godot/core/io/image.cpp
2024-09-11 23:48:29 +02:00

4339 lines
139 KiB
C++

/**************************************************************************/
/* image.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "image.h"
#include "core/config/project_settings.h"
#include "core/error/error_list.h"
#include "core/error/error_macros.h"
#include "core/io/image_loader.h"
#include "core/io/resource_loader.h"
#include "core/math/math_funcs.h"
#include "core/string/print_string.h"
#include "core/templates/hash_map.h"
#include "core/variant/dictionary.h"
#include <stdio.h>
#include <cmath>
const char *Image::format_names[Image::FORMAT_MAX] = {
"Lum8", //luminance
"LumAlpha8", //luminance-alpha
"Red8",
"RedGreen",
"RGB8",
"RGBA8",
"RGBA4444",
"RGBA5551",
"RFloat", //float
"RGFloat",
"RGBFloat",
"RGBAFloat",
"RHalf", //half float
"RGHalf",
"RGBHalf",
"RGBAHalf",
"RGBE9995",
"DXT1 RGB8", //s3tc
"DXT3 RGBA8",
"DXT5 RGBA8",
"RGTC Red8",
"RGTC RedGreen8",
"BPTC_RGBA",
"BPTC_RGBF",
"BPTC_RGBFU",
"ETC", //etc1
"ETC2_R11", //etc2
"ETC2_R11S", //signed", NOT srgb.
"ETC2_RG11",
"ETC2_RG11S",
"ETC2_RGB8",
"ETC2_RGBA8",
"ETC2_RGB8A1",
"ETC2_RA_AS_RG",
"FORMAT_DXT5_RA_AS_RG",
"ASTC_4x4",
"ASTC_4x4_HDR",
"ASTC_8x8",
"ASTC_8x8_HDR",
};
SavePNGFunc Image::save_png_func = nullptr;
SaveJPGFunc Image::save_jpg_func = nullptr;
SaveEXRFunc Image::save_exr_func = nullptr;
SavePNGBufferFunc Image::save_png_buffer_func = nullptr;
SaveEXRBufferFunc Image::save_exr_buffer_func = nullptr;
SaveJPGBufferFunc Image::save_jpg_buffer_func = nullptr;
SaveWebPFunc Image::save_webp_func = nullptr;
SaveWebPBufferFunc Image::save_webp_buffer_func = nullptr;
void Image::_put_pixelb(int p_x, int p_y, uint32_t p_pixel_size, uint8_t *p_data, const uint8_t *p_pixel) {
uint32_t ofs = (p_y * width + p_x) * p_pixel_size;
memcpy(p_data + ofs, p_pixel, p_pixel_size);
}
void Image::_get_pixelb(int p_x, int p_y, uint32_t p_pixel_size, const uint8_t *p_data, uint8_t *p_pixel) {
uint32_t ofs = (p_y * width + p_x) * p_pixel_size;
memcpy(p_pixel, p_data + ofs, p_pixel_size);
}
int Image::get_format_pixel_size(Format p_format) {
switch (p_format) {
case FORMAT_L8:
return 1; //luminance
case FORMAT_LA8:
return 2; //luminance-alpha
case FORMAT_R8:
return 1;
case FORMAT_RG8:
return 2;
case FORMAT_RGB8:
return 3;
case FORMAT_RGBA8:
return 4;
case FORMAT_RGBA4444:
return 2;
case FORMAT_RGB565:
return 2;
case FORMAT_RF:
return 4; //float
case FORMAT_RGF:
return 8;
case FORMAT_RGBF:
return 12;
case FORMAT_RGBAF:
return 16;
case FORMAT_RH:
return 2; //half float
case FORMAT_RGH:
return 4;
case FORMAT_RGBH:
return 6;
case FORMAT_RGBAH:
return 8;
case FORMAT_RGBE9995:
return 4;
case FORMAT_DXT1:
return 1; //s3tc bc1
case FORMAT_DXT3:
return 1; //bc2
case FORMAT_DXT5:
return 1; //bc3
case FORMAT_RGTC_R:
return 1; //bc4
case FORMAT_RGTC_RG:
return 1; //bc5
case FORMAT_BPTC_RGBA:
return 1; //btpc bc6h
case FORMAT_BPTC_RGBF:
return 1; //float /
case FORMAT_BPTC_RGBFU:
return 1; //unsigned float
case FORMAT_ETC:
return 1; //etc1
case FORMAT_ETC2_R11:
return 1; //etc2
case FORMAT_ETC2_R11S:
return 1; //signed: return 1; NOT srgb.
case FORMAT_ETC2_RG11:
return 1;
case FORMAT_ETC2_RG11S:
return 1;
case FORMAT_ETC2_RGB8:
return 1;
case FORMAT_ETC2_RGBA8:
return 1;
case FORMAT_ETC2_RGB8A1:
return 1;
case FORMAT_ETC2_RA_AS_RG:
return 1;
case FORMAT_DXT5_RA_AS_RG:
return 1;
case FORMAT_ASTC_4x4:
return 1;
case FORMAT_ASTC_4x4_HDR:
return 1;
case FORMAT_ASTC_8x8:
return 1;
case FORMAT_ASTC_8x8_HDR:
return 1;
case FORMAT_MAX: {
}
}
return 0;
}
void Image::get_format_min_pixel_size(Format p_format, int &r_w, int &r_h) {
switch (p_format) {
case FORMAT_DXT1: //s3tc bc1
case FORMAT_DXT3: //bc2
case FORMAT_DXT5: //bc3
case FORMAT_RGTC_R: //bc4
case FORMAT_RGTC_RG: { //bc5 case case FORMAT_DXT1:
r_w = 4;
r_h = 4;
} break;
case FORMAT_ETC: {
r_w = 4;
r_h = 4;
} break;
case FORMAT_BPTC_RGBA:
case FORMAT_BPTC_RGBF:
case FORMAT_BPTC_RGBFU: {
r_w = 4;
r_h = 4;
} break;
case FORMAT_ETC2_R11: //etc2
case FORMAT_ETC2_R11S: //signed: NOT srgb.
case FORMAT_ETC2_RG11:
case FORMAT_ETC2_RG11S:
case FORMAT_ETC2_RGB8:
case FORMAT_ETC2_RGBA8:
case FORMAT_ETC2_RGB8A1:
case FORMAT_ETC2_RA_AS_RG:
case FORMAT_DXT5_RA_AS_RG: {
r_w = 4;
r_h = 4;
} break;
case FORMAT_ASTC_4x4:
case FORMAT_ASTC_4x4_HDR: {
r_w = 4;
r_h = 4;
} break;
case FORMAT_ASTC_8x8:
case FORMAT_ASTC_8x8_HDR: {
r_w = 8;
r_h = 8;
} break;
default: {
r_w = 1;
r_h = 1;
} break;
}
}
int Image::get_format_pixel_rshift(Format p_format) {
if (p_format == FORMAT_ASTC_8x8) {
return 2;
} else if (p_format == FORMAT_DXT1 || p_format == FORMAT_RGTC_R || p_format == FORMAT_ETC || p_format == FORMAT_ETC2_R11 || p_format == FORMAT_ETC2_R11S || p_format == FORMAT_ETC2_RGB8 || p_format == FORMAT_ETC2_RGB8A1) {
return 1;
} else {
return 0;
}
}
int Image::get_format_block_size(Format p_format) {
switch (p_format) {
case FORMAT_DXT1: //s3tc bc1
case FORMAT_DXT3: //bc2
case FORMAT_DXT5: //bc3
case FORMAT_RGTC_R: //bc4
case FORMAT_RGTC_RG: { //bc5 case case FORMAT_DXT1:
return 4;
}
case FORMAT_ETC: {
return 4;
}
case FORMAT_BPTC_RGBA:
case FORMAT_BPTC_RGBF:
case FORMAT_BPTC_RGBFU: {
return 4;
}
case FORMAT_ETC2_R11: //etc2
case FORMAT_ETC2_R11S: //signed: NOT srgb.
case FORMAT_ETC2_RG11:
case FORMAT_ETC2_RG11S:
case FORMAT_ETC2_RGB8:
case FORMAT_ETC2_RGBA8:
case FORMAT_ETC2_RGB8A1:
case FORMAT_ETC2_RA_AS_RG: //used to make basis universal happy
case FORMAT_DXT5_RA_AS_RG: //used to make basis universal happy
{
return 4;
}
case FORMAT_ASTC_4x4:
case FORMAT_ASTC_4x4_HDR: {
return 4;
}
case FORMAT_ASTC_8x8:
case FORMAT_ASTC_8x8_HDR: {
return 8;
}
default: {
}
}
return 1;
}
void Image::_get_mipmap_offset_and_size(int p_mipmap, int64_t &r_offset, int &r_width, int &r_height) const {
int w = width;
int h = height;
int64_t ofs = 0;
int pixel_size = get_format_pixel_size(format);
int pixel_rshift = get_format_pixel_rshift(format);
int block = get_format_block_size(format);
int minw, minh;
get_format_min_pixel_size(format, minw, minh);
for (int i = 0; i < p_mipmap; i++) {
int bw = w % block != 0 ? w + (block - w % block) : w;
int bh = h % block != 0 ? h + (block - h % block) : h;
int64_t s = bw * bh;
s *= pixel_size;
s >>= pixel_rshift;
ofs += s;
w = MAX(minw, w >> 1);
h = MAX(minh, h >> 1);
}
r_offset = ofs;
r_width = w;
r_height = h;
}
int64_t Image::get_mipmap_offset(int p_mipmap) const {
ERR_FAIL_INDEX_V(p_mipmap, get_mipmap_count() + 1, -1);
int64_t ofs;
int w, h;
_get_mipmap_offset_and_size(p_mipmap, ofs, w, h);
return ofs;
}
void Image::get_mipmap_offset_and_size(int p_mipmap, int64_t &r_ofs, int64_t &r_size) const {
int64_t ofs;
int w, h;
_get_mipmap_offset_and_size(p_mipmap, ofs, w, h);
int64_t ofs2;
_get_mipmap_offset_and_size(p_mipmap + 1, ofs2, w, h);
r_ofs = ofs;
r_size = ofs2 - ofs;
}
void Image::get_mipmap_offset_size_and_dimensions(int p_mipmap, int64_t &r_ofs, int64_t &r_size, int &w, int &h) const {
int64_t ofs;
_get_mipmap_offset_and_size(p_mipmap, ofs, w, h);
int64_t ofs2;
int w2, h2;
_get_mipmap_offset_and_size(p_mipmap + 1, ofs2, w2, h2);
r_ofs = ofs;
r_size = ofs2 - ofs;
}
Image::Image3DValidateError Image::validate_3d_image(Image::Format p_format, int p_width, int p_height, int p_depth, bool p_mipmaps, const Vector<Ref<Image>> &p_images) {
int w = p_width;
int h = p_height;
int d = p_depth;
int arr_ofs = 0;
while (true) {
for (int i = 0; i < d; i++) {
int idx = i + arr_ofs;
if (idx >= p_images.size()) {
return VALIDATE_3D_ERR_MISSING_IMAGES;
}
if (p_images[idx].is_null() || p_images[idx]->is_empty()) {
return VALIDATE_3D_ERR_IMAGE_EMPTY;
}
if (p_images[idx]->get_format() != p_format) {
return VALIDATE_3D_ERR_IMAGE_FORMAT_MISMATCH;
}
if (p_images[idx]->get_width() != w || p_images[idx]->get_height() != h) {
return VALIDATE_3D_ERR_IMAGE_SIZE_MISMATCH;
}
if (p_images[idx]->has_mipmaps()) {
return VALIDATE_3D_ERR_IMAGE_HAS_MIPMAPS;
}
}
arr_ofs += d;
if (!p_mipmaps) {
break;
}
if (w == 1 && h == 1 && d == 1) {
break;
}
w = MAX(1, w >> 1);
h = MAX(1, h >> 1);
d = MAX(1, d >> 1);
}
if (arr_ofs != p_images.size()) {
return VALIDATE_3D_ERR_EXTRA_IMAGES;
}
return VALIDATE_3D_OK;
}
String Image::get_3d_image_validation_error_text(Image3DValidateError p_error) {
switch (p_error) {
case VALIDATE_3D_OK: {
return "Ok";
} break;
case VALIDATE_3D_ERR_IMAGE_EMPTY: {
return "Empty Image found";
} break;
case VALIDATE_3D_ERR_MISSING_IMAGES: {
return "Missing Images";
} break;
case VALIDATE_3D_ERR_EXTRA_IMAGES: {
return "Too many Images";
} break;
case VALIDATE_3D_ERR_IMAGE_SIZE_MISMATCH: {
return "Image size mismatch";
} break;
case VALIDATE_3D_ERR_IMAGE_FORMAT_MISMATCH: {
return "Image format mismatch";
} break;
case VALIDATE_3D_ERR_IMAGE_HAS_MIPMAPS: {
return "Image has included mipmaps";
} break;
}
return String();
}
int Image::get_width() const {
return width;
}
int Image::get_height() const {
return height;
}
Size2i Image::get_size() const {
return Size2i(width, height);
}
bool Image::has_mipmaps() const {
return mipmaps;
}
int Image::get_mipmap_count() const {
if (mipmaps) {
return get_image_required_mipmaps(width, height, format);
} else {
return 0;
}
}
//using template generates perfectly optimized code due to constant expression reduction and unused variable removal present in all compilers
template <uint32_t read_bytes, bool read_alpha, uint32_t write_bytes, bool write_alpha, bool read_gray, bool write_gray>
static void _convert(int p_width, int p_height, const uint8_t *p_src, uint8_t *p_dst) {
constexpr uint32_t max_bytes = MAX(read_bytes, write_bytes);
for (int y = 0; y < p_height; y++) {
for (int x = 0; x < p_width; x++) {
const uint8_t *rofs = &p_src[((y * p_width) + x) * (read_bytes + (read_alpha ? 1 : 0))];
uint8_t *wofs = &p_dst[((y * p_width) + x) * (write_bytes + (write_alpha ? 1 : 0))];
uint8_t rgba[4] = { 0, 0, 0, 255 };
if constexpr (read_gray) {
rgba[0] = rofs[0];
rgba[1] = rofs[0];
rgba[2] = rofs[0];
} else {
for (uint32_t i = 0; i < max_bytes; i++) {
rgba[i] = (i < read_bytes) ? rofs[i] : 0;
}
}
if constexpr (read_alpha || write_alpha) {
rgba[3] = read_alpha ? rofs[read_bytes] : 255;
}
if constexpr (write_gray) {
// REC.709
const uint8_t luminance = (13938U * rgba[0] + 46869U * rgba[1] + 4729U * rgba[2] + 32768U) >> 16U;
wofs[0] = luminance;
} else {
for (uint32_t i = 0; i < write_bytes; i++) {
wofs[i] = rgba[i];
}
}
if constexpr (write_alpha) {
wofs[write_bytes] = rgba[3];
}
}
}
}
template <typename T, uint32_t read_channels, uint32_t write_channels, T def_zero, T def_one>
static void _convert_fast(int p_width, int p_height, const T *p_src, T *p_dst) {
uint32_t dst_count = 0;
uint32_t src_count = 0;
const int resolution = p_width * p_height;
for (int i = 0; i < resolution; i++) {
memcpy(p_dst + dst_count, p_src + src_count, MIN(read_channels, write_channels) * sizeof(T));
if constexpr (write_channels > read_channels) {
const T def_value[4] = { def_zero, def_zero, def_zero, def_one };
memcpy(p_dst + dst_count + read_channels, &def_value[read_channels], (write_channels - read_channels) * sizeof(T));
}
dst_count += write_channels;
src_count += read_channels;
}
}
static bool _are_formats_compatible(Image::Format p_format0, Image::Format p_format1) {
if (p_format0 <= Image::FORMAT_RGBA8 && p_format1 <= Image::FORMAT_RGBA8) {
return true;
} else if (p_format0 <= Image::FORMAT_RGBAH && p_format0 >= Image::FORMAT_RH && p_format1 <= Image::FORMAT_RGBAH && p_format1 >= Image::FORMAT_RH) {
return true;
} else if (p_format0 <= Image::FORMAT_RGBAF && p_format0 >= Image::FORMAT_RF && p_format1 <= Image::FORMAT_RGBAF && p_format1 >= Image::FORMAT_RF) {
return true;
}
return false;
}
void Image::convert(Format p_new_format) {
ERR_FAIL_INDEX_MSG(p_new_format, FORMAT_MAX, "The Image format specified (" + itos(p_new_format) + ") is out of range. See Image's Format enum.");
if (data.size() == 0) {
return;
}
if (p_new_format == format) {
return;
}
// Includes the main image.
