godot/servers/physics_3d/joints/generic_6dof_joint_3d_sw.cpp
PouleyKetchoupp 448c41a3e4 Godot Physics collisions and solver processed on threads
Use ThreadWorkPool to process physics step tasks in multiple threads. Collisions are all processed in parallel and solving impulses is
processed in parallel for rigid body islands.

Additional changes:
- Proper islands for soft bodies linked to active bodies
- All moving areas are on separate islands (can be parallelized)
- Fix inconsistencies with body islands (Kinematic bodies could link
bodies together or not depending on the processing order)
- Completely prevent static bodies to be active (it could cause islands
to be wrongly created and cause dangerous multi-threading operations as
well as inconsistencies in created islands)
- Apply impulses only on dynamic bodies to avoid unsafe multi-threaded
operations (static bodies can be on multiple islands)
- Removed inverted iterations when populating body islands, it's now
faster in regular order (maybe after fixing inconsistencies)
2021-04-26 18:26:00 -07:00

672 lines
22 KiB
C++

/*************************************************************************/
/* generic_6dof_joint_3d_sw.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
/*
Adapted to Godot from the Bullet library.
*/
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
/*
2007-09-09
Generic6DOFJointSW Refactored by Francisco Le?n
email: projectileman@yahoo.com
http://gimpact.sf.net
*/
#include "generic_6dof_joint_3d_sw.h"
#define GENERIC_D6_DISABLE_WARMSTARTING 1
//////////////////////////// G6DOFRotationalLimitMotorSW ////////////////////////////////////
int G6DOFRotationalLimitMotor3DSW::testLimitValue(real_t test_value) {
if (m_loLimit > m_hiLimit) {
m_currentLimit = 0; //Free from violation
return 0;
}
if (test_value < m_loLimit) {
m_currentLimit = 1; //low limit violation
m_currentLimitError = test_value - m_loLimit;
return 1;
} else if (test_value > m_hiLimit) {
m_currentLimit = 2; //High limit violation
m_currentLimitError = test_value - m_hiLimit;
return 2;
};
m_currentLimit = 0; //Free from violation
return 0;
}
real_t G6DOFRotationalLimitMotor3DSW::solveAngularLimits(
real_t timeStep, Vector3 &axis, real_t jacDiagABInv,
Body3DSW *body0, Body3DSW *body1, bool p_body0_dynamic, bool p_body1_dynamic) {
if (!needApplyTorques()) {
return 0.0f;
}
real_t target_velocity = m_targetVelocity;
real_t maxMotorForce = m_maxMotorForce;
//current error correction
if (m_currentLimit != 0) {
target_velocity = -m_ERP * m_currentLimitError / (timeStep);
maxMotorForce = m_maxLimitForce;
}
maxMotorForce *= timeStep;
// current velocity difference
Vector3 vel_diff = body0->get_angular_velocity();
if (body1) {
vel_diff -= body1->get_angular_velocity();
}
real_t rel_vel = axis.dot(vel_diff);
// correction velocity
real_t motor_relvel = m_limitSoftness * (target_velocity - m_damping * rel_vel);
if (Math::is_zero_approx(motor_relvel)) {
return 0.0f; //no need for applying force
}
// correction impulse
real_t unclippedMotorImpulse = (1 + m_bounce) * motor_relvel * jacDiagABInv;
// clip correction impulse
real_t clippedMotorImpulse;
///@todo: should clip against accumulated impulse
if (unclippedMotorImpulse > 0.0f) {
clippedMotorImpulse = unclippedMotorImpulse > maxMotorForce ? maxMotorForce : unclippedMotorImpulse;
} else {
clippedMotorImpulse = unclippedMotorImpulse < -maxMotorForce ? -maxMotorForce : unclippedMotorImpulse;
}
// sort with accumulated impulses
real_t lo = real_t(-1e30);
real_t hi = real_t(1e30);
real_t oldaccumImpulse = m_accumulatedImpulse;
