godot/modules/recast/navigation_mesh_generator.cpp
Hein-Pieter van Braam 0e29f7974b Reduce unnecessary COW on Vector by make writing explicit
This commit makes operator[] on Vector const and adds a write proxy to it.  From
now on writes to Vectors need to happen through the .write proxy. So for
instance:

Vector<int> vec;
vec.push_back(10);
std::cout << vec[0] << std::endl;
vec.write[0] = 20;

Failing to use the .write proxy will cause a compilation error.

In addition COWable datatypes can now embed a CowData pointer to their data.
This means that String, CharString, and VMap no longer use or derive from
Vector.

_ALWAYS_INLINE_ and _FORCE_INLINE_ are now equivalent for debug and non-debug
builds. This is a lot faster for Vector in the editor and while running tests.
The reason why this difference used to exist is because force-inlined methods
used to give a bad debugging experience. After extensive testing with modern
compilers this is no longer the case.
2018-07-26 00:54:16 +02:00

305 lines
12 KiB
C++

/*************************************************************************/
/* navigation_mesh_generator.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2018 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2018 Godot Engine contributors (cf. AUTHORS.md) */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "navigation_mesh_generator.h"
void NavigationMeshGenerator::_add_vertex(const Vector3 &p_vec3, Vector<float> &p_verticies) {
p_verticies.push_back(p_vec3.x);
p_verticies.push_back(p_vec3.y);
p_verticies.push_back(p_vec3.z);
}
void NavigationMeshGenerator::_add_mesh(const Ref<Mesh> &p_mesh, const Transform &p_xform, Vector<float> &p_verticies, Vector<int> &p_indices) {
int current_vertex_count = 0;
for (int i = 0; i < p_mesh->get_surface_count(); i++) {
current_vertex_count = p_verticies.size() / 3;
if (p_mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES)
continue;
int index_count = 0;
if (p_mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_INDEX) {
index_count = p_mesh->surface_get_array_index_len(i);
} else {
index_count = p_mesh->surface_get_array_len(i);
}
ERR_CONTINUE((index_count == 0 || (index_count % 3) != 0));
int face_count = index_count / 3;
Array a = p_mesh->surface_get_arrays(i);
PoolVector<Vector3> mesh_vertices = a[Mesh::ARRAY_VERTEX];
PoolVector<Vector3>::Read vr = mesh_vertices.read();
if (p_mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_INDEX) {
PoolVector<int> mesh_indices = a[Mesh::ARRAY_INDEX];
PoolVector<int>::Read ir = mesh_indices.read();
for (int i = 0; i < mesh_vertices.size(); i++) {
_add_vertex(p_xform.xform(vr[i]), p_verticies);
}
for (int i = 0; i < face_count; i++) {
// CCW
p_indices.push_back(current_vertex_count + (ir[i * 3 + 0]));
p_indices.push_back(current_vertex_count + (ir[i * 3 + 2]));
p_indices.push_back(current_vertex_count + (ir[i * 3 + 1]));
}
} else {
face_count = mesh_vertices.size() / 3;
for (int i = 0; i < face_count; i++) {
_add_vertex(p_xform.xform(vr[i * 3 + 0]), p_verticies);
_add_vertex(p_xform.xform(vr[i * 3 + 2]), p_verticies);
_add_vertex(p_xform.xform(vr[i * 3 + 1]), p_verticies);
p_indices.push_back(current_vertex_count + (i * 3 + 0));
p_indices.push_back(current_vertex_count + (i * 3 + 1));
p_indices.push_back(current_vertex_count + (i * 3 + 2));
}
}
}
}
void NavigationMeshGenerator::_parse_geometry(const Transform &p_base_inverse, Node *p_node, Vector<float> &p_verticies, Vector<int> &p_indices) {
if (Object::cast_to<MeshInstance>(p_node)) {
