axis[n] = smallest;
}
}
}
real_t TransformInterpolator::checksum_transform(const Transform &p_transform) {
// just a really basic checksum, this can probably be improved
real_t sum = vec3_sum(p_transform.origin);
sum -= vec3_sum(p_transform.basis.elements[0]);
sum += vec3_sum(p_transform.basis.elements[1]);
sum -= vec3_sum(p_transform.basis.elements[2]);
return sum;
}
// return length
real_t TransformInterpolator::_vec3_normalize(Vector3 &p_vec) {
real_t lengthsq = p_vec.length_squared();
if (lengthsq == 0.0f) {
p_vec.x = p_vec.y = p_vec.z = 0.0f;
return 0.0f;
}
real_t length = Math::sqrt(lengthsq);
p_vec.x /= length;
p_vec.y /= length;
p_vec.z /= length;
return length;
}
// returns lengths
Vector3 TransformInterpolator::_basis_orthonormalize(Basis &r_basis) {
// Gram-Schmidt Process
Vector3 x = r_basis.get_axis(0);
Vector3 y = r_basis.get_axis(1);
Vector3 z = r_basis.get_axis(2);
Vector3 lengths;
lengths.x = _vec3_normalize(x);
y = (y - x * (x.dot(y)));
lengths.y = _vec3_normalize(y);
z = (z - x * (x.dot(z)) - y * (y.dot(z)));
lengths.z = _vec3_normalize(z);
r_basis.set_axis(0, x);
r_basis.set_axis(1, y);
r_basis.set_axis(2, z);
return lengths;
}
TransformInterpolator::Method TransformInterpolator::_test_basis(Basis p_basis, bool r_needed_normalize, Quat &r_quat) {
// axis lengths
Vector3 al = Vector3(p_basis.get_axis(0).length_squared(),
p_basis.get_axis(1).length_squared(),
p_basis.get_axis(2).length_squared());
// non unit scale?
if (r_needed_normalize || !al.is_equal_approx(Vector3(1.0, 1.0, 1.0), (real_t)0.001f)) {
// If the basis is not normalized (at least approximately), it will fail the checks needed for slerp.
// So we try to detect a scaled (but not sheared) basis, which we *can* slerp by normalizing first,
// and lerping the scales separately.
// if any of the axes are really small, it is unlikely to be a valid rotation, or is scaled too small to deal with float error
const real_t sl_epsilon = 0.00001f;
if ((al.x < sl_epsilon) ||
(al.y < sl_epsilon) ||
(al.z < sl_epsilon)) {
return INTERP_LERP;
}
// normalize the basis
Basis norm_basis = p_basis;
al.x = Math::sqrt(al.x);
al.y = Math::sqrt(al.y);
al.z = Math::sqrt(al.z);
norm_basis.set_axis(0, norm_basis.get_axis(0) / al.x);
norm_basis.set_axis(1, norm_basis.get_axis(1) / al.y);
norm_basis.set_axis(2, norm_basis.get_axis(2) / al.z);
// This doesn't appear necessary, as the later checks will catch it
// if (!_basis_is_orthogonal_any_scale(norm_basis)) {
// return INTERP_LERP;
// }
p_basis = norm_basis;
// Orthonormalize not necessary as normal normalization(!) works if the
// axes are orthonormal.
// p_basis.orthonormalize();
// if we needed to normalize one of the two basis, we will need to normalize both,
// regardless of whether the 2nd needs it, just to make sure it takes the path to return
// INTERP_SCALED_LERP on the 2nd call of _test_basis.
r_needed_normalize = true;
}
// Apply less stringent tests than the built in slerp, the standard Godot slerp
// is too susceptible to float error to be useful
real_t det = p_basis.determinant();
if (!Math::is_equal_approx(det, 1, (real_t)0.01f)) {
return INTERP_LERP;
}
if (!_basis_is_orthogonal(p_basis)) {
return INTERP_LERP;
}
// This could possibly be less stringent too, check this.
r_quat = _basis_to_quat_unchecked(p_basis);
if (!r_quat.is_normalized()) {
return INTERP_LERP;
}
return r_needed_normalize ? INTERP_SCALED_SLERP : INTERP_SLERP;
}
// This check doesn't seem to be needed but is preserved in case of bugs.
bool TransformInterpolator::_basis_is_orthogonal_any_scale(const Basis &p_basis) {
Vector3 cross = p_basis.get_axis(0).cross(p_basis.get_axis(1));
real_t l = _vec3_normalize(cross);
// too small numbers, revert to lerp
if (l < 0.001f) {
return false;
}
const real_t epsilon = 0.9995f;
real_t dot = cross.dot(p_basis.get_axis(2));
if (dot < epsilon) {
return false;
}
cross = p_basis.get_axis(1).cross(p_basis.get_axis(2));
l = _vec3_normalize(cross);
// too small numbers, revert to lerp
if (l < 0.001f) {
return false;
}
dot = cross.dot(p_basis.get_axis(0));
if (dot < epsilon) {
return false;
}
return true;
}
bool TransformInterpolator::_basis_is_orthogonal(const Basis &p_basis, real_t p_epsilon) {
Basis identity;
Basis m = p_basis * p_basis.transposed();
// Less stringent tests than the standard Godot slerp
if (!m[0].is_equal_approx(identity[0], p_epsilon) || !m[1].is_equal_approx(identity[1], p_epsilon) || !m[2].is_equal_approx(identity[2], p_epsilon)) {
return false;
}
return true;
}
TransformInterpolator::Method TransformInterpolator::find_method(const Basis &p_a, const Basis &p_b) {
bool needed_normalize = false;
Quat q0;
Method method = _test_basis(p_a, needed_normalize, q0);
if (method == INTERP_LERP) {
return method;
}
Quat q1;
method = _test_basis(p_b, needed_normalize, q1);
if (method == INTERP_LERP) {
return method;
}
// Are they close together?
// Apply the same test that will revert to lerp as
// is present in the slerp routine.
// Calc cosine
real_t cosom = Math::abs(q0.dot(q1));
if ((1.0f - cosom) <= (real_t)CMP_EPSILON) {
return INTERP_LERP;
}
return method;
}