const int mipmap_count = get_mipmap_count() + 1;
if (Image::is_format_compressed(format) || Image::is_format_compressed(p_new_format)) {
ERR_FAIL_MSG("Cannot convert to <-> from compressed formats. Use compress() and decompress() instead.");
} else if (!_are_formats_compatible(format, p_new_format)) {
//use put/set pixel which is slower but works with non byte formats
Image new_img(width, height, mipmaps, p_new_format);
for (int mip = 0; mip < mipmap_count; mip++) {
Ref<Image> src_mip = get_image_from_mipmap(mip);
Ref<Image> new_mip = new_img.get_image_from_mipmap(mip);
for (int y = 0; y < src_mip->height; y++) {
for (int x = 0; x < src_mip->width; x++) {
new_mip->set_pixel(x, y, src_mip->get_pixel(x, y));
}
}
int64_t mip_offset = 0;
int64_t mip_size = 0;
new_img.get_mipmap_offset_and_size(mip, mip_offset, mip_size);
memcpy(new_img.data.ptrw() + mip_offset, new_mip->data.ptr(), mip_size);
}
_copy_internals_from(new_img);
return;
}
Image new_img(width, height, mipmaps, p_new_format);
int conversion_type = format | p_new_format << 8;
for (int mip = 0; mip < mipmap_count; mip++) {
int64_t mip_offset = 0;
int64_t mip_size = 0;
int mip_width = 0;
int mip_height = 0;
get_mipmap_offset_size_and_dimensions(mip, mip_offset, mip_size, mip_width, mip_height);
const uint8_t *rptr = data.ptr() + mip_offset;
uint8_t *wptr = new_img.data.ptrw() + new_img.get_mipmap_offset(mip);
switch (conversion_type) {
case FORMAT_L8 | (FORMAT_LA8 << 8):
_convert<1, false, 1, true, true, true>(mip_width, mip_height, rptr, wptr);
break;
case FORMAT_L8 | (FORMAT_R8 << 8):
_convert<1, false, 1, false, true, false>(mip_width, mip_height, rptr, wptr);
break;
case FORMAT_L8 | (FORMAT_RG8 << 8):
_convert<1, false, 2, false, true, false>(mip_width, mip_height, rptr, wptr);
break;
case FORMAT_L8 | (FORMAT_RGB8 << 8):
_convert<1, false, 3, false, true, false>(mip_width, mip_height, rptr, wptr);
break;
case FORMAT_L8 | (FORMAT_RGBA8 << 8):
_convert<1, false, 3, true, true, false>(mip_width, mip_height, rptr, wptr);
break;
case FORMAT_LA8 | (FORMAT_L8 << 8):
_convert<1, true, 1, false, true, true>(mip_width, mip_height, rptr, wptr);
break;
case FORMAT_LA8 | (FORMAT_R8 << 8):
_convert<1, true, 1, false, true, false>(mip_width, mip_height, rptr, wptr);
break;
case FORMAT_LA8 | (FORMAT_RG8 << 8):
_convert<1, true, 2, false, true, false>(mip_width, mip_height, rptr, wptr);
break;
case FORMAT_LA8 | (FORMAT_RGB8 << 8):
_convert<1, true, 3, false, true, false>(mip_width, mip_height, rptr, wptr);
break;
case FORMAT_LA8 | (FORMAT_RGBA8 << 8):
_convert<1, true, 3, true, true, false>(mip_width, mip_height, rptr, wptr);
break;
case FORMAT_R8 | (FORMAT_L8 << 8):
_convert<1, false, 1, false, false, true>(mip_width, mip_height, rptr, wptr);
break;
case FORMAT_R8 | (FORMAT_LA8 << 8):
_convert<1, false, 1, true, false, true>(mip_width, mip_height, rptr, wptr);
break;
case FORMAT_R8 | (FORMAT_RG8 << 8):
_convert<1, false, 2, false, false, false>(mip_width, mip_height, rptr, wptr);
break;
case FORMAT_R8 | (FORMAT_RGB8 << 8):
_convert<1, false, 3, false, false, false>(mip_width, mip_height, rptr, wptr);
break;
case FORMAT_R8 | (FORMAT_RGBA8 << 8):
_convert<1, false, 3, true, false, false>(mip_width, mip_height, rptr, wptr);
break;
case FORMAT_RG8 | (FORMAT_L8 << 8):
_convert<2, false, 1, false, false, true>(mip_width, mip_height, rptr, wptr);
break;
case FORMAT_RG8 | (FORMAT_LA8 << 8):
_convert<2, false, 1, true, false, true>(mip_width, mip_height, rptr, wptr);
break;
case FORMAT_RG8 | (FORMAT_R8 << 8):
_convert<2, false, 1, false, false, false>(mip_width, mip_height, rptr, wptr);
break;
case FORMAT_RG8 | (FORMAT_RGB8 << 8):
_convert<2, false, 3, false, false, false>(mip_width, mip_height, rptr, wptr);
break;
case FORMAT_RG8 | (FORMAT_RGBA8 << 8):
_convert<2, false, 3, true, false, false>(mip_width, mip_height, rptr, wptr);
break;
case FORMAT_RGB8 | (FORMAT_L8 << 8):
_convert<3, false, 1, false, false, true>(mip_width, mip_height, rptr, wptr);
break;
case FORMAT_RGB8 | (FORMAT_LA8 << 8):
_convert<3, false, 1, true, false, true>(mip_width, mip_height, rptr, wptr);
break;
case FORMAT_RGB8 | (FORMAT_R8 << 8):
_convert<3, false, 1, false, false, false>(mip_width, mip_height, rptr, wptr);
break;
case FORMAT_RGB8 | (FORMAT_RG8 << 8):
_convert<3, false, 2, false, false, false>(mip_width, mip_height, rptr, wptr);
break;
case FORMAT_RGB8 | (FORMAT_RGBA8 << 8):
_convert<3, false, 3, true, false, false>(mip_width, mip_height, rptr, wptr);
break;
case FORMAT_RGBA8 | (FORMAT_L8 << 8):
_convert<3, true, 1, false, false, true>(mip_width, mip_height, rptr, wptr);
break;
case FORMAT_RGBA8 | (FORMAT_LA8 << 8):
_convert<3, true, 1, true, false, true>(mip_width, mip_height, rptr, wptr);
break;
case FORMAT_RGBA8 | (FORMAT_R8 << 8):
_convert<3, true, 1, false, false, false>(mip_width, mip_height, rptr, wptr);
break;
case FORMAT_RGBA8 | (FORMAT_RG8 << 8):
_convert<3, true, 2, false, false, false>(mip_width, mip_height, rptr, wptr);
break;
case FORMAT_RGBA8 | (FORMAT_RGB8 << 8):
_convert<3, true, 3, false, false, false>(mip_width, mip_height, rptr, wptr);
break;
case FORMAT_RH | (FORMAT_RGH << 8):
_convert_fast<uint16_t, 1, 2, 0x0000, 0x3C00>(mip_width, mip_height, (const uint16_t *)rptr, (uint16_t *)wptr);
break;
case FORMAT_RH | (FORMAT_RGBH << 8):
_convert_fast<uint16_t, 1, 3, 0x0000, 0x3C00>(mip_width, mip_height, (const uint16_t *)rptr, (uint16_t *)wptr);
break;
case FORMAT_RH | (FORMAT_RGBAH << 8):
_convert_fast<uint16_t, 1, 4, 0x0000, 0x3C00>(mip_width, mip_height, (const uint16_t *)rptr, (uint16_t *)wptr);
break;
case FORMAT_RGH | (FORMAT_RH << 8):
_convert_fast<uint16_t, 2, 1, 0x0000, 0x3C00>(mip_width, mip_height, (const uint16_t *)rptr, (uint16_t *)wptr);
break;
case FORMAT_RGH | (FORMAT_RGBH << 8):
_convert_fast<uint16_t, 2, 3, 0x0000, 0x3C00>(mip_width, mip_height, (const uint16_t *)rptr, (uint16_t *)wptr);
break;
case FORMAT_RGH | (FORMAT_RGBAH << 8):
_convert_fast<uint16_t, 2, 4, 0x0000, 0x3C00>(mip_width, mip_height, (const uint16_t *)rptr, (uint16_t *)wptr);
break;
case FORMAT_RGBH | (FORMAT_RH << 8):
_convert_fast<uint16_t, 3, 1, 0x0000, 0x3C00>(mip_width, mip_height, (const uint16_t *)rptr, (uint16_t *)wptr);
break;
case FORMAT_RGBH | (FORMAT_RGH << 8):
_convert_fast<uint16_t, 3, 2, 0x0000, 0x3C00>(mip_width, mip_height, (const uint16_t *)rptr, (uint16_t *)wptr);
break;
case FORMAT_RGBH | (FORMAT_RGBAH << 8):
_convert_fast<uint16_t, 3, 4, 0x0000, 0x3C00>(mip_width, mip_height, (const uint16_t *)rptr, (uint16_t *)wptr);
break;
case FORMAT_RGBAH | (FORMAT_RH << 8):
_convert_fast<uint16_t, 4, 1, 0x0000, 0x3C00>(mip_width, mip_height, (const uint16_t *)rptr, (uint16_t *)wptr);
break;
case FORMAT_RGBAH | (FORMAT_RGH << 8):
_convert_fast<uint16_t, 4, 2, 0x0000, 0x3C00>(mip_width, mip_height, (const uint16_t *)rptr, (uint16_t *)wptr);
break;
case FORMAT_RGBAH | (FORMAT_RGBH << 8):
_convert_fast<uint16_t, 4, 3, 0x0000, 0x3C00>(mip_width, mip_height, (const uint16_t *)rptr, (uint16_t *)wptr);
break;
case FORMAT_RF | (FORMAT_RGF << 8):
_convert_fast<uint32_t, 1, 2, 0x00000000, 0x3F800000>(mip_width, mip_height, (const uint32_t *)rptr, (uint32_t *)wptr);
break;
case FORMAT_RF | (FORMAT_RGBF << 8):
_convert_fast<uint32_t, 1, 3, 0x00000000, 0x3F800000>(mip_width, mip_height, (const uint32_t *)rptr, (uint32_t *)wptr);
break;
case FORMAT_RF | (FORMAT_RGBAF << 8):
_convert_fast<uint32_t, 1, 4, 0x00000000, 0x3F800000>(mip_width, mip_height, (const uint32_t *)rptr, (uint32_t *)wptr);
break;
case FORMAT_RGF | (FORMAT_RF << 8):
_convert_fast<uint32_t, 2, 1, 0x00000000, 0x3F800000>(mip_width, mip_height, (const uint32_t *)rptr, (uint32_t *)wptr);
break;
case FORMAT_RGF | (FORMAT_RGBF << 8):
_convert_fast<uint32_t, 2, 3, 0x00000000, 0x3F800000>(mip_width, mip_height, (const uint32_t *)rptr, (uint32_t *)wptr);
break;
case FORMAT_RGF | (FORMAT_RGBAF << 8):
_convert_fast<uint32_t, 2, 4, 0x00000000, 0x3F800000>(mip_width, mip_height, (const uint32_t *)rptr, (uint32_t *)wptr);
break;
case FORMAT_RGBF | (FORMAT_RF << 8):
_convert_fast<uint32_t, 3, 1, 0x00000000, 0x3F800000>(mip_width, mip_height, (const uint32_t *)rptr, (uint32_t *)wptr);
break;
case FORMAT_RGBF | (FORMAT_RGF << 8):
_convert_fast<uint32_t, 3, 2, 0x00000000, 0x3F800000>(mip_width, mip_height, (const uint32_t *)rptr, (uint32_t *)wptr);
break;
case FORMAT_RGBF | (FORMAT_RGBAF << 8):
_convert_fast<uint32_t, 3, 4, 0x00000000, 0x3F800000>(mip_width, mip_height, (const uint32_t *)rptr, (uint32_t *)wptr);
break;
case FORMAT_RGBAF | (FORMAT_RF << 8):
_convert_fast<uint32_t, 4, 1, 0x00000000, 0x3F800000>(mip_width, mip_height, (const uint32_t *)rptr, (uint32_t *)wptr);
break;
case FORMAT_RGBAF | (FORMAT_RGF << 8):
_convert_fast<uint32_t, 4, 2, 0x00000000, 0x3F800000>(mip_width, mip_height, (const uint32_t *)rptr, (uint32_t *)wptr);
break;
case FORMAT_RGBAF | (FORMAT_RGBF << 8):
_convert_fast<uint32_t, 4, 3, 0x00000000, 0x3F800000>(mip_width, mip_height, (const uint32_t *)rptr, (uint32_t *)wptr);
break;
}
}
_copy_internals_from(new_img);
}
Image::Format Image::get_format() const {
return format;
}
static double _bicubic_interp_kernel(double x) {
x = ABS(x);
double bc = 0;
if (x <= 1) {
bc = (1.5 * x - 2.5) * x * x + 1;
} else if (x < 2) {
bc = ((-0.5 * x + 2.5) * x - 4) * x + 2;
}
return bc;
}
template <int CC, typename T>
static void _scale_cubic(const uint8_t *__restrict p_src, uint8_t *__restrict p_dst, uint32_t p_src_width, uint32_t p_src_height, uint32_t p_dst_width, uint32_t p_dst_height) {
// get source image size
int width = p_src_width;
int height = p_src_height;
double xfac = (double)width / p_dst_width;
double yfac = (double)height / p_dst_height;
// coordinates of source points and coefficients
double ox, oy, dx, dy;
int ox1, oy1, ox2, oy2;
// destination pixel values
// width and height decreased by 1
int ymax = height - 1;
int xmax = width - 1;
// temporary pointer
for (uint32_t y = 0; y < p_dst_height; y++) {
// Y coordinates
oy = (double)y * yfac - 0.5f;
oy1 = (int)oy;
dy = oy - (double)oy1;
for (uint32_t x = 0; x < p_dst_width; x++) {
// X coordinates
ox = (double)x * xfac - 0.5f;
ox1 = (int)ox;
dx = ox - (double)ox1;
// initial pixel value
T *__restrict dst = ((T *)p_dst) + (y * p_dst_width + x) * CC;
double color[CC];
for (int i = 0; i < CC; i++) {
color[i] = 0;
}
for (int n = -1; n < 3; n++) {
// get Y coefficient
[[maybe_unused]] double k1 = _bicubic_interp_kernel(dy - (double)n);
oy2 = oy1 + n;
if (oy2 < 0) {
oy2 = 0;
}
if (oy2 > ymax) {
oy2 = ymax;
}
for (int m = -1; m < 3; m++) {
// get X coefficient
[[maybe_unused]] double k2 = k1 * _bicubic_interp_kernel((double)m - dx);
ox2 = ox1 + m;
if (ox2 < 0) {
ox2 = 0;
}
if (ox2 > xmax) {
ox2 = xmax;
}
// get pixel of original image
const T *__restrict p = ((T *)p_src) + (oy2 * p_src_width + ox2) * CC;
for (int i = 0; i < CC; i++) {
if constexpr (sizeof(T) == 2) { //half float
color[i] = Math::half_to_float(p[i]);
} else {
color[i] += p[i] * k2;
}
}
}
}
for (int i = 0; i < CC; i++) {
if constexpr (sizeof(T) == 1) { //byte
dst[i] = CLAMP(Math::fast_ftoi(color[i]), 0, 255);
} else if constexpr (sizeof(T) == 2) { //half float
dst[i] = Math::make_half_float(color[i]);
} else {
dst[i] = color[i];
}
}
}
}
}
template <int CC, typename T>
static void _scale_bilinear(const uint8_t *__restrict p_src, uint8_t *__restrict p_dst, uint32_t p_src_width, uint32_t p_src_height, uint32_t p_dst_width, uint32_t p_dst_height) {
enum {
FRAC_BITS = 8,
FRAC_LEN = (1 << FRAC_BITS),
FRAC_HALF = (FRAC_LEN >> 1),
FRAC_MASK = FRAC_LEN - 1
};
for (uint32_t i = 0; i < p_dst_height; i++) {
// Add 0.5 in order to interpolate based on pixel center
uint32_t src_yofs_up_fp = (i + 0.5) * p_src_height * FRAC_LEN / p_dst_height;
// Calculate nearest src pixel center above current, and truncate to get y index
uint32_t src_yofs_up = src_yofs_up_fp >= FRAC_HALF ? (src_yofs_up_fp - FRAC_HALF) >> FRAC_BITS : 0;
uint32_t src_yofs_down = (src_yofs_up_fp + FRAC_HALF) >> FRAC_BITS;
if (src_yofs_down >= p_src_height) {
src_yofs_down = p_src_height - 1;
}
// Calculate distance to pixel center of src_yofs_up
uint32_t src_yofs_frac = src_yofs_up_fp & FRAC_MASK;
src_yofs_frac = src_yofs_frac >= FRAC_HALF ? src_yofs_frac - FRAC_HALF : src_yofs_frac + FRAC_HALF;
uint32_t y_ofs_up = src_yofs_up * p_src_width * CC;
uint32_t y_ofs_down = src_yofs_down * p_src_width * CC;
for (uint32_t j = 0; j < p_dst_width; j++) {
uint32_t src_xofs_left_fp = (j + 0.5) * p_src_width * FRAC_LEN / p_dst_width;
uint32_t src_xofs_left = src_xofs_left_fp >= FRAC_HALF ? (src_xofs_left_fp - FRAC_HALF) >> FRAC_BITS : 0;
uint32_t src_xofs_right = (src_xofs_left_fp + FRAC_HALF) >> FRAC_BITS;
if (src_xofs_right >= p_src_width) {
src_xofs_right = p_src_width - 1;
}
uint32_t src_xofs_frac = src_xofs_left_fp & FRAC_MASK;
src_xofs_frac = src_xofs_frac >= FRAC_HALF ? src_xofs_frac - FRAC_HALF : src_xofs_frac + FRAC_HALF;
src_xofs_left *= CC;
src_xofs_right *= CC;
for (uint32_t l = 0; l < CC; l++) {
if constexpr (sizeof(T) == 1) { //uint8
uint32_t p00 = p_src[y_ofs_up + src_xofs_left + l] << FRAC_BITS;
uint32_t p10 = p_src[y_ofs_up + src_xofs_right + l] << FRAC_BITS;
uint32_t p01 = p_src[y_ofs_down + src_xofs_left + l] << FRAC_BITS;
uint32_t p11 = p_src[y_ofs_down + src_xofs_right + l] << FRAC_BITS;
uint32_t interp_up = p00 + (((p10 - p00) * src_xofs_frac) >> FRAC_BITS);
uint32_t interp_down = p01 + (((p11 - p01) * src_xofs_frac) >> FRAC_BITS);
uint32_t interp = interp_up + (((interp_down - interp_up) * src_yofs_frac) >> FRAC_BITS);
interp >>= FRAC_BITS;
p_dst[i * p_dst_width * CC + j * CC + l] = uint8_t(interp);
} else if constexpr (sizeof(T) == 2) { //half float
float xofs_frac = float(src_xofs_frac) / (1 << FRAC_BITS);
float yofs_frac = float(src_yofs_frac) / (1 << FRAC_BITS);
const T *src = ((const T *)p_src);
T *dst = ((T *)p_dst);
float p00 = Math::half_to_float(src[y_ofs_up + src_xofs_left + l]);
float p10 = Math::half_to_float(src[y_ofs_up + src_xofs_right + l]);
float p01 = Math::half_to_float(src[y_ofs_down + src_xofs_left + l]);
float p11 = Math::half_to_float(src[y_ofs_down + src_xofs_right + l]);
float interp_up = p00 + (p10 - p00) * xofs_frac;
float interp_down = p01 + (p11 - p01) * xofs_frac;
float interp = interp_up + ((interp_down - interp_up) * yofs_frac);
dst[i * p_dst_width * CC + j * CC + l] = Math::make_half_float(interp);
} else if constexpr (sizeof(T) == 4) { //float
float xofs_frac = float(src_xofs_frac) / (1 << FRAC_BITS);
float yofs_frac = float(src_yofs_frac) / (1 << FRAC_BITS);
const T *src = ((const T *)p_src);
T *dst = ((T *)p_dst);
float p00 = src[y_ofs_up + src_xofs_left + l];
float p10 = src[y_ofs_up + src_xofs_right + l];
float p01 = src[y_ofs_down + src_xofs_left + l];
float p11 = src[y_ofs_down + src_xofs_right + l];
float interp_up = p00 + (p10 - p00) * xofs_frac;
float interp_down = p01 + (p11 - p01) * xofs_frac;
float interp = interp_up + ((interp_down - interp_up) * yofs_frac);
dst[i * p_dst_width * CC + j * CC + l] = interp;
}
}
}
}
}
template <int CC, typename T>
static void _scale_nearest(const uint8_t *__restrict p_src, uint8_t *__restrict p_dst, uint32_t p_src_width, uint32_t p_src_height, uint32_t p_dst_width, uint32_t p_dst_height) {
for (uint32_t i = 0; i < p_dst_height; i++) {
uint32_t src_yofs = i * p_src_height / p_dst_height;
uint32_t y_ofs = src_yofs * p_src_width * CC;
for (uint32_t j = 0; j < p_dst_width; j++) {
uint32_t src_xofs = j * p_src_width / p_dst_width;
src_xofs *= CC;
for (uint32_t l = 0; l < CC; l++) {
const T *src = ((const T *)p_src);
T *dst = ((T *)p_dst);
T p = src[y_ofs + src_xofs + l];
dst[i * p_dst_width * CC + j * CC + l] = p;
}
}
}
}
#define LANCZOS_TYPE 3
static float _lanczos(float p_x) {
return Math::abs(p_x) >= LANCZOS_TYPE ? 0 : Math::sincn(p_x) * Math::sincn(p_x / LANCZOS_TYPE);
}
template <int CC, typename T>
static void _scale_lanczos(const uint8_t *__restrict p_src, uint8_t *__restrict p_dst, uint32_t p_src_width, uint32_t p_src_height, uint32_t p_dst_width, uint32_t p_dst_height) {
int32_t src_width = p_src_width;
int32_t src_height = p_src_height;
int32_t dst_height = p_dst_height;
int32_t dst_width = p_dst_width;
uint32_t buffer_size = src_height * dst_width * CC;
float *buffer = memnew_arr(float, buffer_size); // Store the first pass in a buffer
{ // FIRST PASS (horizontal)
float x_scale = float(src_width) / float(dst_width);