real_t sum = oldaccumImpulse + clippedMotorImpulse;
m_accumulatedImpulse = sum > hi ? real_t(0.) : (sum < lo ? real_t(0.) : sum);
clippedMotorImpulse = m_accumulatedImpulse - oldaccumImpulse;
Vector3 motorImp = clippedMotorImpulse * axis;
if (p_body0_dynamic) {
body0->apply_torque_impulse(motorImp);
}
if (body1 && p_body1_dynamic) {
body1->apply_torque_impulse(-motorImp);
}
return clippedMotorImpulse;
}
//////////////////////////// End G6DOFRotationalLimitMotorSW ////////////////////////////////////
//////////////////////////// G6DOFTranslationalLimitMotorSW ////////////////////////////////////
real_t G6DOFTranslationalLimitMotor3DSW::solveLinearAxis(
real_t timeStep,
real_t jacDiagABInv,
Body3DSW *body1, const Vector3 &pointInA,
Body3DSW *body2, const Vector3 &pointInB,
bool p_body1_dynamic, bool p_body2_dynamic,
int limit_index,
const Vector3 &axis_normal_on_a,
const Vector3 &anchorPos) {
///find relative velocity
// Vector3 rel_pos1 = pointInA - body1->get_transform().origin;
// Vector3 rel_pos2 = pointInB - body2->get_transform().origin;
Vector3 rel_pos1 = anchorPos - body1->get_transform().origin;
Vector3 rel_pos2 = anchorPos - body2->get_transform().origin;
Vector3 vel1 = body1->get_velocity_in_local_point(rel_pos1);
Vector3 vel2 = body2->get_velocity_in_local_point(rel_pos2);
Vector3 vel = vel1 - vel2;
real_t rel_vel = axis_normal_on_a.dot(vel);
/// apply displacement correction
//positional error (zeroth order error)
real_t depth = -(pointInA - pointInB).dot(axis_normal_on_a);
real_t lo = real_t(-1e30);
real_t hi = real_t(1e30);
real_t minLimit = m_lowerLimit[limit_index];
real_t maxLimit = m_upperLimit[limit_index];
//handle the limits
if (minLimit < maxLimit) {
{
if (depth > maxLimit) {
depth -= maxLimit;
lo = real_t(0.);
} else {
if (depth < minLimit) {
depth -= minLimit;
hi = real_t(0.);
} else {
return 0.0f;
}
}
}
}
real_t normalImpulse = m_limitSoftness[limit_index] * (m_restitution[limit_index] * depth / timeStep - m_damping[limit_index] * rel_vel) * jacDiagABInv;
real_t oldNormalImpulse = m_accumulatedImpulse[limit_index];
real_t sum = oldNormalImpulse + normalImpulse;
m_accumulatedImpulse[limit_index] = sum > hi ? real_t(0.) : (sum < lo ? real_t(0.) : sum);
normalImpulse = m_accumulatedImpulse[limit_index] - oldNormalImpulse;
Vector3 impulse_vector = axis_normal_on_a * normalImpulse;
if (p_body1_dynamic) {
body1->apply_impulse(impulse_vector, rel_pos1);
}
if (p_body2_dynamic) {
body2->apply_impulse(-impulse_vector, rel_pos2);
}
return normalImpulse;
}
//////////////////////////// G6DOFTranslationalLimitMotorSW ////////////////////////////////////
Generic6DOFJoint3DSW::Generic6DOFJoint3DSW(Body3DSW *rbA, Body3DSW *rbB, const Transform &frameInA, const Transform &frameInB, bool useLinearReferenceFrameA) :
Joint3DSW(_arr, 2),
m_frameInA(frameInA),
m_frameInB(frameInB),
m_useLinearReferenceFrameA(useLinearReferenceFrameA) {
A = rbA;
B = rbB;
A->add_constraint(this, 0);
B->add_constraint(this, 1);
}
void Generic6DOFJoint3DSW::calculateAngleInfo() {
Basis relative_frame = m_calculatedTransformB.basis.inverse() * m_calculatedTransformA.basis;
m_calculatedAxisAngleDiff = relative_frame.get_euler_xyz();
// in euler angle mode we do not actually constrain the angular velocity
// along the axes axis[0] and axis[2] (although we do use axis[1]) :
//
// to get constrain w2-w1 along ...not
// ------ --------------------- ------
// d(angle[0])/dt = 0 ax[1] x ax[2] ax[0]
// d(angle[1])/dt = 0 ax[1]
// d(angle[2])/dt = 0 ax[0] x ax[1] ax[2]
//
// constraining w2-w1 along an axis 'a' means that a'*(w2-w1)=0.
