godot/servers/visual/particle_system_sw.cpp
2017-08-27 14:11:45 +02:00

386 lines
14 KiB
C++

/*************************************************************************/
/* particle_system_sw.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2017 Godot Engine contributors (cf. AUTHORS.md) */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "particle_system_sw.h"
#include "sort.h"
ParticleSystemSW::ParticleSystemSW() {
amount = 8;
emitting = true;
for (int i = 0; i < VS::PARTICLE_VAR_MAX; i++) {
particle_randomness[i] = 0.0;
}
particle_vars[VS::PARTICLE_LIFETIME] = 2.0; //
particle_vars[VS::PARTICLE_SPREAD] = 0.2; //
particle_vars[VS::PARTICLE_GRAVITY] = 9.8; //
particle_vars[VS::PARTICLE_LINEAR_VELOCITY] = 0.2; //
particle_vars[VS::PARTICLE_ANGULAR_VELOCITY] = 0.0; //
particle_vars[VS::PARTICLE_LINEAR_ACCELERATION] = 0.0; //
particle_vars[VS::PARTICLE_RADIAL_ACCELERATION] = 0.0; //
particle_vars[VS::PARTICLE_TANGENTIAL_ACCELERATION] = 1.0; //
particle_vars[VS::PARTICLE_DAMPING] = 0.0; //
particle_vars[VS::PARTICLE_INITIAL_SIZE] = 1.0;
particle_vars[VS::PARTICLE_FINAL_SIZE] = 0.8;
particle_vars[VS::PARTICLE_HEIGHT] = 1;
particle_vars[VS::PARTICLE_HEIGHT_SPEED_SCALE] = 1;
height_from_velocity = false;
local_coordinates = false;
particle_vars[VS::PARTICLE_INITIAL_ANGLE] = 0.0; //
gravity_normal = Vector3(0, -1.0, 0);
//emission_half_extents=Vector3(0.1,0.1,0.1);
emission_half_extents = Vector3(1, 1, 1);
color_phase_count = 0;
color_phases[0].pos = 0.0;
color_phases[0].color = Color(1.0, 0.0, 0.0);
visibility_aabb = AABB(Vector3(-64, -64, -64), Vector3(128, 128, 128));
attractor_count = 0;
}
ParticleSystemSW::~ParticleSystemSW() {
}
#define DEFAULT_SEED 1234567
_FORCE_INLINE_ static float _rand_from_seed(uint32_t *seed) {
uint32_t k;
uint32_t s = (*seed);
if (s == 0)
s = 0x12345987;
k = s / 127773;
s = 16807 * (s - k * 127773) - 2836 * k;
if (s < 0)
s += 2147483647;
(*seed) = s;
float v = ((float)((*seed) & 0xFFFFF)) / (float)0xFFFFF;
v = v * 2.0 - 1.0;
return v;
}
_FORCE_INLINE_ static uint32_t _irand_from_seed(uint32_t *seed) {
uint32_t k;
uint32_t s = (*seed);
if (s == 0)
s = 0x12345987;
k = s / 127773;
s = 16807 * (s - k * 127773) - 2836 * k;
if (s < 0)
s += 2147483647;
(*seed) = s;
return s;
}
void ParticleSystemProcessSW::process(const ParticleSystemSW *p_system, const Transform &p_transform, float p_time) {
valid = false;
if (p_system->amount <= 0) {
ERR_EXPLAIN("Invalid amount of particles: " + itos(p_system->amount));
ERR_FAIL_COND(p_system->amount <= 0);
}
if (p_system->attractor_count < 0 || p_system->attractor_count > VS::MAX_PARTICLE_ATTRACTORS) {
ERR_EXPLAIN("Invalid amount of particle attractors.");
ERR_FAIL_COND(p_system->attractor_count < 0 || p_system->attractor_count > VS::MAX_PARTICLE_ATTRACTORS);
}
float lifetime = p_system->particle_vars[VS::PARTICLE_LIFETIME];
if (lifetime < CMP_EPSILON) {
ERR_EXPLAIN("Particle system lifetime too small.");
ERR_FAIL_COND(lifetime < CMP_EPSILON);
}
valid = true;
int particle_count = MIN(p_system->amount, ParticleSystemSW::MAX_PARTICLES);
;
int emission_point_count = p_system->emission_points.size();
DVector<Vector3>::Read r;
if (emission_point_count)
r = p_system->emission_points.read();
if (particle_count != particle_data.size()) {
//clear the whole system if particle amount changed
particle_data.clear();
particle_data.resize(p_system->amount);
particle_system_time = 0;
}
float next_time = particle_system_time + p_time;
if (next_time > lifetime)
next_time = Math::fmod(next_time, lifetime);
ParticleData *pdata = &particle_data[0];
Vector3 attractor_positions[VS::MAX_PARTICLE_ATTRACTORS];
for (int i = 0; i < p_system->attractor_count; i++) {
attractor_positions[i] = p_transform.xform(p_system->attractors[i].pos);
}
for (int i = 0; i < particle_count; i++) {