float scale_factor = MAX(x_scale, 1); // A larger kernel is required only when downscaling
int32_t half_kernel = LANCZOS_TYPE * scale_factor;
float *kernel = memnew_arr(float, half_kernel * 2);
for (int32_t buffer_x = 0; buffer_x < dst_width; buffer_x++) {
// The corresponding point on the source image
float src_x = (buffer_x + 0.5f) * x_scale; // Offset by 0.5 so it uses the pixel's center
int32_t start_x = MAX(0, int32_t(src_x) - half_kernel + 1);
int32_t end_x = MIN(src_width - 1, int32_t(src_x) + half_kernel);
// Create the kernel used by all the pixels of the column
for (int32_t target_x = start_x; target_x <= end_x; target_x++) {
kernel[target_x - start_x] = _lanczos((target_x + 0.5f - src_x) / scale_factor);
}
for (int32_t buffer_y = 0; buffer_y < src_height; buffer_y++) {
float pixel[CC] = { 0 };
float weight = 0;
for (int32_t target_x = start_x; target_x <= end_x; target_x++) {
float lanczos_val = kernel[target_x - start_x];
weight += lanczos_val;
const T *__restrict src_data = ((const T *)p_src) + (buffer_y * src_width + target_x) * CC;
for (uint32_t i = 0; i < CC; i++) {
if constexpr (sizeof(T) == 2) { //half float
pixel[i] += Math::half_to_float(src_data[i]) * lanczos_val;
} else {
pixel[i] += src_data[i] * lanczos_val;
}
}
}
float *dst_data = ((float *)buffer) + (buffer_y * dst_width + buffer_x) * CC;
for (uint32_t i = 0; i < CC; i++) {
dst_data[i] = pixel[i] / weight; // Normalize the sum of all the samples
}
}
}
memdelete_arr(kernel);
} // End of first pass
{ // SECOND PASS (vertical + result)
float y_scale = float(src_height) / float(dst_height);
float scale_factor = MAX(y_scale, 1);
int32_t half_kernel = LANCZOS_TYPE * scale_factor;
float *kernel = memnew_arr(float, half_kernel * 2);
for (int32_t dst_y = 0; dst_y < dst_height; dst_y++) {
float buffer_y = (dst_y + 0.5f) * y_scale;
int32_t start_y = MAX(0, int32_t(buffer_y) - half_kernel + 1);
int32_t end_y = MIN(src_height - 1, int32_t(buffer_y) + half_kernel);
for (int32_t target_y = start_y; target_y <= end_y; target_y++) {
kernel[target_y - start_y] = _lanczos((target_y + 0.5f - buffer_y) / scale_factor);
}
for (int32_t dst_x = 0; dst_x < dst_width; dst_x++) {
float pixel[CC] = { 0 };
float weight = 0;
for (int32_t target_y = start_y; target_y <= end_y; target_y++) {
float lanczos_val = kernel[target_y - start_y];
weight += lanczos_val;
float *buffer_data = ((float *)buffer) + (target_y * dst_width + dst_x) * CC;
for (uint32_t i = 0; i < CC; i++) {
pixel[i] += buffer_data[i] * lanczos_val;
}
}
T *dst_data = ((T *)p_dst) + (dst_y * dst_width + dst_x) * CC;
for (uint32_t i = 0; i < CC; i++) {
pixel[i] /= weight;
if constexpr (sizeof(T) == 1) { //byte
dst_data[i] = CLAMP(Math::fast_ftoi(pixel[i]), 0, 255);
} else if constexpr (sizeof(T) == 2) { //half float
dst_data[i] = Math::make_half_float(pixel[i]);
} else { // float
dst_data[i] = pixel[i];
}
}
}
}
memdelete_arr(kernel);
} // End of second pass
memdelete_arr(buffer);
}
static void _overlay(const uint8_t *__restrict p_src, uint8_t *__restrict p_dst, float p_alpha, uint32_t p_width, uint32_t p_height, uint32_t p_pixel_size) {
uint16_t alpha = MIN((uint16_t)(p_alpha * 256.0f), 256);
for (uint32_t i = 0; i < p_width * p_height * p_pixel_size; i++) {
p_dst[i] = (p_dst[i] * (256 - alpha) + p_src[i] * alpha) >> 8;
}
}
bool Image::is_size_po2() const {
return uint32_t(width) == next_power_of_2(width) && uint32_t(height) == next_power_of_2(height);
}
void Image::resize_to_po2(bool p_square, Interpolation p_interpolation) {
ERR_FAIL_COND_MSG(!_can_modify(format), "Cannot resize in compressed or custom image formats.");
int w = next_power_of_2(width);
int h = next_power_of_2(height);
if (p_square) {
w = h = MAX(w, h);
}
if (w == width && h == height) {
if (!p_square || w == h) {
return; //nothing to do
}
}
resize(w, h, p_interpolation);
}
void Image::resize(int p_width, int p_height, Interpolation p_interpolation) {
ERR_FAIL_COND_MSG(data.is_empty(), "Cannot resize image before creating it, use set_data() first.");
ERR_FAIL_COND_MSG(!_can_modify(format), "Cannot resize in compressed or custom image formats.");
bool mipmap_aware = p_interpolation == INTERPOLATE_TRILINEAR /* || p_interpolation == INTERPOLATE_TRICUBIC */;
ERR_FAIL_COND_MSG(p_width <= 0, "Image width must be greater than 0.");
ERR_FAIL_COND_MSG(p_height <= 0, "Image height must be greater than 0.");
ERR_FAIL_COND_MSG(p_width > MAX_WIDTH, "Image width cannot be greater than " + itos(MAX_WIDTH) + ".");
ERR_FAIL_COND_MSG(p_height > MAX_HEIGHT, "Image height cannot be greater than " + itos(MAX_HEIGHT) + ".");
ERR_FAIL_COND_MSG(p_width * p_height > MAX_PIXELS, "Too many pixels for image, maximum is " + itos(MAX_PIXELS));
if (p_width == width && p_height == height) {
return;
}
Image dst(p_width, p_height, false, format);
// Setup mipmap-aware scaling
Image dst2;
int mip1 = 0;
int mip2 = 0;
float mip1_weight = 0;
if (mipmap_aware) {
float avg_scale = ((float)p_width / width + (float)p_height / height) * 0.5f;
if (avg_scale >= 1.0f) {
mipmap_aware = false;
} else {
float level = Math::log(1.0f / avg_scale) / Math::log(2.0f);
mip1 = CLAMP((int)Math::floor(level), 0, get_mipmap_count());
mip2 = CLAMP((int)Math::ceil(level), 0, get_mipmap_count());
mip1_weight = 1.0f - (level - mip1);
}
}
bool interpolate_mipmaps = mipmap_aware && mip1 != mip2;
if (interpolate_mipmaps) {
dst2.initialize_data(p_width, p_height, false, format);
}
bool had_mipmaps = mipmaps;
if (interpolate_mipmaps && !had_mipmaps) {
generate_mipmaps();
}
// --
const uint8_t *r = data.ptr();
const unsigned char *r_ptr = r;
uint8_t *w = dst.data.ptrw();
unsigned char *w_ptr = w;
switch (p_interpolation) {
case INTERPOLATE_NEAREST: {
if (format >= FORMAT_L8 && format <= FORMAT_RGBA8) {
switch (get_format_pixel_size(format)) {
case 1:
_scale_nearest<1, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 2:
_scale_nearest<2, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 3:
_scale_nearest<3, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 4:
_scale_nearest<4, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
}
} else if (format >= FORMAT_RF && format <= FORMAT_RGBAF) {
switch (get_format_pixel_size(format)) {
case 4:
_scale_nearest<1, float>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 8:
_scale_nearest<2, float>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 12:
_scale_nearest<3, float>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 16:
_scale_nearest<4, float>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
}
} else if (format >= FORMAT_RH && format <= FORMAT_RGBAH) {
switch (get_format_pixel_size(format)) {
case 2:
_scale_nearest<1, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 4:
_scale_nearest<2, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 6:
_scale_nearest<3, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 8:
_scale_nearest<4, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
}
}
} break;
case INTERPOLATE_BILINEAR:
case INTERPOLATE_TRILINEAR: {
for (int i = 0; i < 2; ++i) {
int src_width;
int src_height;
const unsigned char *src_ptr;
if (!mipmap_aware) {
if (i == 0) {
// Standard behavior
src_width = width;
src_height = height;
src_ptr = r_ptr;
} else {
// No need for a second iteration
break;
}
} else {
if (i == 0) {
// Read from the first mipmap that will be interpolated
// (if both levels are the same, we will not interpolate, but at least we'll sample from the right level)
int64_t offs;
_get_mipmap_offset_and_size(mip1, offs, src_width, src_height);
src_ptr = r_ptr + offs;
} else if (!interpolate_mipmaps) {
// No need generate a second image
break;
} else {
// Switch to read from the second mipmap that will be interpolated
int64_t offs;
_get_mipmap_offset_and_size(mip2, offs, src_width, src_height);
src_ptr = r_ptr + offs;
// Switch to write to the second destination image
w = dst2.data.ptrw();
w_ptr = w;
}
}
if (format >= FORMAT_L8 && format <= FORMAT_RGBA8) {
switch (get_format_pixel_size(format)) {
case 1:
_scale_bilinear<1, uint8_t>(src_ptr, w_ptr, src_width, src_height, p_width, p_height);
break;
case 2:
_scale_bilinear<2, uint8_t>(src_ptr, w_ptr, src_width, src_height, p_width, p_height);
break;
case 3:
_scale_bilinear<3, uint8_t>(src_ptr, w_ptr, src_width, src_height, p_width, p_height);
break;
case 4:
_scale_bilinear<4, uint8_t>(src_ptr, w_ptr, src_width, src_height, p_width, p_height);
break;
}
} else if (format >= FORMAT_RF && format <= FORMAT_RGBAF) {
switch (get_format_pixel_size(format)) {
case 4:
_scale_bilinear<1, float>(src_ptr, w_ptr, src_width, src_height, p_width, p_height);
break;
case 8:
_scale_bilinear<2, float>(src_ptr, w_ptr, src_width, src_height, p_width, p_height);
break;
case 12:
_scale_bilinear<3, float>(src_ptr, w_ptr, src_width, src_height, p_width, p_height);
break;
case 16:
_scale_bilinear<4, float>(src_ptr, w_ptr, src_width, src_height, p_width, p_height);
break;
}
} else if (format >= FORMAT_RH && format <= FORMAT_RGBAH) {
switch (get_format_pixel_size(format)) {
case 2:
_scale_bilinear<1, uint16_t>(src_ptr, w_ptr, src_width, src_height, p_width, p_height);
break;
case 4:
_scale_bilinear<2, uint16_t>(src_ptr, w_ptr, src_width, src_height, p_width, p_height);
break;
case 6:
_scale_bilinear<3, uint16_t>(src_ptr, w_ptr, src_width, src_height, p_width, p_height);
break;
case 8:
_scale_bilinear<4, uint16_t>(src_ptr, w_ptr, src_width, src_height, p_width, p_height);
break;
}
}
}
if (interpolate_mipmaps) {
// Switch to read again from the first scaled mipmap to overlay it over the second
r = dst.data.ptr();
_overlay(r, w, mip1_weight, p_width, p_height, get_format_pixel_size(format));
}
} break;
case INTERPOLATE_CUBIC: {
if (format >= FORMAT_L8 && format <= FORMAT_RGBA8) {
switch (get_format_pixel_size(format)) {
case 1:
_scale_cubic<1, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 2:
_scale_cubic<2, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 3:
_scale_cubic<3, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 4:
_scale_cubic<4, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
}
} else if (format >= FORMAT_RF && format <= FORMAT_RGBAF) {
switch (get_format_pixel_size(format)) {
case 4:
_scale_cubic<1, float>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 8:
_scale_cubic<2, float>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 12:
_scale_cubic<3, float>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 16:
_scale_cubic<4, float>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
}
} else if (format >= FORMAT_RH && format <= FORMAT_RGBAH) {
switch (get_format_pixel_size(format)) {
case 2:
_scale_cubic<1, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 4:
_scale_cubic<2, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 6:
_scale_cubic<3, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 8:
_scale_cubic<4, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
}
}
} break;
case INTERPOLATE_LANCZOS: {
if (format >= FORMAT_L8 && format <= FORMAT_RGBA8) {
switch (get_format_pixel_size(format)) {
case 1:
_scale_lanczos<1, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 2:
_scale_lanczos<2, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 3:
_scale_lanczos<3, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 4:
_scale_lanczos<4, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
}
} else if (format >= FORMAT_RF && format <= FORMAT_RGBAF) {
switch (get_format_pixel_size(format)) {
case 4:
_scale_lanczos<1, float>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 8:
_scale_lanczos<2, float>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 12:
_scale_lanczos<3, float>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 16:
_scale_lanczos<4, float>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
}
} else if (format >= FORMAT_RH && format <= FORMAT_RGBAH) {
switch (get_format_pixel_size(format)) {
case 2:
_scale_lanczos<1, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 4:
_scale_lanczos<2, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 6:
_scale_lanczos<3, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
case 8:
_scale_lanczos<4, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height);
break;
}
}
} break;
}
if (interpolate_mipmaps) {
dst._copy_internals_from(dst2);
}
if (had_mipmaps) {
dst.generate_mipmaps();
}
_copy_internals_from(dst);
}
void Image::crop_from_point(int p_x, int p_y, int p_width, int p_height) {
ERR_FAIL_COND_MSG(!_can_modify(format), "Cannot crop in compressed or custom image formats.");
ERR_FAIL_COND_MSG(p_x < 0, "Start x position cannot be smaller than 0.");
ERR_FAIL_COND_MSG(p_y < 0, "Start y position cannot be smaller than 0.");
ERR_FAIL_COND_MSG(p_width <= 0, "Width of image must be greater than 0.");
ERR_FAIL_COND_MSG(p_height <= 0, "Height of image must be greater than 0.");
ERR_FAIL_COND_MSG(p_x + p_width > MAX_WIDTH, "End x position cannot be greater than " + itos(MAX_WIDTH) + ".");
ERR_FAIL_COND_MSG(p_y + p_height > MAX_HEIGHT, "End y position cannot be greater than " + itos(MAX_HEIGHT) + ".");
/* to save memory, cropping should be done in-place, however, since this function
will most likely either not be used much, or in critical areas, for now it won't, because
it's a waste of time. */
if (p_width == width && p_height == height && p_x == 0 && p_y == 0) {
return;
}
uint8_t pdata[16]; //largest is 16
uint32_t pixel_size = get_format_pixel_size(format);
Image dst(p_width, p_height, false, format);
{
const uint8_t *r = data.ptr();
uint8_t *w = dst.data.ptrw();
int m_h = p_y + p_height;
int m_w = p_x + p_width;
for (int y = p_y; y < m_h; y++) {
for (int x = p_x; x < m_w; x++) {
if ((x >= width || y >= height)) {
for (uint32_t i = 0; i < pixel_size; i++) {
pdata[i] = 0;
}
} else {
_get_pixelb(x, y, pixel_size, r, pdata);
}
dst._put_pixelb(x - p_x, y - p_y, pixel_size, w, pdata);
}
}
}
if (has_mipmaps()) {
dst.generate_mipmaps();
}
_copy_internals_from(dst);
}
void Image::crop(int p_width, int p_height) {
crop_from_point(0, 0, p_width, p_height);
}
void Image::rotate_90(ClockDirection p_direction) {
ERR_FAIL_COND_MSG(!_can_modify(format), "Cannot rotate in compressed or custom image formats.");
ERR_FAIL_COND_MSG(width <= 0, "The Image width specified (" + itos(width) + " pixels) must be greater than 0 pixels.");
ERR_FAIL_COND_MSG(height <= 0, "The Image height specified (" + itos(height) + " pixels) must be greater than 0 pixels.");
bool used_mipmaps = has_mipmaps();
if (used_mipmaps) {
clear_mipmaps();
}
// In-place 90 degrees rotation by following the permutation cycles.
{
// Explanation by example (clockwise):
//
// abc da
// def -> eb
// fc
//
// In memory:
// 012345 012345
// abcdef -> daebfc
//
// Permutation cycles:
// (0 --a--> 1 --b--> 3 --d--> 0)
// (2 --c--> 5 --f--> 4 --e--> 2)
//
// Applying cycles (backwards):
// 0->s s=a (store)
// 3->0 abcdef -> dbcdef
// 1->3 dbcdef -> dbcbef
// s->1 dbcbef -> dacbef
//
// 2->s s=c
// 4->2 dacbef -> daebef
// 5->4 daebef -> daebff
// s->5 daebff -> daebfc
const int w = width;
const int h = height;
const int size = w * h;
uint8_t *data_ptr = data.ptrw();
uint32_t pixel_size = get_format_pixel_size(format);
uint8_t single_pixel_buffer[16];
#define PREV_INDEX_IN_CYCLE(index) (p_direction == CLOCKWISE) ? ((h - 1 - (index % h)) * w + (index / h)) : ((index % h) * w + (w - 1 - (index / h)))
if (w == h) { // Square case, 4-length cycles only (plus irrelevant thus skipped 1-length cycle in the middle for odd-sized squares).
for (int y = 0; y < h / 2; y++) {
for (int x = 0; x < (w + 1) / 2; x++) {
int current = y * w + x;
memcpy(single_pixel_buffer, data_ptr + current * pixel_size, pixel_size);
for (int i = 0; i < 3; i++) {
int prev = PREV_INDEX_IN_CYCLE(current);
memcpy(data_ptr + current * pixel_size, data_ptr + prev * pixel_size, pixel_size);
current = prev;
}
memcpy(data_ptr + current * pixel_size, single_pixel_buffer, pixel_size);
}
}
} else { // Rectangular case (w != h), kinda unpredictable cycles.
int permuted_pixels_count = 0;
for (int i = 0; i < size; i++) {
int prev = PREV_INDEX_IN_CYCLE(i);
if (prev == i) {
// 1-length cycle, pixel remains at the same index.
permuted_pixels_count++;
continue;
}
// Check whether we already processed this cycle.
// We iterate over it and if we'll find an index smaller than `i` then we already
// processed this cycle because we always start at the smallest index in the cycle.