MeshInstance *mesh_instance = Object::cast_to<MeshInstance>(p_node);
Ref<Mesh> mesh = mesh_instance->get_mesh();
if (mesh.is_valid()) {
_add_mesh(mesh, p_base_inverse * mesh_instance->get_global_transform(), p_verticies, p_indices);
}
}
for (int i = 0; i < p_node->get_child_count(); i++) {
_parse_geometry(p_base_inverse, p_node->get_child(i), p_verticies, p_indices);
}
}
void NavigationMeshGenerator::_convert_detail_mesh_to_native_navigation_mesh(const rcPolyMeshDetail *p_detail_mesh, Ref<NavigationMesh> p_nav_mesh) {
PoolVector<Vector3> nav_vertices;
for (int i = 0; i < p_detail_mesh->nverts; i++) {
const float *v = &p_detail_mesh->verts[i * 3];
nav_vertices.append(Vector3(v[0], v[1], v[2]));
}
p_nav_mesh->set_vertices(nav_vertices);
for (int i = 0; i < p_detail_mesh->nmeshes; i++) {
const unsigned int *m = &p_detail_mesh->meshes[i * 4];
const unsigned int bverts = m[0];
const unsigned int btris = m[2];
const unsigned int ntris = m[3];
const unsigned char *tris = &p_detail_mesh->tris[btris * 4];
for (unsigned int j = 0; j < ntris; j++) {
Vector<int> nav_indices;
nav_indices.resize(3);
nav_indices.write[0] = ((int)(bverts + tris[j * 4 + 0]));
nav_indices.write[1] = ((int)(bverts + tris[j * 4 + 1]));
nav_indices.write[2] = ((int)(bverts + tris[j * 4 + 2]));
p_nav_mesh->add_polygon(nav_indices);
}
}
}
void NavigationMeshGenerator::_build_recast_navigation_mesh(Ref<NavigationMesh> p_nav_mesh, EditorProgress *ep,
rcHeightfield *hf, rcCompactHeightfield *chf, rcContourSet *cset, rcPolyMesh *poly_mesh, rcPolyMeshDetail *detail_mesh,
Vector<float> &vertices, Vector<int> &indices) {
rcContext ctx;
ep->step(TTR("Setting up Configuration..."), 1);
const float *verts = vertices.ptr();
const int nverts = vertices.size() / 3;
const int *tris = indices.ptr();
const int ntris = indices.size() / 3;
float bmin[3], bmax[3];
rcCalcBounds(verts, nverts, bmin, bmax);
rcConfig cfg;
memset(&cfg, 0, sizeof(cfg));
cfg.cs = p_nav_mesh->get_cell_size();
cfg.ch = p_nav_mesh->get_cell_height();
cfg.walkableSlopeAngle = p_nav_mesh->get_agent_max_slope();
cfg.walkableHeight = (int)Math::ceil(p_nav_mesh->get_agent_height() / cfg.ch);
cfg.walkableClimb = (int)Math::floor(p_nav_mesh->get_agent_max_climb() / cfg.ch);
cfg.walkableRadius = (int)Math::ceil(p_nav_mesh->get_agent_radius() / cfg.cs);
cfg.maxEdgeLen = (int)(p_nav_mesh->get_edge_max_length() / p_nav_mesh->get_cell_size());
cfg.maxSimplificationError = p_nav_mesh->get_edge_max_error();
cfg.minRegionArea = (int)(p_nav_mesh->get_region_min_size() * p_nav_mesh->get_region_min_size());
cfg.mergeRegionArea = (int)(p_nav_mesh->get_region_merge_size() * p_nav_mesh->get_region_merge_size());
cfg.maxVertsPerPoly = (int)p_nav_mesh->get_verts_per_poly();
cfg.detailSampleDist = p_nav_mesh->get_detail_sample_distance() < 0.9f ? 0 : p_nav_mesh->get_cell_size() * p_nav_mesh->get_detail_sample_distance();
cfg.detailSampleMaxError = p_nav_mesh->get_cell_height() * p_nav_mesh->get_detail_sample_max_error();
cfg.bmin[0] = bmin[0];
cfg.bmin[1] = bmin[1];
cfg.bmin[2] = bmin[2];
cfg.bmax[0] = bmax[0];
cfg.bmax[1] = bmax[1];
cfg.bmax[2] = bmax[2];
ep->step(TTR("Calculating grid size..."), 2);
rcCalcGridSize(cfg.bmin, cfg.bmax, cfg.cs, &cfg.width, &cfg.height);
ep->step(TTR("Creating heightfield..."), 3);
hf = rcAllocHeightfield();
ERR_FAIL_COND(!hf);
ERR_FAIL_COND(!rcCreateHeightfield(&ctx, *hf, cfg.width, cfg.height, cfg.bmin, cfg.bmax, cfg.cs, cfg.ch));
ep->step(TTR("Marking walkable triangles..."), 4);
{
Vector<unsigned char> tri_areas;
tri_areas.resize(ntris);
ERR_FAIL_COND(tri_areas.size() == 0);