// to prove the result for angle[0], write the expression for angle[0] from
// GetInfo1 then take the derivative. to prove this for angle[2] it is
// easier to take the euler rate expression for d(angle[2])/dt with respect
// to the components of w and set that to 0.
Vector3 axis0 = m_calculatedTransformB.basis.get_axis(0);
Vector3 axis2 = m_calculatedTransformA.basis.get_axis(2);
m_calculatedAxis[1] = axis2.cross(axis0);
m_calculatedAxis[0] = m_calculatedAxis[1].cross(axis2);
m_calculatedAxis[2] = axis0.cross(m_calculatedAxis[1]);
/*
if(m_debugDrawer)
{
char buff[300];
sprintf(buff,"\n X: %.2f ; Y: %.2f ; Z: %.2f ",
m_calculatedAxisAngleDiff[0],
m_calculatedAxisAngleDiff[1],
m_calculatedAxisAngleDiff[2]);
m_debugDrawer->reportErrorWarning(buff);
}
*/
}
void Generic6DOFJoint3DSW::calculateTransforms() {
m_calculatedTransformA = A->get_transform() * m_frameInA;
m_calculatedTransformB = B->get_transform() * m_frameInB;
calculateAngleInfo();
}
void Generic6DOFJoint3DSW::buildLinearJacobian(
JacobianEntry3DSW &jacLinear, const Vector3 &normalWorld,
const Vector3 &pivotAInW, const Vector3 &pivotBInW) {
memnew_placement(&jacLinear, JacobianEntry3DSW(
A->get_principal_inertia_axes().transposed(),
B->get_principal_inertia_axes().transposed(),
pivotAInW - A->get_transform().origin - A->get_center_of_mass(),
pivotBInW - B->get_transform().origin - B->get_center_of_mass(),
normalWorld,
A->get_inv_inertia(),
A->get_inv_mass(),
B->get_inv_inertia(),
B->get_inv_mass()));
}
void Generic6DOFJoint3DSW::buildAngularJacobian(
JacobianEntry3DSW &jacAngular, const Vector3 &jointAxisW) {
memnew_placement(&jacAngular, JacobianEntry3DSW(jointAxisW,
A->get_principal_inertia_axes().transposed(),
B->get_principal_inertia_axes().transposed(),
A->get_inv_inertia(),
B->get_inv_inertia()));
}
bool Generic6DOFJoint3DSW::testAngularLimitMotor(int axis_index) {
real_t angle = m_calculatedAxisAngleDiff[axis_index];
//test limits
m_angularLimits[axis_index].testLimitValue(angle);
return m_angularLimits[axis_index].needApplyTorques();
}
bool Generic6DOFJoint3DSW::setup(real_t p_timestep) {
dynamic_A = (A->get_mode() > PhysicsServer3D::BODY_MODE_KINEMATIC);
dynamic_B = (B->get_mode() > PhysicsServer3D::BODY_MODE_KINEMATIC);
if (!dynamic_A && !dynamic_B) {
return false;
}
// Clear accumulated impulses for the next simulation step
m_linearLimits.m_accumulatedImpulse = Vector3(real_t(0.), real_t(0.), real_t(0.));
int i;
for (i = 0; i < 3; i++) {
m_angularLimits[i].m_accumulatedImpulse = real_t(0.);
}
//calculates transform
calculateTransforms();
// const Vector3& pivotAInW = m_calculatedTransformA.origin;
// const Vector3& pivotBInW = m_calculatedTransformB.origin;
calcAnchorPos();
Vector3 pivotAInW = m_AnchorPos;
Vector3 pivotBInW = m_AnchorPos;
// not used here
// Vector3 rel_pos1 = pivotAInW - A->get_transform().origin;
// Vector3 rel_pos2 = pivotBInW - B->get_transform().origin;
Vector3 normalWorld;
//linear part
for (i = 0; i < 3; i++) {
if (m_linearLimits.enable_limit[i] && m_linearLimits.isLimited(i)) {
if (m_useLinearReferenceFrameA) {
normalWorld = m_calculatedTransformA.basis.get_axis(i);
} else {
normalWorld = m_calculatedTransformB.basis.get_axis(i);
}
buildLinearJacobian(
m_jacLinear[i], normalWorld,