// TODO: Improve this naive approach, can be done better.
while (prev > i) {
prev = PREV_INDEX_IN_CYCLE(prev);
}
if (prev < i) {
continue;
}
// Save the in-cycle pixel with the smallest index (`i`).
memcpy(single_pixel_buffer, data_ptr + i * pixel_size, pixel_size);
// Overwrite pixels one by one by the preceding pixel in the cycle.
int current = i;
prev = PREV_INDEX_IN_CYCLE(current);
while (prev != i) {
memcpy(data_ptr + current * pixel_size, data_ptr + prev * pixel_size, pixel_size);
permuted_pixels_count++;
current = prev;
prev = PREV_INDEX_IN_CYCLE(current);
};
// Overwrite the remaining pixel in the cycle by the saved pixel with the smallest index.
memcpy(data_ptr + current * pixel_size, single_pixel_buffer, pixel_size);
permuted_pixels_count++;
if (permuted_pixels_count == size) {
break;
}
}
width = h;
height = w;
}
#undef PREV_INDEX_IN_CYCLE
}
if (used_mipmaps) {
generate_mipmaps();
}
}
void Image::rotate_180() {
ERR_FAIL_COND_MSG(!_can_modify(format), "Cannot rotate in compressed or custom image formats.");
ERR_FAIL_COND_MSG(width <= 0, "The Image width specified (" + itos(width) + " pixels) must be greater than 0 pixels.");
ERR_FAIL_COND_MSG(height <= 0, "The Image height specified (" + itos(height) + " pixels) must be greater than 0 pixels.");
bool used_mipmaps = has_mipmaps();
if (used_mipmaps) {
clear_mipmaps();
}
{
uint8_t *data_ptr = data.ptrw();
uint32_t pixel_size = get_format_pixel_size(format);
uint8_t single_pixel_buffer[16];
uint8_t *from_begin_ptr = data_ptr;
uint8_t *from_end_ptr = data_ptr + (width * height - 1) * pixel_size;
while (from_begin_ptr < from_end_ptr) {
memcpy(single_pixel_buffer, from_begin_ptr, pixel_size);
memcpy(from_begin_ptr, from_end_ptr, pixel_size);
memcpy(from_end_ptr, single_pixel_buffer, pixel_size);
from_begin_ptr += pixel_size;
from_end_ptr -= pixel_size;
}
}
if (used_mipmaps) {
generate_mipmaps();
}
}
void Image::flip_y() {
ERR_FAIL_COND_MSG(!_can_modify(format), "Cannot flip_y in compressed or custom image formats.");
bool used_mipmaps = has_mipmaps();
if (used_mipmaps) {
clear_mipmaps();
}
{
uint8_t *w = data.ptrw();
uint8_t up[16];
uint8_t down[16];
uint32_t pixel_size = get_format_pixel_size(format);
for (int y = 0; y < height / 2; y++) {
for (int x = 0; x < width; x++) {
_get_pixelb(x, y, pixel_size, w, up);
_get_pixelb(x, height - y - 1, pixel_size, w, down);
_put_pixelb(x, height - y - 1, pixel_size, w, up);
_put_pixelb(x, y, pixel_size, w, down);
}
}
}
if (used_mipmaps) {
generate_mipmaps();
}
}
void Image::flip_x() {
ERR_FAIL_COND_MSG(!_can_modify(format), "Cannot flip_x in compressed or custom image formats.");
bool used_mipmaps = has_mipmaps();
if (used_mipmaps) {
clear_mipmaps();
}
{
uint8_t *w = data.ptrw();
uint8_t up[16];
uint8_t down[16];
uint32_t pixel_size = get_format_pixel_size(format);
for (int y = 0; y < height; y++) {
for (int x = 0; x < width / 2; x++) {
_get_pixelb(x, y, pixel_size, w, up);
_get_pixelb(width - x - 1, y, pixel_size, w, down);
_put_pixelb(width - x - 1, y, pixel_size, w, up);
_put_pixelb(x, y, pixel_size, w, down);
}
}
}
if (used_mipmaps) {
generate_mipmaps();
}
}
/// Get mipmap size and offset.
int64_t Image::_get_dst_image_size(int p_width, int p_height, Format p_format, int &r_mipmaps, int p_mipmaps, int *r_mm_width, int *r_mm_height) {
// Data offset in mipmaps (including the original texture).
int64_t size = 0;
int w = p_width;
int h = p_height;
// Current mipmap index in the loop below. p_mipmaps is the target mipmap index.
// In this function, mipmap 0 represents the first mipmap instead of the original texture.
int mm = 0;
int pixsize = get_format_pixel_size(p_format);
int pixshift = get_format_pixel_rshift(p_format);
int block = get_format_block_size(p_format);
// Technically, you can still compress up to 1 px no matter the format, so commenting this.
//int minw, minh;
//get_format_min_pixel_size(p_format, minw, minh);
int minw = 1, minh = 1;
while (true) {
int bw = w % block != 0 ? w + (block - w % block) : w;
int bh = h % block != 0 ? h + (block - h % block) : h;
int64_t s = bw * bh;
s *= pixsize;
s >>= pixshift;
size += s;
if (p_mipmaps >= 0) {
w = MAX(minw, w >> 1);
h = MAX(minh, h >> 1);
} else {
if (w == minw && h == minh) {
break;
}
w = MAX(minw, w >> 1);
h = MAX(minh, h >> 1);
}
// Set mipmap size.
if (r_mm_width) {
*r_mm_width = w;
}
if (r_mm_height) {
*r_mm_height = h;
}
// Reach target mipmap.
if (p_mipmaps >= 0 && mm == p_mipmaps) {
break;
}
mm++;
}
r_mipmaps = mm;
return size;
}
bool Image::_can_modify(Format p_format) const {
return !Image::is_format_compressed(p_format);
}
template <typename Component, int CC, bool renormalize,
void (*average_func)(Component &, const Component &, const Component &, const Component &, const Component &),
void (*renormalize_func)(Component *)>
static void _generate_po2_mipmap(const Component *p_src, Component *p_dst, uint32_t p_width, uint32_t p_height) {
//fast power of 2 mipmap generation
uint32_t dst_w = MAX(p_width >> 1, 1u);
uint32_t dst_h = MAX(p_height >> 1, 1u);
int right_step = (p_width == 1) ? 0 : CC;
int down_step = (p_height == 1) ? 0 : (p_width * CC);
for (uint32_t i = 0; i < dst_h; i++) {
const Component *rup_ptr = &p_src[i * 2 * down_step];
const Component *rdown_ptr = rup_ptr + down_step;
Component *dst_ptr = &p_dst[i * dst_w * CC];
uint32_t count = dst_w;
while (count) {
count--;
for (int j = 0; j < CC; j++) {
average_func(dst_ptr[j], rup_ptr[j], rup_ptr[j + right_step], rdown_ptr[j], rdown_ptr[j + right_step]);
}
if (renormalize) {
renormalize_func(dst_ptr);
}
dst_ptr += CC;
rup_ptr += right_step * 2;
rdown_ptr += right_step * 2;
}
}
}
void Image::shrink_x2() {
ERR_FAIL_COND(data.is_empty());
if (mipmaps) {
//just use the lower mipmap as base and copy all
Vector<uint8_t> new_img;
int ofs = get_mipmap_offset(1);
int new_size = data.size() - ofs;
new_img.resize(new_size);
ERR_FAIL_COND(new_img.is_empty());
{
uint8_t *w = new_img.ptrw();
const uint8_t *r = data.ptr();
memcpy(w, &r[ofs], new_size);
}
width = MAX(width / 2, 1);
height = MAX(height / 2, 1);
data = new_img;
} else {
Vector<uint8_t> new_img;
ERR_FAIL_COND(!_can_modify(format));
int ps = get_format_pixel_size(format);
new_img.resize((width / 2) * (height / 2) * ps);
ERR_FAIL_COND(new_img.is_empty());
ERR_FAIL_COND(data.is_empty());
{
uint8_t *w = new_img.ptrw();
const uint8_t *r = data.ptr();
switch (format) {
case FORMAT_L8:
case FORMAT_R8:
_generate_po2_mipmap<uint8_t, 1, false, Image::average_4_uint8, Image::renormalize_uint8>(r, w, width, height);
break;
case FORMAT_LA8:
_generate_po2_mipmap<uint8_t, 2, false, Image::average_4_uint8, Image::renormalize_uint8>(r, w, width, height);
break;
case FORMAT_RG8:
_generate_po2_mipmap<uint8_t, 2, false, Image::average_4_uint8, Image::renormalize_uint8>(r, w, width, height);
break;
case FORMAT_RGB8:
_generate_po2_mipmap<uint8_t, 3, false, Image::average_4_uint8, Image::renormalize_uint8>(r, w, width, height);
break;
case FORMAT_RGBA8:
_generate_po2_mipmap<uint8_t, 4, false, Image::average_4_uint8, Image::renormalize_uint8>(r, w, width, height);
break;
case FORMAT_RF:
_generate_po2_mipmap<float, 1, false, Image::average_4_float, Image::renormalize_float>(reinterpret_cast<const float *>(r), reinterpret_cast<float *>(w), width, height);
break;
case FORMAT_RGF:
_generate_po2_mipmap<float, 2, false, Image::average_4_float, Image::renormalize_float>(reinterpret_cast<const float *>(r), reinterpret_cast<float *>(w), width, height);
break;
case FORMAT_RGBF:
_generate_po2_mipmap<float, 3, false, Image::average_4_float, Image::renormalize_float>(reinterpret_cast<const float *>(r), reinterpret_cast<float *>(w), width, height);
break;
case FORMAT_RGBAF:
_generate_po2_mipmap<float, 4, false, Image::average_4_float, Image::renormalize_float>(reinterpret_cast<const float *>(r), reinterpret_cast<float *>(w), width, height);
break;
case FORMAT_RH:
_generate_po2_mipmap<uint16_t, 1, false, Image::average_4_half, Image::renormalize_half>(reinterpret_cast<const uint16_t *>(r), reinterpret_cast<uint16_t *>(w), width, height);
break;
case FORMAT_RGH:
_generate_po2_mipmap<uint16_t, 2, false, Image::average_4_half, Image::renormalize_half>(reinterpret_cast<const uint16_t *>(r), reinterpret_cast<uint16_t *>(w), width, height);
break;
case FORMAT_RGBH:
_generate_po2_mipmap<uint16_t, 3, false, Image::average_4_half, Image::renormalize_half>(reinterpret_cast<const uint16_t *>(r), reinterpret_cast<uint16_t *>(w), width, height);
break;
case FORMAT_RGBAH:
_generate_po2_mipmap<uint16_t, 4, false, Image::average_4_half, Image::renormalize_half>(reinterpret_cast<const uint16_t *>(r), reinterpret_cast<uint16_t *>(w), width, height);
break;
case FORMAT_RGBE9995:
_generate_po2_mipmap<uint32_t, 1, false, Image::average_4_rgbe9995, Image::renormalize_rgbe9995>(reinterpret_cast<const uint32_t *>(r), reinterpret_cast<uint32_t *>(w), width, height);
break;
default: {
}
}
}
width /= 2;
height /= 2;
data = new_img;
}
}
void Image::normalize() {
bool used_mipmaps = has_mipmaps();
if (used_mipmaps) {
clear_mipmaps();
}
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
Color c = get_pixel(x, y);
Vector3 v(c.r * 2.0 - 1.0, c.g * 2.0 - 1.0, c.b * 2.0 - 1.0);
v.normalize();
c.r = v.x * 0.5 + 0.5;
c.g = v.y * 0.5 + 0.5;
c.b = v.z * 0.5 + 0.5;
set_pixel(x, y, c);
}
}
if (used_mipmaps) {
generate_mipmaps(true);
}
}
Error Image::generate_mipmaps(bool p_renormalize) {
ERR_FAIL_COND_V_MSG(!_can_modify(format), ERR_UNAVAILABLE, "Cannot generate mipmaps in compressed or custom image formats.");
ERR_FAIL_COND_V_MSG(format == FORMAT_RGBA4444, ERR_UNAVAILABLE, "Cannot generate mipmaps from RGBA4444 format.");
ERR_FAIL_COND_V_MSG(width == 0 || height == 0, ERR_UNCONFIGURED, "Cannot generate mipmaps with width or height equal to 0.");
int mmcount;
int size = _get_dst_image_size(width, height, format, mmcount);
data.resize(size);
uint8_t *wp = data.ptrw();
int prev_ofs = 0;
int prev_h = height;
int prev_w = width;
for (int i = 1; i <= mmcount; i++) {
int64_t ofs;
int w, h;
_get_mipmap_offset_and_size(i, ofs, w, h);
switch (format) {
case FORMAT_L8:
case FORMAT_R8:
_generate_po2_mipmap<uint8_t, 1, false, Image::average_4_uint8, Image::renormalize_uint8>(&wp[prev_ofs], &wp[ofs], prev_w, prev_h);
break;
case FORMAT_LA8:
case FORMAT_RG8:
_generate_po2_mipmap<uint8_t, 2, false, Image::average_4_uint8, Image::renormalize_uint8>(&wp[prev_ofs], &wp[ofs], prev_w, prev_h);
break;
case FORMAT_RGB8:
if (p_renormalize) {
_generate_po2_mipmap<uint8_t, 3, true, Image::average_4_uint8, Image::renormalize_uint8>(&wp[prev_ofs], &wp[ofs], prev_w, prev_h);
} else {
_generate_po2_mipmap<uint8_t, 3, false, Image::average_4_uint8, Image::renormalize_uint8>(&wp[prev_ofs], &wp[ofs], prev_w, prev_h);
}
break;
case FORMAT_RGBA8:
if (p_renormalize) {
_generate_po2_mipmap<uint8_t, 4, true, Image::average_4_uint8, Image::renormalize_uint8>(&wp[prev_ofs], &wp[ofs], prev_w, prev_h);
} else {
_generate_po2_mipmap<uint8_t, 4, false, Image::average_4_uint8, Image::renormalize_uint8>(&wp[prev_ofs], &wp[ofs], prev_w, prev_h);
}
break;
case FORMAT_RF:
_generate_po2_mipmap<float, 1, false, Image::average_4_float, Image::renormalize_float>(reinterpret_cast<const float *>(&wp[prev_ofs]), reinterpret_cast<float *>(&wp[ofs]), prev_w, prev_h);
break;
case FORMAT_RGF:
_generate_po2_mipmap<float, 2, false, Image::average_4_float, Image::renormalize_float>(reinterpret_cast<const float *>(&wp[prev_ofs]), reinterpret_cast<float *>(&wp[ofs]), prev_w, prev_h);
break;
case FORMAT_RGBF:
if (p_renormalize) {
_generate_po2_mipmap<float, 3, true, Image::average_4_float, Image::renormalize_float>(reinterpret_cast<const float *>(&wp[prev_ofs]), reinterpret_cast<float *>(&wp[ofs]), prev_w, prev_h);
} else {
_generate_po2_mipmap<float, 3, false, Image::average_4_float, Image::renormalize_float>(reinterpret_cast<const float *>(&wp[prev_ofs]), reinterpret_cast<float *>(&wp[ofs]), prev_w, prev_h);
}
break;
case FORMAT_RGBAF:
if (p_renormalize) {
_generate_po2_mipmap<float, 4, true, Image::average_4_float, Image::renormalize_float>(reinterpret_cast<const float *>(&wp[prev_ofs]), reinterpret_cast<float *>(&wp[ofs]), prev_w, prev_h);
} else {
_generate_po2_mipmap<float, 4, false, Image::average_4_float, Image::renormalize_float>(reinterpret_cast<const float *>(&wp[prev_ofs]), reinterpret_cast<float *>(&wp[ofs]), prev_w, prev_h);
}
break;
case FORMAT_RH:
_generate_po2_mipmap<uint16_t, 1, false, Image::average_4_half, Image::renormalize_half>(reinterpret_cast<const uint16_t *>(&wp[prev_ofs]), reinterpret_cast<uint16_t *>(&wp[ofs]), prev_w, prev_h);
break;
case FORMAT_RGH:
_generate_po2_mipmap<uint16_t, 2, false, Image::average_4_half, Image::renormalize_half>(reinterpret_cast<const uint16_t *>(&wp[prev_ofs]), reinterpret_cast<uint16_t *>(&wp[ofs]), prev_w, prev_h);
break;
case FORMAT_RGBH:
if (p_renormalize) {
_generate_po2_mipmap<uint16_t, 3, true, Image::average_4_half, Image::renormalize_half>(reinterpret_cast<const uint16_t *>(&wp[prev_ofs]), reinterpret_cast<uint16_t *>(&wp[ofs]), prev_w, prev_h);
} else {
_generate_po2_mipmap<uint16_t, 3, false, Image::average_4_half, Image::renormalize_half>(reinterpret_cast<const uint16_t *>(&wp[prev_ofs]), reinterpret_cast<uint16_t *>(&wp[ofs]), prev_w, prev_h);
}
break;
case FORMAT_RGBAH:
if (p_renormalize) {
_generate_po2_mipmap<uint16_t, 4, true, Image::average_4_half, Image::renormalize_half>(reinterpret_cast<const uint16_t *>(&wp[prev_ofs]), reinterpret_cast<uint16_t *>(&wp[ofs]), prev_w, prev_h);
} else {
_generate_po2_mipmap<uint16_t, 4, false, Image::average_4_half, Image::renormalize_half>(reinterpret_cast<const uint16_t *>(&wp[prev_ofs]), reinterpret_cast<uint16_t *>(&wp[ofs]), prev_w, prev_h);
}
break;
case FORMAT_RGBE9995:
if (p_renormalize) {
_generate_po2_mipmap<uint32_t, 1, true, Image::average_4_rgbe9995, Image::renormalize_rgbe9995>(reinterpret_cast<const uint32_t *>(&wp[prev_ofs]), reinterpret_cast<uint32_t *>(&wp[ofs]), prev_w, prev_h);
} else {
_generate_po2_mipmap<uint32_t, 1, false, Image::average_4_rgbe9995, Image::renormalize_rgbe9995>(reinterpret_cast<const uint32_t *>(&wp[prev_ofs]), reinterpret_cast<uint32_t *>(&wp[ofs]), prev_w, prev_h);
}
break;
default: {
}
}
prev_ofs = ofs;
prev_w = w;
prev_h = h;
}
mipmaps = true;
return OK;
}
Error Image::generate_mipmap_roughness(RoughnessChannel p_roughness_channel, const Ref<Image> &p_normal_map) {
LocalVector<double> normal_sat_vec; //summed area table
int normal_w = 0, normal_h = 0;
ERR_FAIL_COND_V_MSG(p_normal_map.is_null() || p_normal_map->is_empty(), ERR_INVALID_PARAMETER, "Must provide a valid normal map for roughness mipmaps");
Ref<Image> nm = p_normal_map->duplicate();
if (nm->is_compressed()) {
nm->decompress();
}
normal_w = nm->get_width();
normal_h = nm->get_height();
normal_sat_vec.resize(normal_w * normal_h * 3);
double *normal_sat = normal_sat_vec.ptr();
//create summed area table
for (int y = 0; y < normal_h; y++) {
double line_sum[3] = { 0, 0, 0 };
for (int x = 0; x < normal_w; x++) {
double normal[3];
Color color = nm->get_pixel(x, y);
normal[0] = color.r * 2.0 - 1.0;
normal[1] = color.g * 2.0 - 1.0;
normal[2] = Math::sqrt(MAX(0.0, 1.0 - (normal[0] * normal[0] + normal[1] * normal[1]))); //reconstruct if missing
line_sum[0] += normal[0];
line_sum[1] += normal[1];
line_sum[2] += normal[2];
uint32_t ofs = (y * normal_w + x) * 3;
normal_sat[ofs + 0] = line_sum[0];
normal_sat[ofs + 1] = line_sum[1];
normal_sat[ofs + 2] = line_sum[2];
if (y > 0) {
uint32_t prev_ofs = ((y - 1) * normal_w + x) * 3;
normal_sat[ofs + 0] += normal_sat[prev_ofs + 0];
normal_sat[ofs + 1] += normal_sat[prev_ofs + 1];
normal_sat[ofs + 2] += normal_sat[prev_ofs + 2];
}
}
}
#if 0
{
Vector3 beg(normal_sat_vec[0], normal_sat_vec[1], normal_sat_vec[2]);
Vector3 end(normal_sat_vec[normal_sat_vec.size() - 3], normal_sat_vec[normal_sat_vec.size() - 2], normal_sat_vec[normal_sat_vec.size() - 1]);
Vector3 avg = (end - beg) / (normal_w * normal_h);
print_line("average: " + avg);
}
#endif
int mmcount;
_get_dst_image_size(width, height, format, mmcount);
uint8_t *base_ptr = data.ptrw();
for (int i = 1; i <= mmcount; i++) {
int64_t ofs;
int w, h;
_get_mipmap_offset_and_size(i, ofs, w, h);
uint8_t *ptr = &base_ptr[ofs];
for (int x = 0; x < w; x++) {
for (int y = 0; y < h; y++) {
int from_x = x * normal_w / w;
int from_y = y * normal_h / h;