memset(tri_areas.ptrw(), 0, ntris * sizeof(unsigned char));
rcMarkWalkableTriangles(&ctx, cfg.walkableSlopeAngle, verts, nverts, tris, ntris, tri_areas.ptrw());
ERR_FAIL_COND(!rcRasterizeTriangles(&ctx, verts, nverts, tris, tri_areas.ptr(), ntris, *hf, cfg.walkableClimb));
}
if (p_nav_mesh->get_filter_low_hanging_obstacles())
rcFilterLowHangingWalkableObstacles(&ctx, cfg.walkableClimb, *hf);
if (p_nav_mesh->get_filter_ledge_spans())
rcFilterLedgeSpans(&ctx, cfg.walkableHeight, cfg.walkableClimb, *hf);
if (p_nav_mesh->get_filter_walkable_low_height_spans())
rcFilterWalkableLowHeightSpans(&ctx, cfg.walkableHeight, *hf);
ep->step(TTR("Constructing compact heightfield..."), 5);
chf = rcAllocCompactHeightfield();
ERR_FAIL_COND(!chf);
ERR_FAIL_COND(!rcBuildCompactHeightfield(&ctx, cfg.walkableHeight, cfg.walkableClimb, *hf, *chf));
rcFreeHeightField(hf);
hf = 0;
ep->step(TTR("Eroding walkable area..."), 6);
ERR_FAIL_COND(!rcErodeWalkableArea(&ctx, cfg.walkableRadius, *chf));
ep->step(TTR("Partitioning..."), 7);
if (p_nav_mesh->get_sample_partition_type() == NavigationMesh::SAMPLE_PARTITION_WATERSHED) {
ERR_FAIL_COND(!rcBuildDistanceField(&ctx, *chf));
ERR_FAIL_COND(!rcBuildRegions(&ctx, *chf, 0, cfg.minRegionArea, cfg.mergeRegionArea));
} else if (p_nav_mesh->get_sample_partition_type() == NavigationMesh::SAMPLE_PARTITION_MONOTONE) {
ERR_FAIL_COND(!rcBuildRegionsMonotone(&ctx, *chf, 0, cfg.minRegionArea, cfg.mergeRegionArea));
} else {
ERR_FAIL_COND(!rcBuildLayerRegions(&ctx, *chf, 0, cfg.minRegionArea));
}
ep->step(TTR("Creating contours..."), 8);
cset = rcAllocContourSet();
ERR_FAIL_COND(!cset);
ERR_FAIL_COND(!rcBuildContours(&ctx, *chf, cfg.maxSimplificationError, cfg.maxEdgeLen, *cset));
ep->step(TTR("Creating polymesh..."), 9);
poly_mesh = rcAllocPolyMesh();
ERR_FAIL_COND(!poly_mesh);
ERR_FAIL_COND(!rcBuildPolyMesh(&ctx, *cset, cfg.maxVertsPerPoly, *poly_mesh));
detail_mesh = rcAllocPolyMeshDetail();
ERR_FAIL_COND(!detail_mesh);
ERR_FAIL_COND(!rcBuildPolyMeshDetail(&ctx, *poly_mesh, *chf, cfg.detailSampleDist, cfg.detailSampleMaxError, *detail_mesh));
rcFreeCompactHeightfield(chf);
chf = 0;
rcFreeContourSet(cset);
cset = 0;
ep->step(TTR("Converting to native navigation mesh..."), 10);
_convert_detail_mesh_to_native_navigation_mesh(detail_mesh, p_nav_mesh);
rcFreePolyMesh(poly_mesh);
poly_mesh = 0;
rcFreePolyMeshDetail(detail_mesh);
detail_mesh = 0;
}
void NavigationMeshGenerator::bake(Ref<NavigationMesh> p_nav_mesh, Node *p_node) {
ERR_FAIL_COND(!p_nav_mesh.is_valid());
EditorProgress ep("bake", TTR("Navigation Mesh Generator Setup:"), 11);
ep.step(TTR("Parsing Geometry..."), 0);
Vector<float> vertices;
Vector<int> indices;
_parse_geometry(Object::cast_to<Spatial>(p_node)->get_global_transform().affine_inverse(), p_node, vertices, indices);
if (vertices.size() > 0 && indices.size() > 0) {
rcHeightfield *hf = NULL;
rcCompactHeightfield *chf = NULL;
rcContourSet *cset = NULL;
rcPolyMesh *poly_mesh = NULL;
rcPolyMeshDetail *detail_mesh = NULL;
_build_recast_navigation_mesh(p_nav_mesh, &ep, hf, chf, cset, poly_mesh, detail_mesh, vertices, indices);
rcFreeHeightField(hf);
hf = 0;
rcFreeCompactHeightfield(chf);
chf = 0;
rcFreeContourSet(cset);
cset = 0;
rcFreePolyMesh(poly_mesh);
poly_mesh = 0;
rcFreePolyMeshDetail(detail_mesh);
detail_mesh = 0;
}
ep.step(TTR("Done!"), 11);
}
void NavigationMeshGenerator::clear(Ref<NavigationMesh> p_nav_mesh) {
if (p_nav_mesh.is_valid()) {
p_nav_mesh->clear_polygons();
p_nav_mesh->set_vertices(PoolVector<Vector3>());
}
}