pivotAInW, pivotBInW);
}
}
// angular part
for (i = 0; i < 3; i++) {
//calculates error angle
if (m_angularLimits[i].m_enableLimit && testAngularLimitMotor(i)) {
normalWorld = this->getAxis(i);
// Create angular atom
buildAngularJacobian(m_jacAng[i], normalWorld);
}
}
return true;
}
void Generic6DOFJoint3DSW::solve(real_t p_timestep) {
m_timeStep = p_timestep;
//calculateTransforms();
int i;
// linear
Vector3 pointInA = m_calculatedTransformA.origin;
Vector3 pointInB = m_calculatedTransformB.origin;
real_t jacDiagABInv;
Vector3 linear_axis;
for (i = 0; i < 3; i++) {
if (m_linearLimits.enable_limit[i] && m_linearLimits.isLimited(i)) {
jacDiagABInv = real_t(1.) / m_jacLinear[i].getDiagonal();
if (m_useLinearReferenceFrameA) {
linear_axis = m_calculatedTransformA.basis.get_axis(i);
} else {
linear_axis = m_calculatedTransformB.basis.get_axis(i);
}
m_linearLimits.solveLinearAxis(
m_timeStep,
jacDiagABInv,
A, pointInA,
B, pointInB,
dynamic_A, dynamic_B,
i, linear_axis, m_AnchorPos);
}
}
// angular
Vector3 angular_axis;
real_t angularJacDiagABInv;
for (i = 0; i < 3; i++) {
if (m_angularLimits[i].m_enableLimit && m_angularLimits[i].needApplyTorques()) {
// get axis
angular_axis = getAxis(i);
angularJacDiagABInv = real_t(1.) / m_jacAng[i].getDiagonal();
m_angularLimits[i].solveAngularLimits(m_timeStep, angular_axis, angularJacDiagABInv, A, B, dynamic_A, dynamic_B);
}
}
}
void Generic6DOFJoint3DSW::updateRHS(real_t timeStep) {
(void)timeStep;
}
Vector3 Generic6DOFJoint3DSW::getAxis(int axis_index) const {
return m_calculatedAxis[axis_index];
}
real_t Generic6DOFJoint3DSW::getAngle(int axis_index) const {
return m_calculatedAxisAngleDiff[axis_index];
}
void Generic6DOFJoint3DSW::calcAnchorPos() {
real_t imA = A->get_inv_mass();
real_t imB = B->get_inv_mass();
real_t weight;
if (imB == real_t(0.0)) {
weight = real_t(1.0);
} else {
weight = imA / (imA + imB);
}
const Vector3 &pA = m_calculatedTransformA.origin;
const Vector3 &pB = m_calculatedTransformB.origin;
m_AnchorPos = pA * weight + pB * (real_t(1.0) - weight);
} // Generic6DOFJointSW::calcAnchorPos()
void Generic6DOFJoint3DSW::set_param(Vector3::Axis p_axis, PhysicsServer3D::G6DOFJointAxisParam p_param, real_t p_value) {
ERR_FAIL_INDEX(p_axis, 3);
switch (p_param) {
case PhysicsServer3D::G6DOF_JOINT_LINEAR_LOWER_LIMIT: {
m_linearLimits.m_lowerLimit[p_axis] = p_value;
} break;
case PhysicsServer3D::G6DOF_JOINT_LINEAR_UPPER_LIMIT: {
m_linearLimits.m_upperLimit[p_axis] = p_value;
} break;
case PhysicsServer3D::G6DOF_JOINT_LINEAR_LIMIT_SOFTNESS: {
m_linearLimits.m_limitSoftness[p_axis] = p_value;
} break;
case PhysicsServer3D::G6DOF_JOINT_LINEAR_RESTITUTION: {
m_linearLimits.m_restitution[p_axis] = p_value;
} break;
case PhysicsServer3D::G6DOF_JOINT_LINEAR_DAMPING: {
m_linearLimits.m_damping[p_axis] = p_value;
} break;
case PhysicsServer3D::G6DOF_JOINT_ANGULAR_LOWER_LIMIT: {
m_angularLimits[p_axis].m_loLimit = p_value;
} break;
case PhysicsServer3D::G6DOF_JOINT_ANGULAR_UPPER_LIMIT: {
m_angularLimits[p_axis].m_hiLimit = p_value;
} break;
case PhysicsServer3D::G6DOF_JOINT_ANGULAR_LIMIT_SOFTNESS: {
m_angularLimits[p_axis].m_limitSoftness = p_value;
} break;
case PhysicsServer3D::G6DOF_JOINT_ANGULAR_DAMPING: {