int to_x = (x + 1) * normal_w / w;
int to_y = (y + 1) * normal_h / h;
to_x = MIN(to_x - 1, normal_w);
to_y = MIN(to_y - 1, normal_h);
int size_x = (to_x - from_x) + 1;
int size_y = (to_y - from_y) + 1;
//summed area table version (much faster)
double avg[3] = { 0, 0, 0 };
if (from_x > 0 && from_y > 0) {
uint32_t tofs = ((from_y - 1) * normal_w + (from_x - 1)) * 3;
avg[0] += normal_sat[tofs + 0];
avg[1] += normal_sat[tofs + 1];
avg[2] += normal_sat[tofs + 2];
}
if (from_y > 0 && to_x > 0) {
uint32_t tofs = ((from_y - 1) * normal_w + to_x) * 3;
avg[0] -= normal_sat[tofs + 0];
avg[1] -= normal_sat[tofs + 1];
avg[2] -= normal_sat[tofs + 2];
}
if (from_x > 0 && to_y > 0) {
uint32_t tofs = (to_y * normal_w + (from_x - 1)) * 3;
avg[0] -= normal_sat[tofs + 0];
avg[1] -= normal_sat[tofs + 1];
avg[2] -= normal_sat[tofs + 2];
}
if (to_y > 0 && to_x > 0) {
uint32_t tofs = (to_y * normal_w + to_x) * 3;
avg[0] += normal_sat[tofs + 0];
avg[1] += normal_sat[tofs + 1];
avg[2] += normal_sat[tofs + 2];
}
double div = double(size_x * size_y);
Vector3 vec(avg[0] / div, avg[1] / div, avg[2] / div);
float r = vec.length();
int pixel_ofs = y * w + x;
Color c = _get_color_at_ofs(ptr, pixel_ofs);
float roughness = 0;
switch (p_roughness_channel) {
case ROUGHNESS_CHANNEL_R: {
roughness = c.r;
} break;
case ROUGHNESS_CHANNEL_G: {
roughness = c.g;
} break;
case ROUGHNESS_CHANNEL_B: {
roughness = c.b;
} break;
case ROUGHNESS_CHANNEL_L: {
roughness = c.get_v();
} break;
case ROUGHNESS_CHANNEL_A: {
roughness = c.a;
} break;
}
float variance = 0;
if (r < 1.0f) {
float r2 = r * r;
float kappa = (3.0f * r - r * r2) / (1.0f - r2);
variance = 0.25f / kappa;
}
float threshold = 0.4;
roughness = Math::sqrt(roughness * roughness + MIN(3.0f * variance, threshold * threshold));
switch (p_roughness_channel) {
case ROUGHNESS_CHANNEL_R: {
c.r = roughness;
} break;
case ROUGHNESS_CHANNEL_G: {
c.g = roughness;
} break;
case ROUGHNESS_CHANNEL_B: {
c.b = roughness;
} break;
case ROUGHNESS_CHANNEL_L: {
c.r = roughness;
c.g = roughness;
c.b = roughness;
} break;
case ROUGHNESS_CHANNEL_A: {
c.a = roughness;
} break;
}
_set_color_at_ofs(ptr, pixel_ofs, c);
}
}
}
return OK;
}
void Image::clear_mipmaps() {
if (!mipmaps) {
return;
}
if (is_empty()) {
return;
}
int64_t ofs;
int w, h;
_get_mipmap_offset_and_size(1, ofs, w, h);
data.resize(ofs);
mipmaps = false;
}
bool Image::is_empty() const {
return (data.size() == 0);
}
Vector<uint8_t> Image::get_data() const {
return data;
}
Ref<Image> Image::create_empty(int p_width, int p_height, bool p_use_mipmaps, Format p_format) {
Ref<Image> image;
image.instantiate();
image->initialize_data(p_width, p_height, p_use_mipmaps, p_format);
return image;
}
Ref<Image> Image::create_from_data(int p_width, int p_height, bool p_use_mipmaps, Format p_format, const Vector<uint8_t> &p_data) {
Ref<Image> image;
image.instantiate();
image->initialize_data(p_width, p_height, p_use_mipmaps, p_format, p_data);
return image;
}
void Image::set_data(int p_width, int p_height, bool p_use_mipmaps, Format p_format, const Vector<uint8_t> &p_data) {
initialize_data(p_width, p_height, p_use_mipmaps, p_format, p_data);
}
void Image::initialize_data(int p_width, int p_height, bool p_use_mipmaps, Format p_format) {
ERR_FAIL_COND_MSG(p_width <= 0, "The Image width specified (" + itos(p_width) + " pixels) must be greater than 0 pixels.");
ERR_FAIL_COND_MSG(p_height <= 0, "The Image height specified (" + itos(p_height) + " pixels) must be greater than 0 pixels.");
ERR_FAIL_COND_MSG(p_width > MAX_WIDTH,
"The Image width specified (" + itos(p_width) + " pixels) cannot be greater than " + itos(MAX_WIDTH) + "pixels.");
ERR_FAIL_COND_MSG(p_height > MAX_HEIGHT,
"The Image height specified (" + itos(p_height) + " pixels) cannot be greater than " + itos(MAX_HEIGHT) + "pixels.");
ERR_FAIL_COND_MSG(p_width * p_height > MAX_PIXELS,
"Too many pixels for Image. Maximum is " + itos(MAX_WIDTH) + "x" + itos(MAX_HEIGHT) + " = " + itos(MAX_PIXELS) + "pixels.");
ERR_FAIL_INDEX_MSG(p_format, FORMAT_MAX, "The Image format specified (" + itos(p_format) + ") is out of range. See Image's Format enum.");
int mm = 0;
int64_t size = _get_dst_image_size(p_width, p_height, p_format, mm, p_use_mipmaps ? -1 : 0);
data.resize(size);
{
uint8_t *w = data.ptrw();
memset(w, 0, size);
}
width = p_width;
height = p_height;
mipmaps = p_use_mipmaps;
format = p_format;
}
void Image::initialize_data(int p_width, int p_height, bool p_use_mipmaps, Format p_format, const Vector<uint8_t> &p_data) {
ERR_FAIL_COND_MSG(p_width <= 0, "The Image width specified (" + itos(p_width) + " pixels) must be greater than 0 pixels.");
ERR_FAIL_COND_MSG(p_height <= 0, "The Image height specified (" + itos(p_height) + " pixels) must be greater than 0 pixels.");
ERR_FAIL_COND_MSG(p_width > MAX_WIDTH,
"The Image width specified (" + itos(p_width) + " pixels) cannot be greater than " + itos(MAX_WIDTH) + " pixels.");
ERR_FAIL_COND_MSG(p_height > MAX_HEIGHT,
"The Image height specified (" + itos(p_height) + " pixels) cannot be greater than " + itos(MAX_HEIGHT) + " pixels.");
ERR_FAIL_COND_MSG(p_width * p_height > MAX_PIXELS,
"Too many pixels for Image. Maximum is " + itos(MAX_WIDTH) + "x" + itos(MAX_HEIGHT) + " = " + itos(MAX_PIXELS) + "pixels .");
ERR_FAIL_INDEX_MSG(p_format, FORMAT_MAX, "The Image format specified (" + itos(p_format) + ") is out of range. See Image's Format enum.");
int mm;
int64_t size = _get_dst_image_size(p_width, p_height, p_format, mm, p_use_mipmaps ? -1 : 0);
if (unlikely(p_data.size() != size)) {
String description_mipmaps = get_format_name(p_format) + " ";
if (p_use_mipmaps) {
const int num_mipmaps = get_image_required_mipmaps(p_width, p_height, p_format);
if (num_mipmaps != 1) {
description_mipmaps += vformat("with %d mipmaps", num_mipmaps);
} else {
description_mipmaps += "with 1 mipmap";
}
} else {
description_mipmaps += "without mipmaps";
}
const String description = vformat("%dx%dx%d (%s)", p_width, p_height, get_format_pixel_size(p_format), description_mipmaps);
ERR_FAIL_MSG(vformat("Expected Image data size of %s = %d bytes, got %d bytes instead.", description, size, p_data.size()));
}
height = p_height;
width = p_width;
format = p_format;
data = p_data;
mipmaps = p_use_mipmaps;
}
void Image::initialize_data(const char **p_xpm) {
int size_width = 0;
int size_height = 0;
int pixelchars = 0;
mipmaps = false;
bool has_alpha = false;
enum Status {
READING_HEADER,
READING_COLORS,
READING_PIXELS,
DONE
};
Status status = READING_HEADER;
int line = 0;
HashMap<String, Color> colormap;
int colormap_size = 0;
uint32_t pixel_size = 0;
uint8_t *data_write = nullptr;
while (status != DONE) {
const char *line_ptr = p_xpm[line];
switch (status) {
case READING_HEADER: {
String line_str = line_ptr;
line_str.replace("\t", " ");
size_width = line_str.get_slicec(' ', 0).to_int();
size_height = line_str.get_slicec(' ', 1).to_int();
colormap_size = line_str.get_slicec(' ', 2).to_int();
pixelchars = line_str.get_slicec(' ', 3).to_int();
ERR_FAIL_COND(colormap_size > 32766);
ERR_FAIL_COND(pixelchars > 5);
ERR_FAIL_COND(size_width > 32767);
ERR_FAIL_COND(size_height > 32767);
status = READING_COLORS;
} break;
case READING_COLORS: {
String colorstring;
for (int i = 0; i < pixelchars; i++) {
colorstring += *line_ptr;
line_ptr++;
}
//skip spaces
while (*line_ptr == ' ' || *line_ptr == '\t' || *line_ptr == 0) {
if (*line_ptr == 0) {
break;
}
line_ptr++;
}
if (*line_ptr == 'c') {
line_ptr++;
while (*line_ptr == ' ' || *line_ptr == '\t' || *line_ptr == 0) {
if (*line_ptr == 0) {
break;
}
line_ptr++;
}
if (*line_ptr == '#') {
line_ptr++;
uint8_t col_r = 0;
uint8_t col_g = 0;
uint8_t col_b = 0;
//uint8_t col_a=255;
for (int i = 0; i < 6; i++) {
char v = line_ptr[i];
if (is_digit(v)) {
v -= '0';
} else if (v >= 'A' && v <= 'F') {
v = (v - 'A') + 10;
} else if (v >= 'a' && v <= 'f') {
v = (v - 'a') + 10;
} else {
break;
}
switch (i) {
case 0:
col_r = v << 4;
break;
case 1:
col_r |= v;
break;
case 2:
col_g = v << 4;
break;
case 3:
col_g |= v;
break;
case 4:
col_b = v << 4;
break;
case 5:
col_b |= v;
break;
}
}
// magenta mask
if (col_r == 255 && col_g == 0 && col_b == 255) {
colormap[colorstring] = Color(0, 0, 0, 0);
has_alpha = true;
} else {
colormap[colorstring] = Color(col_r / 255.0, col_g / 255.0, col_b / 255.0, 1.0);
}
}
}
if (line == colormap_size) {
status = READING_PIXELS;
initialize_data(size_width, size_height, false, has_alpha ? FORMAT_RGBA8 : FORMAT_RGB8);
data_write = data.ptrw();
pixel_size = has_alpha ? 4 : 3;
}
} break;
case READING_PIXELS: {
int y = line - colormap_size - 1;
for (int x = 0; x < size_width; x++) {
char pixelstr[6] = { 0, 0, 0, 0, 0, 0 };
for (int i = 0; i < pixelchars; i++) {
pixelstr[i] = line_ptr[x * pixelchars + i];
}
Color *colorptr = colormap.getptr(pixelstr);
ERR_FAIL_NULL(colorptr);
uint8_t pixel[4];
for (uint32_t i = 0; i < pixel_size; i++) {
pixel[i] = CLAMP((*colorptr)[i] * 255, 0, 255);
}
_put_pixelb(x, y, pixel_size, data_write, pixel);
}
if (y == (size_height - 1)) {
status = DONE;
}
} break;
default: {
}
}
line++;
}
}
#define DETECT_ALPHA_MAX_THRESHOLD 254
#define DETECT_ALPHA_MIN_THRESHOLD 2
#define DETECT_ALPHA(m_value) \
{ \
uint8_t value = m_value; \
if (value < DETECT_ALPHA_MIN_THRESHOLD) \
bit = true; \
else if (value < DETECT_ALPHA_MAX_THRESHOLD) { \
detected = true; \
break; \
} \
}
#define DETECT_NON_ALPHA(m_value) \
{ \
uint8_t value = m_value; \
if (value > 0) { \
detected = true; \
break; \
} \
}
bool Image::is_invisible() const {
if (format == FORMAT_L8 ||
format == FORMAT_RGB8 || format == FORMAT_RG8) {
return false;
}
int64_t len = data.size();
if (len == 0) {
return true;
}
int w, h;
_get_mipmap_offset_and_size(1, len, w, h);
const uint8_t *r = data.ptr();
const unsigned char *data_ptr = r;
bool detected = false;
switch (format) {
case FORMAT_LA8: {
for (int i = 0; i < (len >> 1); i++) {
DETECT_NON_ALPHA(data_ptr[(i << 1) + 1]);
}
} break;
case FORMAT_RGBA8: {
for (int i = 0; i < (len >> 2); i++) {
DETECT_NON_ALPHA(data_ptr[(i << 2) + 3])
}
} break;
case FORMAT_DXT3:
case FORMAT_DXT5: {
detected = true;
} break;
default: {
}
}
return !detected;
}
Image::AlphaMode Image::detect_alpha() const {
int64_t len = data.size();
if (len == 0) {
return ALPHA_NONE;
}
int w, h;
_get_mipmap_offset_and_size(1, len, w, h);
const uint8_t *r = data.ptr();
const unsigned char *data_ptr = r;
bool bit = false;
bool detected = false;
switch (format) {
case FORMAT_LA8: {
for (int i = 0; i < (len >> 1); i++) {
DETECT_ALPHA(data_ptr[(i << 1) + 1]);
}
} break;
case FORMAT_RGBA8: {
for (int i = 0; i < (len >> 2); i++) {
DETECT_ALPHA(data_ptr[(i << 2) + 3])
}
} break;
case FORMAT_DXT3:
case FORMAT_DXT5: {
detected = true;
} break;
default: {
}
}
if (detected) {
return ALPHA_BLEND;
} else if (bit) {
return ALPHA_BIT;
} else {
return ALPHA_NONE;
}
}
Error Image::load(const String &p_path) {
#ifdef DEBUG_ENABLED
if (p_path.begins_with("res://") && ResourceLoader::exists(p_path)) {
WARN_PRINT("Loaded resource as image file, this will not work on export: '" + p_path + "'. Instead, import the image file as an Image resource and load it normally as a resource.");
}
#endif
return ImageLoader::load_image(p_path, this);
}
Ref<Image> Image::load_from_file(const String &p_path) {
#ifdef DEBUG_ENABLED
if (p_path.begins_with("res://") && ResourceLoader::exists(p_path)) {
WARN_PRINT("Loaded resource as image file, this will not work on export: '" + p_path + "'. Instead, import the image file as an Image resource and load it normally as a resource.");
}
#endif
Ref<Image> image;
image.instantiate();
Error err = ImageLoader::load_image(p_path, image);
if (err != OK) {
ERR_FAIL_V_MSG(Ref<Image>(), vformat("Failed to load image. Error %d", err));
}
return image;
}
Error Image::save_png(const String &p_path) const {
if (save_png_func == nullptr) {
return ERR_UNAVAILABLE;
}
return save_png_func(p_path, Ref<Image>((Image *)this));
}
Error Image::save_jpg(const String &p_path, float p_quality) const {
if (save_jpg_func == nullptr) {
return ERR_UNAVAILABLE;
}
return save_jpg_func(p_path, Ref<Image>((Image *)this), p_quality);
}
Vector<uint8_t> Image::save_png_to_buffer() const {
if (save_png_buffer_func == nullptr) {
return Vector<uint8_t>();
}
return save_png_buffer_func(Ref<Image>((Image *)this));
}
Vector<uint8_t> Image::save_jpg_to_buffer(float p_quality) const {
if (save_jpg_buffer_func == nullptr) {
return Vector<uint8_t>();
}
return save_jpg_buffer_func(Ref<Image>((Image *)this), p_quality);
}
Error Image::save_exr(const String &p_path, bool p_grayscale) const {
if (save_exr_func == nullptr) {
return ERR_UNAVAILABLE;
}
return save_exr_func(p_path, Ref<Image>((Image *)this), p_grayscale);
}
Vector<uint8_t> Image::save_exr_to_buffer(bool p_grayscale) const {
if (save_exr_buffer_func == nullptr) {
return Vector<uint8_t>();
}
return save_exr_buffer_func(Ref<Image>((Image *)this), p_grayscale);
}
Error Image::save_webp(const String &p_path, const bool p_lossy, const float p_quality) const {
if (save_webp_func == nullptr) {
return ERR_UNAVAILABLE;
}
ERR_FAIL_COND_V_MSG(p_lossy && !(0.0f <= p_quality && p_quality <= 1.0f), ERR_INVALID_PARAMETER, "The WebP lossy quality was set to " + rtos(p_quality) + ", which is not valid. WebP lossy quality must be between 0.0 and 1.0 (inclusive).");
return save_webp_func(p_path, Ref<Image>((Image *)this), p_lossy, p_quality);
}
Vector<uint8_t> Image::save_webp_to_buffer(const bool p_lossy, const float p_quality) const {
if (save_webp_buffer_func == nullptr) {
return Vector<uint8_t>();
}
ERR_FAIL_COND_V_MSG(p_lossy && !(0.0f <= p_quality && p_quality <= 1.0f), Vector<uint8_t>(), "The WebP lossy quality was set to " + rtos(p_quality) + ", which is not valid. WebP lossy quality must be between 0.0 and 1.0 (inclusive).");
return save_webp_buffer_func(Ref<Image>((Image *)this), p_lossy, p_quality);
}
int64_t Image::get_image_data_size(int p_width, int p_height, Format p_format, bool p_mipmaps) {
int mm;
return _get_dst_image_size(p_width, p_height, p_format, mm, p_mipmaps ? -1 : 0);
}
int Image::get_image_required_mipmaps(int p_width, int p_height, Format p_format) {
int mm;
_get_dst_image_size(p_width, p_height, p_format, mm, -1);
return mm;
}
Size2i Image::get_image_mipmap_size(int p_width, int p_height, Format p_format, int p_mipmap) {
int mm;
Size2i ret;
_get_dst_image_size(p_width, p_height, p_format, mm, p_mipmap, &ret.x, &ret.y);
return ret;
}
int64_t Image::get_image_mipmap_offset(int p_width, int p_height, Format p_format, int p_mipmap) {
if (p_mipmap <= 0) {
return 0;
}
int mm;
return _get_dst_image_size(p_width, p_height, p_format, mm, p_mipmap - 1);
}
int64_t Image::get_image_mipmap_offset_and_dimensions(int p_width, int p_height, Format p_format, int p_mipmap, int &r_w, int &r_h) {
if (p_mipmap <= 0) {
r_w = p_width;
r_h = p_height;
return 0;
}
int mm;
return _get_dst_image_size(p_width, p_height, p_format, mm, p_mipmap - 1, &r_w, &r_h);
}
bool Image::is_compressed() const {
return is_format_compressed(format);
}
bool Image::is_format_compressed(Format p_format) {
return p_format > FORMAT_RGBE9995;
}
Error Image::decompress() {
if (((format >= FORMAT_DXT1 && format <= FORMAT_RGTC_RG) || (format == FORMAT_DXT5_RA_AS_RG)) && _image_decompress_bc) {
_image_decompress_bc(this);
} else if (format >= FORMAT_BPTC_RGBA && format <= FORMAT_BPTC_RGBFU && _image_decompress_bptc) {
_image_decompress_bptc(this);
} else if (format == FORMAT_ETC && _image_decompress_etc1) {
_image_decompress_etc1(this);
} else if (format >= FORMAT_ETC2_R11 && format <= FORMAT_ETC2_RA_AS_RG && _image_decompress_etc2) {
_image_decompress_etc2(this);
} else if (format >= FORMAT_ASTC_4x4 && format <= FORMAT_ASTC_8x8_HDR && _image_decompress_astc) {
_image_decompress_astc(this);
} else {
return ERR_UNAVAILABLE;
}
return OK;
}
Error Image::compress(CompressMode p_mode, CompressSource p_source, ASTCFormat p_astc_format) {
ERR_FAIL_INDEX_V_MSG(p_mode, COMPRESS_MAX, ERR_INVALID_PARAMETER, "Invalid compress mode.");
ERR_FAIL_INDEX_V_MSG(p_source, COMPRESS_SOURCE_MAX, ERR_INVALID_PARAMETER, "Invalid compress source.");
return compress_from_channels(p_mode, detect_used_channels(p_source), p_astc_format);
}
Error Image::compress_from_channels(CompressMode p_mode, UsedChannels p_channels, ASTCFormat p_astc_format) {
ERR_FAIL_COND_V(data.is_empty(), ERR_INVALID_DATA);
// RenderingDevice only.