ParticleData &p = pdata[i];
float restart_time = (i * lifetime / p_system->amount);
bool restart = false;
if (next_time < particle_system_time) {
if (restart_time > particle_system_time || restart_time < next_time)
restart = true;
} else if (restart_time > particle_system_time && restart_time < next_time) {
restart = true;
}
if (restart) {
if (p_system->emitting) {
if (emission_point_count == 0) { //use AABB
if (p_system->local_coordinates)
p.pos = p_system->emission_half_extents * Vector3(_rand_from_seed(&rand_seed), _rand_from_seed(&rand_seed), _rand_from_seed(&rand_seed));
else
p.pos = p_transform.xform(p_system->emission_half_extents * Vector3(_rand_from_seed(&rand_seed), _rand_from_seed(&rand_seed), _rand_from_seed(&rand_seed)));
} else {
//use preset positions
if (p_system->local_coordinates)
p.pos = r[_irand_from_seed(&rand_seed) % emission_point_count];
else
p.pos = p_transform.xform(r[_irand_from_seed(&rand_seed) % emission_point_count]);
}
float angle1 = _rand_from_seed(&rand_seed) * p_system->particle_vars[VS::PARTICLE_SPREAD] * Math_PI;
float angle2 = _rand_from_seed(&rand_seed) * 20.0 * Math_PI; // make it more random like
Vector3 rot_xz = Vector3(Math::sin(angle1), 0.0, Math::cos(angle1));
Vector3 rot = Vector3(Math::cos(angle2) * rot_xz.x, Math::sin(angle2) * rot_xz.x, rot_xz.z);
p.vel = (rot * p_system->particle_vars[VS::PARTICLE_LINEAR_VELOCITY] + rot * p_system->particle_randomness[VS::PARTICLE_LINEAR_VELOCITY] * _rand_from_seed(&rand_seed));
if (!p_system->local_coordinates)
p.vel = p_transform.basis.xform(p.vel);
p.vel += p_system->emission_base_velocity;
p.rot = p_system->particle_vars[VS::PARTICLE_INITIAL_ANGLE] + p_system->particle_randomness[VS::PARTICLE_INITIAL_ANGLE] * _rand_from_seed(&rand_seed);
p.active = true;
for (int r = 0; r < PARTICLE_RANDOM_NUMBERS; r++)
p.random[r] = _rand_from_seed(&rand_seed);
} else {
p.pos = Vector3();
p.rot = 0;
p.vel = Vector3();
p.active = false;
}
} else {
if (!p.active)
continue;
Vector3 force;
//apply gravity
force = p_system->gravity_normal * (p_system->particle_vars[VS::PARTICLE_GRAVITY] + (p_system->particle_randomness[VS::PARTICLE_GRAVITY] * p.random[0]));
//apply linear acceleration
force += p.vel.normalized() * (p_system->particle_vars[VS::PARTICLE_LINEAR_ACCELERATION] + p_system->particle_randomness[VS::PARTICLE_LINEAR_ACCELERATION] * p.random[1]);
//apply radial acceleration
Vector3 org;
if (!p_system->local_coordinates)
org = p_transform.origin;
force += (p.pos - org).normalized() * (p_system->particle_vars[VS::PARTICLE_RADIAL_ACCELERATION] + p_system->particle_randomness[VS::PARTICLE_RADIAL_ACCELERATION] * p.random[2]);
//apply tangential acceleration
force += (p.pos - org).cross(p_system->gravity_normal).normalized() * (p_system->particle_vars[VS::PARTICLE_TANGENTIAL_ACCELERATION] + p_system->particle_randomness[VS::PARTICLE_TANGENTIAL_ACCELERATION] * p.random[3]);
//apply attractor forces
for (int a = 0; a < p_system->attractor_count; a++) {
force += (p.pos - attractor_positions[a]).normalized() * p_system->attractors[a].force;
}
p.vel += force * p_time;
if (p_system->particle_vars[VS::PARTICLE_DAMPING]) {
float v = p.vel.length();
float damp = p_system->particle_vars[VS::PARTICLE_DAMPING] + p_system->particle_vars[VS::PARTICLE_DAMPING] * p_system->particle_randomness[VS::PARTICLE_DAMPING];
v -= damp * p_time;
if (v < 0) {
p.vel = Vector3();
} else {
p.vel = p.vel.normalized() * v;
}
}
p.rot += (p_system->particle_vars[VS::PARTICLE_ANGULAR_VELOCITY] + p_system->particle_randomness[VS::PARTICLE_ANGULAR_VELOCITY] * p.random[4]) * p_time;
p.pos += p.vel * p_time;
}
}
particle_system_time = Math::fmod(particle_system_time + p_time, lifetime);
}
ParticleSystemProcessSW::ParticleSystemProcessSW() {
particle_system_time = 0;
rand_seed = 1234567;