m_angularLimits[p_axis].m_damping = p_value;
} break;
case PhysicsServer3D::G6DOF_JOINT_ANGULAR_RESTITUTION: {
m_angularLimits[p_axis].m_bounce = p_value;
} break;
case PhysicsServer3D::G6DOF_JOINT_ANGULAR_FORCE_LIMIT: {
m_angularLimits[p_axis].m_maxLimitForce = p_value;
} break;
case PhysicsServer3D::G6DOF_JOINT_ANGULAR_ERP: {
m_angularLimits[p_axis].m_ERP = p_value;
} break;
case PhysicsServer3D::G6DOF_JOINT_ANGULAR_MOTOR_TARGET_VELOCITY: {
m_angularLimits[p_axis].m_targetVelocity = p_value;
} break;
case PhysicsServer3D::G6DOF_JOINT_ANGULAR_MOTOR_FORCE_LIMIT: {
m_angularLimits[p_axis].m_maxLimitForce = p_value;
} break;
case PhysicsServer3D::G6DOF_JOINT_LINEAR_MOTOR_TARGET_VELOCITY: {
// Not implemented in GodotPhysics3D backend
} break;
case PhysicsServer3D::G6DOF_JOINT_LINEAR_MOTOR_FORCE_LIMIT: {
// Not implemented in GodotPhysics3D backend
} break;
case PhysicsServer3D::G6DOF_JOINT_LINEAR_SPRING_STIFFNESS: {
// Not implemented in GodotPhysics3D backend
} break;
case PhysicsServer3D::G6DOF_JOINT_LINEAR_SPRING_DAMPING: {
// Not implemented in GodotPhysics3D backend
} break;
case PhysicsServer3D::G6DOF_JOINT_LINEAR_SPRING_EQUILIBRIUM_POINT: {
// Not implemented in GodotPhysics3D backend
} break;
case PhysicsServer3D::G6DOF_JOINT_ANGULAR_SPRING_STIFFNESS: {
// Not implemented in GodotPhysics3D backend
} break;
case PhysicsServer3D::G6DOF_JOINT_ANGULAR_SPRING_DAMPING: {
// Not implemented in GodotPhysics3D backend
} break;
case PhysicsServer3D::G6DOF_JOINT_ANGULAR_SPRING_EQUILIBRIUM_POINT: {
// Not implemented in GodotPhysics3D backend
} break;
case PhysicsServer3D::G6DOF_JOINT_MAX:
break; // Can't happen, but silences warning
}
}
real_t Generic6DOFJoint3DSW::get_param(Vector3::Axis p_axis, PhysicsServer3D::G6DOFJointAxisParam p_param) const {
ERR_FAIL_INDEX_V(p_axis, 3, 0);
switch (p_param) {
case PhysicsServer3D::G6DOF_JOINT_LINEAR_LOWER_LIMIT: {
return m_linearLimits.m_lowerLimit[p_axis];
} break;
case PhysicsServer3D::G6DOF_JOINT_LINEAR_UPPER_LIMIT: {
return m_linearLimits.m_upperLimit[p_axis];
} break;
case PhysicsServer3D::G6DOF_JOINT_LINEAR_LIMIT_SOFTNESS: {
return m_linearLimits.m_limitSoftness[p_axis];
} break;
case PhysicsServer3D::G6DOF_JOINT_LINEAR_RESTITUTION: {
return m_linearLimits.m_restitution[p_axis];
} break;
case PhysicsServer3D::G6DOF_JOINT_LINEAR_DAMPING: {
return m_linearLimits.m_damping[p_axis];
} break;
case PhysicsServer3D::G6DOF_JOINT_ANGULAR_LOWER_LIMIT: {
return m_angularLimits[p_axis].m_loLimit;
} break;
case PhysicsServer3D::G6DOF_JOINT_ANGULAR_UPPER_LIMIT: {
return m_angularLimits[p_axis].m_hiLimit;
} break;
case PhysicsServer3D::G6DOF_JOINT_ANGULAR_LIMIT_SOFTNESS: {
return m_angularLimits[p_axis].m_limitSoftness;
} break;
case PhysicsServer3D::G6DOF_JOINT_ANGULAR_DAMPING: {
return m_angularLimits[p_axis].m_damping;
} break;
case PhysicsServer3D::G6DOF_JOINT_ANGULAR_RESTITUTION: {
return m_angularLimits[p_axis].m_bounce;
} break;
case PhysicsServer3D::G6DOF_JOINT_ANGULAR_FORCE_LIMIT: {
return m_angularLimits[p_axis].m_maxLimitForce;
} break;
case PhysicsServer3D::G6DOF_JOINT_ANGULAR_ERP: {
return m_angularLimits[p_axis].m_ERP;
} break;
case PhysicsServer3D::G6DOF_JOINT_ANGULAR_MOTOR_TARGET_VELOCITY: {
return m_angularLimits[p_axis].m_targetVelocity;