if (GLOBAL_GET("rendering/textures/vram_compression/compress_with_gpu")) {
switch (p_mode) {
case COMPRESS_BPTC: {
// BC7 is unsupported currently.
if ((format >= FORMAT_RF && format <= FORMAT_RGBE9995) && _image_compress_bptc_rd_func) {
Error result = _image_compress_bptc_rd_func(this, p_channels);
// If the image was compressed successfully, we return here. If not, we fall back to the default compression scheme.
if (result == OK) {
return OK;
}
}
} break;
case COMPRESS_S3TC: {
// BC3 is unsupported currently.
if ((p_channels == USED_CHANNELS_RGB || p_channels == USED_CHANNELS_L) && _image_compress_bc_rd_func) {
Error result = _image_compress_bc_rd_func(this, p_channels);
// If the image was compressed successfully, we return here. If not, we fall back to the default compression scheme.
if (result == OK) {
return OK;
}
}
} break;
default: {
}
}
}
switch (p_mode) {
case COMPRESS_S3TC: {
ERR_FAIL_NULL_V(_image_compress_bc_func, ERR_UNAVAILABLE);
_image_compress_bc_func(this, p_channels);
} break;
case COMPRESS_ETC: {
ERR_FAIL_NULL_V(_image_compress_etc1_func, ERR_UNAVAILABLE);
_image_compress_etc1_func(this);
} break;
case COMPRESS_ETC2: {
ERR_FAIL_NULL_V(_image_compress_etc2_func, ERR_UNAVAILABLE);
_image_compress_etc2_func(this, p_channels);
} break;
case COMPRESS_BPTC: {
ERR_FAIL_NULL_V(_image_compress_bptc_func, ERR_UNAVAILABLE);
_image_compress_bptc_func(this, p_channels);
} break;
case COMPRESS_ASTC: {
ERR_FAIL_NULL_V(_image_compress_astc_func, ERR_UNAVAILABLE);
_image_compress_astc_func(this, p_astc_format);
} break;
case COMPRESS_MAX: {
ERR_FAIL_V(ERR_INVALID_PARAMETER);
} break;
}
return OK;
}
Image::Image(const char **p_xpm) {
width = 0;
height = 0;
mipmaps = false;
format = FORMAT_L8;
initialize_data(p_xpm);
}
Image::Image(int p_width, int p_height, bool p_use_mipmaps, Format p_format) {
width = 0;
height = 0;
mipmaps = p_use_mipmaps;
format = FORMAT_L8;
initialize_data(p_width, p_height, p_use_mipmaps, p_format);
}
Image::Image(int p_width, int p_height, bool p_mipmaps, Format p_format, const Vector<uint8_t> &p_data) {
width = 0;
height = 0;
mipmaps = p_mipmaps;
format = FORMAT_L8;
initialize_data(p_width, p_height, p_mipmaps, p_format, p_data);
}
Rect2i Image::get_used_rect() const {
if (format != FORMAT_LA8 && format != FORMAT_RGBA8 && format != FORMAT_RGBAF && format != FORMAT_RGBAH && format != FORMAT_RGBA4444 && format != FORMAT_RGB565) {
return Rect2i(0, 0, width, height);
}
int len = data.size();
if (len == 0) {
return Rect2i();
}
int minx = 0xFFFFFF, miny = 0xFFFFFFF;
int maxx = -1, maxy = -1;
for (int j = 0; j < height; j++) {
for (int i = 0; i < width; i++) {
if (!(get_pixel(i, j).a > 0)) {
continue;
}
if (i > maxx) {
maxx = i;
}
if (j > maxy) {
maxy = j;
}
if (i < minx) {
minx = i;
}
if (j < miny) {
miny = j;
}
}
}
if (maxx == -1) {
return Rect2i();
} else {
return Rect2i(minx, miny, maxx - minx + 1, maxy - miny + 1);
}
}
Ref<Image> Image::get_region(const Rect2i &p_region) const {
Ref<Image> img = memnew(Image(p_region.size.x, p_region.size.y, mipmaps, format));
img->blit_rect(Ref<Image>((Image *)this), p_region, Point2i(0, 0));
return img;
}
void Image::_get_clipped_src_and_dest_rects(const Ref<Image> &p_src, const Rect2i &p_src_rect, const Point2i &p_dest, Rect2i &r_clipped_src_rect, Rect2i &r_clipped_dest_rect) const {
r_clipped_dest_rect.position = p_dest;
r_clipped_src_rect = p_src_rect;
if (r_clipped_src_rect.position.x < 0) {
r_clipped_dest_rect.position.x -= r_clipped_src_rect.position.x;
r_clipped_src_rect.size.x += r_clipped_src_rect.position.x;
r_clipped_src_rect.position.x = 0;
}
if (r_clipped_src_rect.position.y < 0) {
r_clipped_dest_rect.position.y -= r_clipped_src_rect.position.y;
r_clipped_src_rect.size.y += r_clipped_src_rect.position.y;
r_clipped_src_rect.position.y = 0;
}
if (r_clipped_dest_rect.position.x < 0) {
r_clipped_src_rect.position.x -= r_clipped_dest_rect.position.x;
r_clipped_src_rect.size.x += r_clipped_dest_rect.position.x;
r_clipped_dest_rect.position.x = 0;
}
if (r_clipped_dest_rect.position.y < 0) {
r_clipped_src_rect.position.y -= r_clipped_dest_rect.position.y;
r_clipped_src_rect.size.y += r_clipped_dest_rect.position.y;
r_clipped_dest_rect.position.y = 0;
}
r_clipped_src_rect.size.x = MAX(0, MIN(r_clipped_src_rect.size.x, MIN(p_src->width - r_clipped_src_rect.position.x, width - r_clipped_dest_rect.position.x)));
r_clipped_src_rect.size.y = MAX(0, MIN(r_clipped_src_rect.size.y, MIN(p_src->height - r_clipped_src_rect.position.y, height - r_clipped_dest_rect.position.y)));
r_clipped_dest_rect.size.x = r_clipped_src_rect.size.x;
r_clipped_dest_rect.size.y = r_clipped_src_rect.size.y;
}
void Image::blit_rect(const Ref<Image> &p_src, const Rect2i &p_src_rect, const Point2i &p_dest) {
ERR_FAIL_COND_MSG(p_src.is_null(), "Cannot blit_rect an image: invalid source Image object.");
int dsize = data.size();
int srcdsize = p_src->data.size();
ERR_FAIL_COND(dsize == 0);
ERR_FAIL_COND(srcdsize == 0);
ERR_FAIL_COND(format != p_src->format);
ERR_FAIL_COND_MSG(!_can_modify(format), "Cannot blit_rect in compressed or custom image formats.");
Rect2i src_rect;
Rect2i dest_rect;
_get_clipped_src_and_dest_rects(p_src, p_src_rect, p_dest, src_rect, dest_rect);
if (!src_rect.has_area() || !dest_rect.has_area()) {
return;
}
uint8_t *wp = data.ptrw();
uint8_t *dst_data_ptr = wp;
const uint8_t *rp = p_src->data.ptr();
const uint8_t *src_data_ptr = rp;
int pixel_size = get_format_pixel_size(format);
for (int i = 0; i < dest_rect.size.y; i++) {
for (int j = 0; j < dest_rect.size.x; j++) {
int src_x = src_rect.position.x + j;
int src_y = src_rect.position.y + i;
int dst_x = dest_rect.position.x + j;
int dst_y = dest_rect.position.y + i;
const uint8_t *src = &src_data_ptr[(src_y * p_src->width + src_x) * pixel_size];
uint8_t *dst = &dst_data_ptr[(dst_y * width + dst_x) * pixel_size];
for (int k = 0; k < pixel_size; k++) {
dst[k] = src[k];
}
}
}
}
void Image::blit_rect_mask(const Ref<Image> &p_src, const Ref<Image> &p_mask, const Rect2i &p_src_rect, const Point2i &p_dest) {
ERR_FAIL_COND_MSG(p_src.is_null(), "Cannot blit_rect_mask an image: invalid source Image object.");
ERR_FAIL_COND_MSG(p_mask.is_null(), "Cannot blit_rect_mask an image: invalid mask Image object.");
int dsize = data.size();
int srcdsize = p_src->data.size();
int maskdsize = p_mask->data.size();
ERR_FAIL_COND(dsize == 0);
ERR_FAIL_COND(srcdsize == 0);
ERR_FAIL_COND(maskdsize == 0);
ERR_FAIL_COND_MSG(p_src->width != p_mask->width, "Source image width is different from mask width.");
ERR_FAIL_COND_MSG(p_src->height != p_mask->height, "Source image height is different from mask height.");
ERR_FAIL_COND(format != p_src->format);
Rect2i src_rect;
Rect2i dest_rect;
_get_clipped_src_and_dest_rects(p_src, p_src_rect, p_dest, src_rect, dest_rect);
if (!src_rect.has_area() || !dest_rect.has_area()) {
return;
}
uint8_t *wp = data.ptrw();
uint8_t *dst_data_ptr = wp;
const uint8_t *rp = p_src->data.ptr();
const uint8_t *src_data_ptr = rp;
int pixel_size = get_format_pixel_size(format);
Ref<Image> msk = p_mask;
for (int i = 0; i < dest_rect.size.y; i++) {
for (int j = 0; j < dest_rect.size.x; j++) {
int src_x = src_rect.position.x + j;
int src_y = src_rect.position.y + i;
if (msk->get_pixel(src_x, src_y).a != 0) {
int dst_x = dest_rect.position.x + j;
int dst_y = dest_rect.position.y + i;
const uint8_t *src = &src_data_ptr[(src_y * p_src->width + src_x) * pixel_size];
uint8_t *dst = &dst_data_ptr[(dst_y * width + dst_x) * pixel_size];
for (int k = 0; k < pixel_size; k++) {
dst[k] = src[k];
}
}
}
}
}
void Image::blend_rect(const Ref<Image> &p_src, const Rect2i &p_src_rect, const Point2i &p_dest) {
ERR_FAIL_COND_MSG(p_src.is_null(), "Cannot blend_rect an image: invalid source Image object.");
int dsize = data.size();
int srcdsize = p_src->data.size();
ERR_FAIL_COND(dsize == 0);
ERR_FAIL_COND(srcdsize == 0);
ERR_FAIL_COND(format != p_src->format);
Rect2i src_rect;
Rect2i dest_rect;
_get_clipped_src_and_dest_rects(p_src, p_src_rect, p_dest, src_rect, dest_rect);
if (!src_rect.has_area() || !dest_rect.has_area()) {
return;
}
Ref<Image> img = p_src;
for (int i = 0; i < dest_rect.size.y; i++) {
for (int j = 0; j < dest_rect.size.x; j++) {
int src_x = src_rect.position.x + j;
int src_y = src_rect.position.y + i;
int dst_x = dest_rect.position.x + j;
int dst_y = dest_rect.position.y + i;
Color sc = img->get_pixel(src_x, src_y);
if (sc.a != 0) {
Color dc = get_pixel(dst_x, dst_y);
dc = dc.blend(sc);
set_pixel(dst_x, dst_y, dc);
}
}
}
}
void Image::blend_rect_mask(const Ref<Image> &p_src, const Ref<Image> &p_mask, const Rect2i &p_src_rect, const Point2i &p_dest) {
ERR_FAIL_COND_MSG(p_src.is_null(), "Cannot blend_rect_mask an image: invalid source Image object.");
ERR_FAIL_COND_MSG(p_mask.is_null(), "Cannot blend_rect_mask an image: invalid mask Image object.");
int dsize = data.size();
int srcdsize = p_src->data.size();
int maskdsize = p_mask->data.size();
ERR_FAIL_COND(dsize == 0);
ERR_FAIL_COND(srcdsize == 0);
ERR_FAIL_COND(maskdsize == 0);
ERR_FAIL_COND_MSG(p_src->width != p_mask->width, "Source image width is different from mask width.");
ERR_FAIL_COND_MSG(p_src->height != p_mask->height, "Source image height is different from mask height.");
ERR_FAIL_COND(format != p_src->format);
Rect2i src_rect;
Rect2i dest_rect;
_get_clipped_src_and_dest_rects(p_src, p_src_rect, p_dest, src_rect, dest_rect);
if (!src_rect.has_area() || !dest_rect.has_area()) {
return;
}
Ref<Image> img = p_src;
Ref<Image> msk = p_mask;
for (int i = 0; i < dest_rect.size.y; i++) {
for (int j = 0; j < dest_rect.size.x; j++) {
int src_x = src_rect.position.x + j;
int src_y = src_rect.position.y + i;
// If the mask's pixel is transparent then we skip it
//Color c = msk->get_pixel(src_x, src_y);
//if (c.a == 0) continue;
if (msk->get_pixel(src_x, src_y).a != 0) {
int dst_x = dest_rect.position.x + j;
int dst_y = dest_rect.position.y + i;
Color sc = img->get_pixel(src_x, src_y);
if (sc.a != 0) {
Color dc = get_pixel(dst_x, dst_y);
dc = dc.blend(sc);
set_pixel(dst_x, dst_y, dc);
}
}
}
}
}
// Repeats `p_pixel` `p_count` times in consecutive memory.
// Results in the original pixel and `p_count - 1` subsequent copies of it.
void Image::_repeat_pixel_over_subsequent_memory(uint8_t *p_pixel, int p_pixel_size, int p_count) {
int offset = 1;
for (int stride = 1; offset + stride <= p_count; stride *= 2) {
memcpy(p_pixel + offset * p_pixel_size, p_pixel, stride * p_pixel_size);
offset += stride;
}
if (offset < p_count) {
memcpy(p_pixel + offset * p_pixel_size, p_pixel, (p_count - offset) * p_pixel_size);
}
}
void Image::fill(const Color &p_color) {
if (data.size() == 0) {
return;
}
ERR_FAIL_COND_MSG(!_can_modify(format), "Cannot fill in compressed or custom image formats.");
uint8_t *dst_data_ptr = data.ptrw();
int pixel_size = get_format_pixel_size(format);
// Put first pixel with the format-aware API.
_set_color_at_ofs(dst_data_ptr, 0, p_color);
_repeat_pixel_over_subsequent_memory(dst_data_ptr, pixel_size, width * height);
}
void Image::fill_rect(const Rect2i &p_rect, const Color &p_color) {
if (data.size() == 0) {
return;
}
ERR_FAIL_COND_MSG(!_can_modify(format), "Cannot fill rect in compressed or custom image formats.");
Rect2i r = Rect2i(0, 0, width, height).intersection(p_rect.abs());
if (!r.has_area()) {
return;
}
uint8_t *dst_data_ptr = data.ptrw();
int pixel_size = get_format_pixel_size(format);
// Put first pixel with the format-aware API.
uint8_t *rect_first_pixel_ptr = &dst_data_ptr[(r.position.y * width + r.position.x) * pixel_size];
_set_color_at_ofs(rect_first_pixel_ptr, 0, p_color);
if (r.size.x == width) {
// No need to fill rows separately.