valid = false;
}
struct _ParticleSorterSW {
_FORCE_INLINE_ bool operator()(const ParticleSystemDrawInfoSW::ParticleDrawInfo *p_a, const ParticleSystemDrawInfoSW::ParticleDrawInfo *p_b) const {
return p_a->d > p_b->d; // draw from further away to closest
}
};
void ParticleSystemDrawInfoSW::prepare(const ParticleSystemSW *p_system, const ParticleSystemProcessSW *p_process, const Transform &p_system_transform, const Transform &p_camera_transform) {
ERR_FAIL_COND(p_process->particle_data.size() != p_system->amount);
ERR_FAIL_COND(p_system->amount <= 0 || p_system->amount >= ParticleSystemSW::MAX_PARTICLES);
const ParticleSystemProcessSW::ParticleData *pdata = &p_process->particle_data[0];
float time_pos = p_process->particle_system_time / p_system->particle_vars[VS::PARTICLE_LIFETIME];
ParticleSystemSW::ColorPhase cphase[VS::MAX_PARTICLE_COLOR_PHASES];
float last = -1;
int col_count = 0;
for (int i = 0; i < p_system->color_phase_count; i++) {
if (p_system->color_phases[i].pos <= last)
break;
cphase[i] = p_system->color_phases[i];
col_count++;
}
Vector3 camera_z_axis = p_camera_transform.basis.get_axis(2);
for (int i = 0; i < p_system->amount; i++) {
ParticleDrawInfo &pdi = draw_info[i];
pdi.data = &pdata[i];
pdi.transform.origin = pdi.data->pos;
if (p_system->local_coordinates)
pdi.transform.origin = p_system_transform.xform(pdi.transform.origin);
pdi.d = -camera_z_axis.dot(pdi.transform.origin);
// adjust particle size, color and rotation
float time = ((float)i / p_system->amount);
if (time < time_pos)
time = time_pos - time;
else
time = (1.0 - time) + time_pos;
Vector3 up = p_camera_transform.basis.get_axis(1); // up determines the rotation
float up_scale = 1.0;
if (p_system->height_from_velocity) {
Vector3 veld = pdi.data->vel;
Vector3 cam_z = camera_z_axis.normalized();
float vc = Math::abs(veld.normalized().dot(cam_z));
if (vc < (1.0 - CMP_EPSILON)) {
up = Plane(cam_z, 0).project(veld).normalized();
float h = p_system->particle_vars[VS::PARTICLE_HEIGHT] + p_system->particle_randomness[VS::PARTICLE_HEIGHT] * pdi.data->random[7];
float velh = veld.length();
h += velh * (p_system->particle_vars[VS::PARTICLE_HEIGHT_SPEED_SCALE] + p_system->particle_randomness[VS::PARTICLE_HEIGHT_SPEED_SCALE] * pdi.data->random[7]);
up_scale = Math::lerp(1.0, h, (1.0 - vc));
}
} else if (pdi.data->rot) {
up.rotate(camera_z_axis, pdi.data->rot);
}
{
// matrix
Vector3 v_z = (p_camera_transform.origin - pdi.transform.origin).normalized();
// Vector3 v_z = (p_camera_transform.origin-pdi.data->pos).normalized();
Vector3 v_y = up;
Vector3 v_x = v_y.cross(v_z);
v_y = v_z.cross(v_x);
v_x.normalize();
v_y.normalize();
float initial_scale, final_scale;
initial_scale = p_system->particle_vars[VS::PARTICLE_INITIAL_SIZE] + p_system->particle_randomness[VS::PARTICLE_INITIAL_SIZE] * pdi.data->random[5];
final_scale = p_system->particle_vars[VS::PARTICLE_FINAL_SIZE] + p_system->particle_randomness[VS::PARTICLE_FINAL_SIZE] * pdi.data->random[6];
float scale = initial_scale + time * (final_scale - initial_scale);
pdi.transform.basis.set_axis(0, v_x * scale);
pdi.transform.basis.set_axis(1, v_y * scale * up_scale);
pdi.transform.basis.set_axis(2, v_z * scale);
}
int cpos = 0;
while (cpos < col_count) {
if (cphase[cpos].pos > time)
break;
cpos++;
}
cpos--;
if (cpos == -1)
pdi.color = Color(1, 1, 1, 1);
else {
if (cpos == col_count - 1)
pdi.color = cphase[cpos].color;
else {
float diff = (cphase[cpos + 1].pos - cphase[cpos].pos);
if (diff > 0)
pdi.color = cphase[cpos].color.linear_interpolate(cphase[cpos + 1].color, (time - cphase[cpos].pos) / diff);
else
pdi.color = cphase[cpos + 1].color;
}
}
draw_info_order[i] = &pdi;
}
SortArray<ParticleDrawInfo *, _ParticleSorterSW> particle_sort;
particle_sort.sort(&draw_info_order[0], p_system->amount);
}