} break;
case PhysicsServer3D::G6DOF_JOINT_ANGULAR_MOTOR_FORCE_LIMIT: {
return m_angularLimits[p_axis].m_maxMotorForce;
} break;
case PhysicsServer3D::G6DOF_JOINT_LINEAR_MOTOR_TARGET_VELOCITY: {
// Not implemented in GodotPhysics3D backend
} break;
case PhysicsServer3D::G6DOF_JOINT_LINEAR_MOTOR_FORCE_LIMIT: {
// Not implemented in GodotPhysics3D backend
} break;
case PhysicsServer3D::G6DOF_JOINT_LINEAR_SPRING_STIFFNESS: {
// Not implemented in GodotPhysics3D backend
} break;
case PhysicsServer3D::G6DOF_JOINT_LINEAR_SPRING_DAMPING: {
// Not implemented in GodotPhysics3D backend
} break;
case PhysicsServer3D::G6DOF_JOINT_LINEAR_SPRING_EQUILIBRIUM_POINT: {
// Not implemented in GodotPhysics3D backend
} break;
case PhysicsServer3D::G6DOF_JOINT_ANGULAR_SPRING_STIFFNESS: {
// Not implemented in GodotPhysics3D backend
} break;
case PhysicsServer3D::G6DOF_JOINT_ANGULAR_SPRING_DAMPING: {
// Not implemented in GodotPhysics3D backend
} break;
case PhysicsServer3D::G6DOF_JOINT_ANGULAR_SPRING_EQUILIBRIUM_POINT: {
// Not implemented in GodotPhysics3D backend
} break;
case PhysicsServer3D::G6DOF_JOINT_MAX:
break; // Can't happen, but silences warning
}
return 0;
}
void Generic6DOFJoint3DSW::set_flag(Vector3::Axis p_axis, PhysicsServer3D::G6DOFJointAxisFlag p_flag, bool p_value) {
ERR_FAIL_INDEX(p_axis, 3);
switch (p_flag) {
case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_LINEAR_LIMIT: {
m_linearLimits.enable_limit[p_axis] = p_value;
} break;
case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_LIMIT: {
m_angularLimits[p_axis].m_enableLimit = p_value;
} break;
case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_MOTOR: {
m_angularLimits[p_axis].m_enableMotor = p_value;
} break;
case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_LINEAR_MOTOR: {
// Not implemented in GodotPhysics3D backend
} break;
case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_LINEAR_SPRING: {
// Not implemented in GodotPhysics3D backend
} break;
case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_SPRING: {
// Not implemented in GodotPhysics3D backend
} break;
case PhysicsServer3D::G6DOF_JOINT_FLAG_MAX:
break; // Can't happen, but silences warning
}
}
bool Generic6DOFJoint3DSW::get_flag(Vector3::Axis p_axis, PhysicsServer3D::G6DOFJointAxisFlag p_flag) const {
ERR_FAIL_INDEX_V(p_axis, 3, 0);
switch (p_flag) {
case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_LINEAR_LIMIT: {
return m_linearLimits.enable_limit[p_axis];
} break;
case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_LIMIT: {
return m_angularLimits[p_axis].m_enableLimit;
} break;
case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_MOTOR: {
return m_angularLimits[p_axis].m_enableMotor;
} break;
case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_LINEAR_MOTOR: {
// Not implemented in GodotPhysics3D backend
} break;
case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_LINEAR_SPRING: {
// Not implemented in GodotPhysics3D backend
} break;
case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_SPRING: {
// Not implemented in GodotPhysics3D backend
} break;
case PhysicsServer3D::G6DOF_JOINT_FLAG_MAX:
break; // Can't happen, but silences warning
}
return false;
}