_repeat_pixel_over_subsequent_memory(rect_first_pixel_ptr, pixel_size, width * r.size.y);
} else {
_repeat_pixel_over_subsequent_memory(rect_first_pixel_ptr, pixel_size, r.size.x);
for (int y = 1; y < r.size.y; y++) {
memcpy(rect_first_pixel_ptr + y * width * pixel_size, rect_first_pixel_ptr, r.size.x * pixel_size);
}
}
}
ImageMemLoadFunc Image::_png_mem_loader_func = nullptr;
ImageMemLoadFunc Image::_png_mem_unpacker_func = nullptr;
ImageMemLoadFunc Image::_jpg_mem_loader_func = nullptr;
ImageMemLoadFunc Image::_webp_mem_loader_func = nullptr;
ImageMemLoadFunc Image::_tga_mem_loader_func = nullptr;
ImageMemLoadFunc Image::_bmp_mem_loader_func = nullptr;
ScalableImageMemLoadFunc Image::_svg_scalable_mem_loader_func = nullptr;
ImageMemLoadFunc Image::_ktx_mem_loader_func = nullptr;
void (*Image::_image_compress_bc_func)(Image *, Image::UsedChannels) = nullptr;
void (*Image::_image_compress_bptc_func)(Image *, Image::UsedChannels) = nullptr;
void (*Image::_image_compress_etc1_func)(Image *) = nullptr;
void (*Image::_image_compress_etc2_func)(Image *, Image::UsedChannels) = nullptr;
void (*Image::_image_compress_astc_func)(Image *, Image::ASTCFormat) = nullptr;
Error (*Image::_image_compress_bptc_rd_func)(Image *, Image::UsedChannels) = nullptr;
Error (*Image::_image_compress_bc_rd_func)(Image *, Image::UsedChannels) = nullptr;
void (*Image::_image_decompress_bc)(Image *) = nullptr;
void (*Image::_image_decompress_bptc)(Image *) = nullptr;
void (*Image::_image_decompress_etc1)(Image *) = nullptr;
void (*Image::_image_decompress_etc2)(Image *) = nullptr;
void (*Image::_image_decompress_astc)(Image *) = nullptr;
Vector<uint8_t> (*Image::webp_lossy_packer)(const Ref<Image> &, float) = nullptr;
Vector<uint8_t> (*Image::webp_lossless_packer)(const Ref<Image> &) = nullptr;
Ref<Image> (*Image::webp_unpacker)(const Vector<uint8_t> &) = nullptr;
Vector<uint8_t> (*Image::png_packer)(const Ref<Image> &) = nullptr;
Ref<Image> (*Image::png_unpacker)(const Vector<uint8_t> &) = nullptr;
Vector<uint8_t> (*Image::basis_universal_packer)(const Ref<Image> &, Image::UsedChannels) = nullptr;
Ref<Image> (*Image::basis_universal_unpacker)(const Vector<uint8_t> &) = nullptr;
Ref<Image> (*Image::basis_universal_unpacker_ptr)(const uint8_t *, int) = nullptr;
void Image::_set_data(const Dictionary &p_data) {
ERR_FAIL_COND(!p_data.has("width"));
ERR_FAIL_COND(!p_data.has("height"));
ERR_FAIL_COND(!p_data.has("format"));
ERR_FAIL_COND(!p_data.has("mipmaps"));
ERR_FAIL_COND(!p_data.has("data"));
int dwidth = p_data["width"];
int dheight = p_data["height"];
String dformat = p_data["format"];
bool dmipmaps = p_data["mipmaps"];
Vector<uint8_t> ddata = p_data["data"];
Format ddformat = FORMAT_MAX;
for (int i = 0; i < FORMAT_MAX; i++) {
if (dformat == get_format_name(Format(i))) {
ddformat = Format(i);
break;
}
}
ERR_FAIL_COND(ddformat == FORMAT_MAX);
initialize_data(dwidth, dheight, dmipmaps, ddformat, ddata);
}
Dictionary Image::_get_data() const {
Dictionary d;
d["width"] = width;
d["height"] = height;
d["format"] = get_format_name(format);
d["mipmaps"] = mipmaps;
d["data"] = data;
return d;
}
Color Image::get_pixelv(const Point2i &p_point) const {
return get_pixel(p_point.x, p_point.y);
}
Color Image::_get_color_at_ofs(const uint8_t *ptr, uint32_t ofs) const {
switch (format) {
case FORMAT_L8: {
float l = ptr[ofs] / 255.0;
return Color(l, l, l, 1);
}
case FORMAT_LA8: {
float l = ptr[ofs * 2 + 0] / 255.0;
float a = ptr[ofs * 2 + 1] / 255.0;
return Color(l, l, l, a);
}
case FORMAT_R8: {
float r = ptr[ofs] / 255.0;
return Color(r, 0, 0, 1);
}
case FORMAT_RG8: {
float r = ptr[ofs * 2 + 0] / 255.0;
float g = ptr[ofs * 2 + 1] / 255.0;
return Color(r, g, 0, 1);
}
case FORMAT_RGB8: {
float r = ptr[ofs * 3 + 0] / 255.0;
float g = ptr[ofs * 3 + 1] / 255.0;
float b = ptr[ofs * 3 + 2] / 255.0;
return Color(r, g, b, 1);
}
case FORMAT_RGBA8: {
float r = ptr[ofs * 4 + 0] / 255.0;
float g = ptr[ofs * 4 + 1] / 255.0;
float b = ptr[ofs * 4 + 2] / 255.0;
float a = ptr[ofs * 4 + 3] / 255.0;
return Color(r, g, b, a);
}
case FORMAT_RGBA4444: {
uint16_t u = ((uint16_t *)ptr)[ofs];
float r = ((u >> 12) & 0xF) / 15.0;
float g = ((u >> 8) & 0xF) / 15.0;
float b = ((u >> 4) & 0xF) / 15.0;
float a = (u & 0xF) / 15.0;
return Color(r, g, b, a);
}
case FORMAT_RGB565: {
uint16_t u = ((uint16_t *)ptr)[ofs];
float r = (u & 0x1F) / 31.0;
float g = ((u >> 5) & 0x3F) / 63.0;
float b = ((u >> 11) & 0x1F) / 31.0;
return Color(r, g, b, 1.0);
}
case FORMAT_RF: {
float r = ((float *)ptr)[ofs];
return Color(r, 0, 0, 1);
}
case FORMAT_RGF: {
float r = ((float *)ptr)[ofs * 2 + 0];
float g = ((float *)ptr)[ofs * 2 + 1];
return Color(r, g, 0, 1);
}
case FORMAT_RGBF: {
float r = ((float *)ptr)[ofs * 3 + 0];
float g = ((float *)ptr)[ofs * 3 + 1];
float b = ((float *)ptr)[ofs * 3 + 2];
return Color(r, g, b, 1);
}
case FORMAT_RGBAF: {
float r = ((float *)ptr)[ofs * 4 + 0];
float g = ((float *)ptr)[ofs * 4 + 1];
float b = ((float *)ptr)[ofs * 4 + 2];
float a = ((float *)ptr)[ofs * 4 + 3];
return Color(r, g, b, a);
}
case FORMAT_RH: {
uint16_t r = ((uint16_t *)ptr)[ofs];
return Color(Math::half_to_float(r), 0, 0, 1);
}
case FORMAT_RGH: {
uint16_t r = ((uint16_t *)ptr)[ofs * 2 + 0];
uint16_t g = ((uint16_t *)ptr)[ofs * 2 + 1];
return Color(Math::half_to_float(r), Math::half_to_float(g), 0, 1);
}
case FORMAT_RGBH: {
uint16_t r = ((uint16_t *)ptr)[ofs * 3 + 0];
uint16_t g = ((uint16_t *)ptr)[ofs * 3 + 1];
uint16_t b = ((uint16_t *)ptr)[ofs * 3 + 2];
return Color(Math::half_to_float(r), Math::half_to_float(g), Math::half_to_float(b), 1);
}
case FORMAT_RGBAH: {
uint16_t r = ((uint16_t *)ptr)[ofs * 4 + 0];
uint16_t g = ((uint16_t *)ptr)[ofs * 4 + 1];
uint16_t b = ((uint16_t *)ptr)[ofs * 4 + 2];
uint16_t a = ((uint16_t *)ptr)[ofs * 4 + 3];
return Color(Math::half_to_float(r), Math::half_to_float(g), Math::half_to_float(b), Math::half_to_float(a));
}
case FORMAT_RGBE9995: {
return Color::from_rgbe9995(((uint32_t *)ptr)[ofs]);
}
default: {
ERR_FAIL_V_MSG(Color(), "Can't get_pixel() on compressed image, sorry.");
}
}
}
void Image::_set_color_at_ofs(uint8_t *ptr, uint32_t ofs, const Color &p_color) {
switch (format) {
case FORMAT_L8: {
ptr[ofs] = uint8_t(CLAMP(p_color.get_v() * 255.0, 0, 255));
} break;
case FORMAT_LA8: {
ptr[ofs * 2 + 0] = uint8_t(CLAMP(p_color.get_v() * 255.0, 0, 255));
ptr[ofs * 2 + 1] = uint8_t(CLAMP(p_color.a * 255.0, 0, 255));
} break;
case FORMAT_R8: {
ptr[ofs] = uint8_t(CLAMP(p_color.r * 255.0, 0, 255));
} break;
case FORMAT_RG8: {
ptr[ofs * 2 + 0] = uint8_t(CLAMP(p_color.r * 255.0, 0, 255));
ptr[ofs * 2 + 1] = uint8_t(CLAMP(p_color.g * 255.0, 0, 255));
} break;
case FORMAT_RGB8: {
ptr[ofs * 3 + 0] = uint8_t(CLAMP(p_color.r * 255.0, 0, 255));
ptr[ofs * 3 + 1] = uint8_t(CLAMP(p_color.g * 255.0, 0, 255));
ptr[ofs * 3 + 2] = uint8_t(CLAMP(p_color.b * 255.0, 0, 255));
} break;
case FORMAT_RGBA8: {
ptr[ofs * 4 + 0] = uint8_t(CLAMP(p_color.r * 255.0, 0, 255));
ptr[ofs * 4 + 1] = uint8_t(CLAMP(p_color.g * 255.0, 0, 255));
ptr[ofs * 4 + 2] = uint8_t(CLAMP(p_color.b * 255.0, 0, 255));
ptr[ofs * 4 + 3] = uint8_t(CLAMP(p_color.a * 255.0, 0, 255));
} break;
case FORMAT_RGBA4444: {
uint16_t rgba = 0;
rgba = uint16_t(CLAMP(p_color.r * 15.0, 0, 15)) << 12;
rgba |= uint16_t(CLAMP(p_color.g * 15.0, 0, 15)) << 8;
rgba |= uint16_t(CLAMP(p_color.b * 15.0, 0, 15)) << 4;
rgba |= uint16_t(CLAMP(p_color.a * 15.0, 0, 15));
((uint16_t *)ptr)[ofs] = rgba;
} break;
case FORMAT_RGB565: {
uint16_t rgba = 0;
rgba = uint16_t(CLAMP(p_color.r * 31.0, 0, 31));
rgba |= uint16_t(CLAMP(p_color.g * 63.0, 0, 33)) << 5;
rgba |= uint16_t(CLAMP(p_color.b * 31.0, 0, 31)) << 11;
((uint16_t *)ptr)[ofs] = rgba;
} break;
case FORMAT_RF: {
((float *)ptr)[ofs] = p_color.r;
} break;
case FORMAT_RGF: {
((float *)ptr)[ofs * 2 + 0] = p_color.r;
((float *)ptr)[ofs * 2 + 1] = p_color.g;
} break;
case FORMAT_RGBF: {
((float *)ptr)[ofs * 3 + 0] = p_color.r;
((float *)ptr)[ofs * 3 + 1] = p_color.g;
((float *)ptr)[ofs * 3 + 2] = p_color.b;
} break;
case FORMAT_RGBAF: {
((float *)ptr)[ofs * 4 + 0] = p_color.r;
((float *)ptr)[ofs * 4 + 1] = p_color.g;
((float *)ptr)[ofs * 4 + 2] = p_color.b;
((float *)ptr)[ofs * 4 + 3] = p_color.a;
} break;
case FORMAT_RH: {
((uint16_t *)ptr)[ofs] = Math::make_half_float(p_color.r);
} break;
case FORMAT_RGH: {
((uint16_t *)ptr)[ofs * 2 + 0] = Math::make_half_float(p_color.r);
((uint16_t *)ptr)[ofs * 2 + 1] = Math::make_half_float(p_color.g);
} break;
case FORMAT_RGBH: {
((uint16_t *)ptr)[ofs * 3 + 0] = Math::make_half_float(p_color.r);
((uint16_t *)ptr)[ofs * 3 + 1] = Math::make_half_float(p_color.g);
((uint16_t *)ptr)[ofs * 3 + 2] = Math::make_half_float(p_color.b);
} break;
case FORMAT_RGBAH: {
((uint16_t *)ptr)[ofs * 4 + 0] = Math::make_half_float(p_color.r);
((uint16_t *)ptr)[ofs * 4 + 1] = Math::make_half_float(p_color.g);
((uint16_t *)ptr)[ofs * 4 + 2] = Math::make_half_float(p_color.b);
((uint16_t *)ptr)[ofs * 4 + 3] = Math::make_half_float(p_color.a);
} break;
case FORMAT_RGBE9995: {
((uint32_t *)ptr)[ofs] = p_color.to_rgbe9995();
} break;
default: {
ERR_FAIL_MSG("Can't set_pixel() on compressed image, sorry.");
}
}
}
Color Image::get_pixel(int p_x, int p_y) const {
#ifdef DEBUG_ENABLED
ERR_FAIL_INDEX_V(p_x, width, Color());
ERR_FAIL_INDEX_V(p_y, height, Color());
#endif
uint32_t ofs = p_y * width + p_x;
return _get_color_at_ofs(data.ptr(), ofs);
}
void Image::set_pixelv(const Point2i &p_point, const Color &p_color) {
set_pixel(p_point.x, p_point.y, p_color);
}
void Image::set_pixel(int p_x, int p_y, const Color &p_color) {
#ifdef DEBUG_ENABLED
ERR_FAIL_INDEX(p_x, width);
ERR_FAIL_INDEX(p_y, height);
#endif
uint32_t ofs = p_y * width + p_x;
_set_color_at_ofs(data.ptrw(), ofs, p_color);
}
const uint8_t *Image::ptr() const {
return data.ptr();
}
uint8_t *Image::ptrw() {
return data.ptrw();
}
int64_t Image::get_data_size() const {
return data.size();
}
void Image::adjust_bcs(float p_brightness, float p_contrast, float p_saturation) {
ERR_FAIL_COND_MSG(!_can_modify(format), "Cannot adjust_bcs in compressed or custom image formats.");
uint8_t *w = data.ptrw();
uint32_t pixel_size = get_format_pixel_size(format);
uint32_t pixel_count = data.size() / pixel_size;
for (uint32_t i = 0; i < pixel_count; i++) {
Color c = _get_color_at_ofs(w, i);
Vector3 rgb(c.r, c.g, c.b);
rgb *= p_brightness;
rgb = Vector3(0.5, 0.5, 0.5).lerp(rgb, p_contrast);
float center = (rgb.x + rgb.y + rgb.z) / 3.0;
rgb = Vector3(center, center, center).lerp(rgb, p_saturation);
c.r = rgb.x;
c.g = rgb.y;
c.b = rgb.z;
_set_color_at_ofs(w, i, c);
}
}
Image::UsedChannels Image::detect_used_channels(CompressSource p_source) const {
ERR_FAIL_COND_V(data.is_empty(), USED_CHANNELS_RGBA);
ERR_FAIL_COND_V(is_compressed(), USED_CHANNELS_RGBA);
bool r = false, g = false, b = false, a = false, c = false;
const uint8_t *data_ptr = data.ptr();
uint32_t data_total = width * height;
for (uint32_t i = 0; i < data_total; i++) {
Color col = _get_color_at_ofs(data_ptr, i);
if (col.r > 0.001) {
r = true;
}
if (col.g > 0.001) {
g = true;
}
if (col.b > 0.001) {
b = true;
}
if (col.a < 0.999) {
a = true;
}
if (col.r != col.b || col.r != col.g || col.b != col.g) {
c = true;
}
}
UsedChannels used_channels;
if (!c && !a) {
used_channels = USED_CHANNELS_L;
} else if (!c && a) {
used_channels = USED_CHANNELS_LA;
} else if (r && !g && !b && !a) {
used_channels = USED_CHANNELS_R;
} else if (r && g && !b && !a) {
used_channels = USED_CHANNELS_RG;
} else if (r && g && b && !a) {
used_channels = USED_CHANNELS_RGB;
} else {
used_channels = USED_CHANNELS_RGBA;
}
if (p_source == COMPRESS_SOURCE_SRGB && (used_channels == USED_CHANNELS_R || used_channels == USED_CHANNELS_RG)) {
//R and RG do not support SRGB
used_channels = USED_CHANNELS_RGB;
}
if (p_source == COMPRESS_SOURCE_NORMAL) {
//use RG channels only for normal
used_channels = USED_CHANNELS_RG;
}
return used_channels;
}
void Image::optimize_channels() {
switch (detect_used_channels()) {
case USED_CHANNELS_L:
convert(FORMAT_L8);
break;
case USED_CHANNELS_LA:
convert(FORMAT_LA8);
break;
case USED_CHANNELS_R:
convert(FORMAT_R8);
break;
case USED_CHANNELS_RG:
convert(FORMAT_RG8);
break;
case USED_CHANNELS_RGB:
convert(FORMAT_RGB8);
break;
case USED_CHANNELS_RGBA:
convert(FORMAT_RGBA8);
break;
}
}
void Image::_bind_methods() {
ClassDB::bind_method(D_METHOD("get_width"), &Image::get_width);
ClassDB::bind_method(D_METHOD("get_height"), &Image::get_height);
ClassDB::bind_method(D_METHOD("get_size"), &Image::get_size);
ClassDB::bind_method(D_METHOD("has_mipmaps"), &Image::has_mipmaps);
ClassDB::bind_method(D_METHOD("get_format"), &Image::get_format);
ClassDB::bind_method(D_METHOD("get_data"), &Image::get_data);
ClassDB::bind_method(D_METHOD("get_data_size"), &Image::get_data_size);
ClassDB::bind_method(D_METHOD("convert", "format"), &Image::convert);
ClassDB::bind_method(D_METHOD("get_mipmap_count"), &Image::get_mipmap_count);
ClassDB::bind_method(D_METHOD("get_mipmap_offset", "mipmap"), &Image::get_mipmap_offset);
ClassDB::bind_method(D_METHOD("resize_to_po2", "square", "interpolation"), &Image::resize_to_po2, DEFVAL(false), DEFVAL(INTERPOLATE_BILINEAR));
ClassDB::bind_method(D_METHOD("resize", "width", "height", "interpolation"), &Image::resize, DEFVAL(INTERPOLATE_BILINEAR));
ClassDB::bind_method(D_METHOD("shrink_x2"), &Image::shrink_x2);
ClassDB::bind_method(D_METHOD("crop", "width", "height"), &Image::crop);
ClassDB::bind_method(D_METHOD("flip_x"), &Image::flip_x);
ClassDB::bind_method(D_METHOD("flip_y"), &Image::flip_y);
ClassDB::bind_method(D_METHOD("generate_mipmaps", "renormalize"), &Image::generate_mipmaps, DEFVAL(false));
ClassDB::bind_method(D_METHOD("clear_mipmaps"), &Image::clear_mipmaps);
#ifndef DISABLE_DEPRECATED
ClassDB::bind_static_method("Image", D_METHOD("create", "width", "height", "use_mipmaps", "format"), &Image::create_empty);
#endif
ClassDB::bind_static_method("Image", D_METHOD("create_empty", "width", "height", "use_mipmaps", "format"), &Image::create_empty);
ClassDB::bind_static_method("Image", D_METHOD("create_from_data", "width", "height", "use_mipmaps", "format", "data"), &Image::create_from_data);
ClassDB::bind_method(D_METHOD("set_data", "width", "height", "use_mipmaps", "format", "data"), &Image::set_data);
ClassDB::bind_method(D_METHOD("is_empty"), &Image::is_empty);
ClassDB::bind_method(D_METHOD("load", "path"), &Image::load);
ClassDB::bind_static_method("Image", D_METHOD("load_from_file", "path"), &Image::load_from_file);
ClassDB::bind_method(D_METHOD("save_png", "path"), &Image::save_png);
ClassDB::bind_method(D_METHOD("save_png_to_buffer"), &Image::save_png_to_buffer);
ClassDB::bind_method(D_METHOD("save_jpg", "path", "quality"), &Image::save_jpg, DEFVAL(0.75));
ClassDB::bind_method(D_METHOD("save_jpg_to_buffer", "quality"), &Image::save_jpg_to_buffer, DEFVAL(0.75));
ClassDB::bind_method(D_METHOD("save_exr", "path", "grayscale"), &Image::save_exr, DEFVAL(false));
ClassDB::bind_method(D_METHOD("save_exr_to_buffer", "grayscale"), &Image::save_exr_to_buffer, DEFVAL(false));
ClassDB::bind_method(D_METHOD("save_webp", "path", "lossy", "quality"), &Image::save_webp, DEFVAL(false), DEFVAL(0.75f));
ClassDB::bind_method(D_METHOD("save_webp_to_buffer", "lossy", "quality"), &Image::save_webp_to_buffer, DEFVAL(false), DEFVAL(0.75f));
ClassDB::bind_method(D_METHOD("detect_alpha"), &Image::detect_alpha);
ClassDB::bind_method(D_METHOD("is_invisible"), &Image::is_invisible);
ClassDB::bind_method(D_METHOD("detect_used_channels", "source"), &Image::detect_used_channels, DEFVAL(COMPRESS_SOURCE_GENERIC));
ClassDB::bind_method(D_METHOD("compress", "mode", "source", "astc_format"), &Image::compress, DEFVAL(COMPRESS_SOURCE_GENERIC), DEFVAL(ASTC_FORMAT_4x4));
ClassDB::bind_method(D_METHOD("compress_from_channels", "mode", "channels", "astc_format"), &Image::compress_from_channels, DEFVAL(ASTC_FORMAT_4x4));
ClassDB::bind_method(D_METHOD("decompress"), &Image::decompress);
ClassDB::bind_method(D_METHOD("is_compressed"), &Image::is_compressed);
ClassDB::bind_method(D_METHOD("rotate_90", "direction"), &Image::rotate_90);
ClassDB::bind_method(D_METHOD("rotate_180"), &Image::rotate_180);
ClassDB::bind_method(D_METHOD("fix_alpha_edges"), &Image::fix_alpha_edges);
ClassDB::bind_method(D_METHOD("premultiply_alpha"), &Image::premultiply_alpha);
ClassDB::bind_method(D_METHOD("srgb_to_linear"), &Image::srgb_to_linear);
ClassDB::bind_method(D_METHOD("linear_to_srgb"), &Image::linear_to_srgb);
ClassDB::bind_method(D_METHOD("normal_map_to_xy"), &Image::normal_map_to_xy);
ClassDB::bind_method(D_METHOD("rgbe_to_srgb"), &Image::rgbe_to_srgb);
ClassDB::bind_method(D_METHOD("bump_map_to_normal_map", "bump_scale"), &Image::bump_map_to_normal_map, DEFVAL(1.0));
ClassDB::bind_method(D_METHOD("compute_image_metrics", "compared_image", "use_luma"), &Image::compute_image_metrics);
ClassDB::bind_method(D_METHOD("blit_rect", "src", "src_rect", "dst"), &Image::blit_rect);
ClassDB::bind_method(D_METHOD("blit_rect_mask", "src", "mask", "src_rect", "dst"), &Image::blit_rect_mask);
ClassDB::bind_method(D_METHOD("blend_rect", "src", "src_rect", "dst"), &Image::blend_rect);
ClassDB::bind_method(D_METHOD("blend_rect_mask", "src", "mask", "src_rect", "dst"), &Image::blend_rect_mask);
ClassDB::bind_method(D_METHOD("fill", "color"), &Image::fill);
ClassDB::bind_method(D_METHOD("fill_rect", "rect", "color"), &Image::fill_rect);
ClassDB::bind_method(D_METHOD("get_used_rect"), &Image::get_used_rect);
ClassDB::bind_method(D_METHOD("get_region", "region"), &Image::get_region);
ClassDB::bind_method(D_METHOD("copy_from", "src"), &Image::copy_internals_from);
ClassDB::bind_method(D_METHOD("_set_data", "data"), &Image::_set_data);
ClassDB::bind_method(D_METHOD("_get_data"), &Image::_get_data);
ClassDB::bind_method(D_METHOD("get_pixelv", "point"), &Image::get_pixelv);
ClassDB::bind_method(D_METHOD("get_pixel", "x", "y"), &Image::get_pixel);
ClassDB::bind_method(D_METHOD("set_pixelv", "point", "color"), &Image::set_pixelv);
ClassDB::bind_method(D_METHOD("set_pixel", "x", "y", "color"), &Image::set_pixel);
ClassDB::bind_method(D_METHOD("adjust_bcs", "brightness", "contrast", "saturation"), &Image::adjust_bcs);
ClassDB::bind_method(D_METHOD("load_png_from_buffer", "buffer"), &Image::load_png_from_buffer);
ClassDB::bind_method(D_METHOD("load_jpg_from_buffer", "buffer"), &Image::load_jpg_from_buffer);
ClassDB::bind_method(D_METHOD("load_webp_from_buffer", "buffer"), &Image::load_webp_from_buffer);
ClassDB::bind_method(D_METHOD("load_tga_from_buffer", "buffer"), &Image::load_tga_from_buffer);
ClassDB::bind_method(D_METHOD("load_bmp_from_buffer", "buffer"), &Image::load_bmp_from_buffer);
ClassDB::bind_method(D_METHOD("load_ktx_from_buffer", "buffer"), &Image::load_ktx_from_buffer);
ClassDB::bind_method(D_METHOD("load_svg_from_buffer", "buffer", "scale"), &Image::load_svg_from_buffer, DEFVAL(1.0));
ClassDB::bind_method(D_METHOD("load_svg_from_string", "svg_str", "scale"), &Image::load_svg_from_string, DEFVAL(1.0));
ADD_PROPERTY(PropertyInfo(Variant::DICTIONARY, "data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_STORAGE), "_set_data", "_get_data");
BIND_CONSTANT(MAX_WIDTH);
BIND_CONSTANT(MAX_HEIGHT);
BIND_ENUM_CONSTANT(FORMAT_L8); //luminance
BIND_ENUM_CONSTANT(FORMAT_LA8); //luminance-alpha
BIND_ENUM_CONSTANT(FORMAT_R8);
BIND_ENUM_CONSTANT(FORMAT_RG8);
BIND_ENUM_CONSTANT(FORMAT_RGB8);
BIND_ENUM_CONSTANT(FORMAT_RGBA8);
BIND_ENUM_CONSTANT(FORMAT_RGBA4444);
BIND_ENUM_CONSTANT(FORMAT_RGB565);
BIND_ENUM_CONSTANT(FORMAT_RF); //float
BIND_ENUM_CONSTANT(FORMAT_RGF);
BIND_ENUM_CONSTANT(FORMAT_RGBF);
BIND_ENUM_CONSTANT(FORMAT_RGBAF);
BIND_ENUM_CONSTANT(FORMAT_RH); //half float
BIND_ENUM_CONSTANT(FORMAT_RGH);
BIND_ENUM_CONSTANT(FORMAT_RGBH);
BIND_ENUM_CONSTANT(FORMAT_RGBAH);
BIND_ENUM_CONSTANT(FORMAT_RGBE9995);
BIND_ENUM_CONSTANT(FORMAT_DXT1); //s3tc bc1
BIND_ENUM_CONSTANT(FORMAT_DXT3); //bc2
BIND_ENUM_CONSTANT(FORMAT_DXT5); //bc3
BIND_ENUM_CONSTANT(FORMAT_RGTC_R);
BIND_ENUM_CONSTANT(FORMAT_RGTC_RG);
BIND_ENUM_CONSTANT(FORMAT_BPTC_RGBA); //btpc bc6h
BIND_ENUM_CONSTANT(FORMAT_BPTC_RGBF); //float /
BIND_ENUM_CONSTANT(FORMAT_BPTC_RGBFU); //unsigned float
BIND_ENUM_CONSTANT(FORMAT_ETC); //etc1
BIND_ENUM_CONSTANT(FORMAT_ETC2_R11); //etc2
BIND_ENUM_CONSTANT(FORMAT_ETC2_R11S); //signed ); NOT srgb.
BIND_ENUM_CONSTANT(FORMAT_ETC2_RG11);
BIND_ENUM_CONSTANT(FORMAT_ETC2_RG11S);
BIND_ENUM_CONSTANT(FORMAT_ETC2_RGB8);
BIND_ENUM_CONSTANT(FORMAT_ETC2_RGBA8);
BIND_ENUM_CONSTANT(FORMAT_ETC2_RGB8A1);
BIND_ENUM_CONSTANT(FORMAT_ETC2_RA_AS_RG);
BIND_ENUM_CONSTANT(FORMAT_DXT5_RA_AS_RG);
BIND_ENUM_CONSTANT(FORMAT_ASTC_4x4);
BIND_ENUM_CONSTANT(FORMAT_ASTC_4x4_HDR);
BIND_ENUM_CONSTANT(FORMAT_ASTC_8x8);
BIND_ENUM_CONSTANT(FORMAT_ASTC_8x8_HDR);
BIND_ENUM_CONSTANT(FORMAT_MAX);
BIND_ENUM_CONSTANT(INTERPOLATE_NEAREST);
BIND_ENUM_CONSTANT(INTERPOLATE_BILINEAR);
BIND_ENUM_CONSTANT(INTERPOLATE_CUBIC);
BIND_ENUM_CONSTANT(INTERPOLATE_TRILINEAR);
BIND_ENUM_CONSTANT(INTERPOLATE_LANCZOS);
BIND_ENUM_CONSTANT(ALPHA_NONE);
BIND_ENUM_CONSTANT(ALPHA_BIT);
BIND_ENUM_CONSTANT(ALPHA_BLEND);
BIND_ENUM_CONSTANT(COMPRESS_S3TC);
BIND_ENUM_CONSTANT(COMPRESS_ETC);
BIND_ENUM_CONSTANT(COMPRESS_ETC2);
BIND_ENUM_CONSTANT(COMPRESS_BPTC);
BIND_ENUM_CONSTANT(COMPRESS_ASTC);
BIND_ENUM_CONSTANT(COMPRESS_MAX);
BIND_ENUM_CONSTANT(USED_CHANNELS_L);
BIND_ENUM_CONSTANT(USED_CHANNELS_LA);
BIND_ENUM_CONSTANT(USED_CHANNELS_R);
BIND_ENUM_CONSTANT(USED_CHANNELS_RG);
BIND_ENUM_CONSTANT(USED_CHANNELS_RGB);
BIND_ENUM_CONSTANT(USED_CHANNELS_RGBA);
BIND_ENUM_CONSTANT(COMPRESS_SOURCE_GENERIC);
BIND_ENUM_CONSTANT(COMPRESS_SOURCE_SRGB);
BIND_ENUM_CONSTANT(COMPRESS_SOURCE_NORMAL);
BIND_ENUM_CONSTANT(ASTC_FORMAT_4x4);
BIND_ENUM_CONSTANT(ASTC_FORMAT_8x8);
}
void Image::set_compress_bc_func(void (*p_compress_func)(Image *, UsedChannels)) {
_image_compress_bc_func = p_compress_func;
}
void Image::set_compress_bptc_func(void (*p_compress_func)(Image *, UsedChannels)) {
_image_compress_bptc_func = p_compress_func;
}
void Image::normal_map_to_xy() {
convert(Image::FORMAT_RGBA8);
{
int len = data.size() / 4;
uint8_t *data_ptr = data.ptrw();
for (int i = 0; i < len; i++) {
data_ptr[(i << 2) + 3] = data_ptr[(i << 2) + 0]; //x to w
data_ptr[(i << 2) + 0] = data_ptr[(i << 2) + 1]; //y to xz
data_ptr[(i << 2) + 2] = data_ptr[(i << 2) + 1];
}
}
convert(Image::FORMAT_LA8);
}
Ref<Image> Image::rgbe_to_srgb() {
if (data.size() == 0) {
return Ref<Image>();
}
ERR_FAIL_COND_V(format != FORMAT_RGBE9995, Ref<Image>());
Ref<Image> new_image = create_empty(width, height, false, Image::FORMAT_RGB8);
for (int row = 0; row < height; row++) {
for (int col = 0; col < width; col++) {
new_image->set_pixel(col, row, get_pixel(col, row).linear_to_srgb());
}
}
if (has_mipmaps()) {
new_image->generate_mipmaps();
}
return new_image;
}
Ref<Image> Image::get_image_from_mipmap(int p_mipmap) const {
int64_t ofs, size;
int w, h;
get_mipmap_offset_size_and_dimensions(p_mipmap, ofs, size, w, h);
Vector<uint8_t> new_data;
new_data.resize(size);
{
uint8_t *wr = new_data.ptrw();
const uint8_t *rd = data.ptr();
memcpy(wr, rd + ofs, size);
}
Ref<Image> image;
image.instantiate();
image->width = w;
image->height = h;
image->format = format;
image->data = new_data;
image->mipmaps = false;
return image;
}
void Image::bump_map_to_normal_map(float bump_scale) {
ERR_FAIL_COND(!_can_modify(format));
clear_mipmaps();
convert(Image::FORMAT_RF);
Vector<uint8_t> result_image; //rgba output
result_image.resize(width * height * 4);
{
const uint8_t *rp = data.ptr();
uint8_t *wp = result_image.ptrw();
ERR_FAIL_NULL(rp);
unsigned char *write_ptr = wp;
float *read_ptr = (float *)rp;
for (int ty = 0; ty < height; ty++) {
int py = ty + 1;
if (py >= height) {
py -= height;
}
for (int tx = 0; tx < width; tx++) {
int px = tx + 1;
if (px >= width) {
px -= width;
}
float here = read_ptr[ty * width + tx];
float to_right = read_ptr[ty * width + px];
float above = read_ptr[py * width + tx];
Vector3 up = Vector3(0, 1, (here - above) * bump_scale);
Vector3 across = Vector3(1, 0, (to_right - here) * bump_scale);
Vector3 normal = across.cross(up);
normal.normalize();
write_ptr[((ty * width + tx) << 2) + 0] = (127.5 + normal.x * 127.5);
write_ptr[((ty * width + tx) << 2) + 1] = (127.5 + normal.y * 127.5);
write_ptr[((ty * width + tx) << 2) + 2] = (127.5 + normal.z * 127.5);
write_ptr[((ty * width + tx) << 2) + 3] = 255;
}
}
}
format = FORMAT_RGBA8;
data = result_image;
}
bool Image::detect_signed(bool p_include_mips) const {
ERR_FAIL_COND_V(is_compressed(), false);
if (format >= Image::FORMAT_RH && format <= Image::FORMAT_RGBAH) {
const uint16_t *img_data = reinterpret_cast<const uint16_t *>(data.ptr());
const uint64_t img_size = p_include_mips ? (data.size() / 2) : (width * height * get_format_pixel_size(format) / 2);
for (uint64_t i = 0; i < img_size; i++) {
if ((img_data[i] & 0x8000) != 0 && (img_data[i] & 0x7fff) != 0) {
return true;
}
}
} else if (format >= Image::FORMAT_RF && format <= Image::FORMAT_RGBAF) {
const uint32_t *img_data = reinterpret_cast<const uint32_t *>(data.ptr());
const uint64_t img_size = p_include_mips ? (data.size() / 4) : (width * height * get_format_pixel_size(format) / 4);
for (uint64_t i = 0; i < img_size; i++) {
if ((img_data[i] & 0x80000000) != 0 && (img_data[i] & 0x7fffffff) != 0) {
return true;
}
}
}
return false;
}
void Image::srgb_to_linear() {
if (data.size() == 0) {
return;
}
static const uint8_t srgb2lin[256] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 22, 22, 23, 23, 24, 24, 25, 26, 26, 27, 27, 28, 29, 29, 30, 31, 31, 32, 33, 33, 34, 35, 36, 36, 37, 38, 38, 39, 40, 41, 42, 42, 43, 44, 45, 46, 47, 47, 48, 49, 50, 51, 52, 53, 54, 55, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 109, 110, 112, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 139, 140, 142, 144, 145, 147, 148, 150, 152, 153, 155, 157, 159, 160, 162, 164, 166, 167, 169, 171, 173, 175, 176, 178, 180, 182, 184, 186, 188, 190, 192, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 218, 220, 222, 224, 226, 228, 230, 232, 235, 237, 239, 241, 243, 245, 248, 250, 252, 255 };
ERR_FAIL_COND(format != FORMAT_RGB8 && format != FORMAT_RGBA8);
if (format == FORMAT_RGBA8) {
int len = data.size() / 4;
uint8_t *data_ptr = data.ptrw();
for (int i = 0; i < len; i++) {
data_ptr[(i << 2) + 0] = srgb2lin[data_ptr[(i << 2) + 0]];
data_ptr[(i << 2) + 1] = srgb2lin[data_ptr[(i << 2) + 1]];
data_ptr[(i << 2) + 2] = srgb2lin[data_ptr[(i << 2) + 2]];
}
} else if (format == FORMAT_RGB8) {
int len = data.size() / 3;
uint8_t *data_ptr = data.ptrw();
for (int i = 0; i < len; i++) {
data_ptr[(i * 3) + 0] = srgb2lin[data_ptr[(i * 3) + 0]];
data_ptr[(i * 3) + 1] = srgb2lin[data_ptr[(i * 3) + 1]];
data_ptr[(i * 3) + 2] = srgb2lin[data_ptr[(i * 3) + 2]];
}
}
}
void Image::linear_to_srgb() {
if (data.size() == 0) {
return;
}
static const uint8_t lin2srgb[256] = { 0, 12, 21, 28, 33, 38, 42, 46, 49, 52, 55, 58, 61, 63, 66, 68, 70, 73, 75, 77, 79, 81, 82, 84, 86, 88, 89, 91, 93, 94, 96, 97, 99, 100, 102, 103, 104, 106, 107, 109, 110, 111, 112, 114, 115, 116, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 151, 152, 153, 154, 155, 156, 157, 157, 158, 159, 160, 161, 161, 162, 163, 164, 165, 165, 166, 167, 168, 168, 169, 170, 171, 171, 172, 173, 174, 174, 175, 176, 176, 177, 178, 179, 179, 180, 181, 181, 182, 183, 183, 184, 185, 185, 186, 187, 187, 188, 189, 189, 190, 191, 191, 192, 193, 193, 194, 194, 195, 196, 196, 197, 197, 198, 199, 199, 200, 201, 201, 202, 202, 203, 204, 204, 205, 205, 206, 206, 207, 208, 208, 209, 209, 210, 210, 211, 212, 212, 213, 213, 214, 214, 215, 215, 216, 217, 217, 218, 218, 219, 219, 220, 220, 221, 221, 222, 222, 223, 223, 224, 224, 225, 226, 226, 227, 227, 228, 228, 229, 229, 230, 230, 231, 231, 232, 232, 233, 233, 234, 234, 235, 235, 236, 236, 237, 237, 237, 238, 238, 239, 239, 240, 240, 241, 241, 242, 242, 243, 243, 244, 244, 245, 245, 245, 246, 246, 247, 247, 248, 248, 249, 249, 250, 250, 251, 251, 251, 252, 252, 253, 253, 254, 254, 255 };
ERR_FAIL_COND(format != FORMAT_RGB8 && format != FORMAT_RGBA8);
if (format == FORMAT_RGBA8) {
int len = data.size() / 4;
uint8_t *data_ptr = data.ptrw();
for (int i = 0; i < len; i++) {
data_ptr[(i << 2) + 0] = lin2srgb[data_ptr[(i << 2) + 0]];
data_ptr[(i << 2) + 1] = lin2srgb[data_ptr[(i << 2) + 1]];
data_ptr[(i << 2) + 2] = lin2srgb[data_ptr[(i << 2) + 2]];
}
} else if (format == FORMAT_RGB8) {
int len = data.size() / 3;
uint8_t *data_ptr = data.ptrw();
for (int i = 0; i < len; i++) {
data_ptr[(i * 3) + 0] = lin2srgb[data_ptr[(i * 3) + 0]];
data_ptr[(i * 3) + 1] = lin2srgb[data_ptr[(i * 3) + 1]];
data_ptr[(i * 3) + 2] = lin2srgb[data_ptr[(i * 3) + 2]];
}
}
}
void Image::premultiply_alpha() {
if (data.size() == 0) {
return;
}
if (format != FORMAT_RGBA8) {
return; //not needed
}
uint8_t *data_ptr = data.ptrw();
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
uint8_t *ptr = &data_ptr[(i * width + j) * 4];
ptr[0] = (uint16_t(ptr[0]) * uint16_t(ptr[3]) + 255U) >> 8;
ptr[1] = (uint16_t(ptr[1]) * uint16_t(ptr[3]) + 255U) >> 8;
ptr[2] = (uint16_t(ptr[2]) * uint16_t(ptr[3]) + 255U) >> 8;
}
}
}
void Image::fix_alpha_edges() {
if (data.size() == 0) {
return;
}
if (format != FORMAT_RGBA8) {
return; //not needed
}
Vector<uint8_t> dcopy = data;
const uint8_t *srcptr = dcopy.ptr();
uint8_t *data_ptr = data.ptrw();
const int max_radius = 4;
const int alpha_threshold = 20;
const int max_dist = 0x7FFFFFFF;
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
const uint8_t *rptr = &srcptr[(i * width + j) * 4];
uint8_t *wptr = &data_ptr[(i * width + j) * 4];
if (rptr[3] >= alpha_threshold) {
continue;
}
int closest_dist = max_dist;
uint8_t closest_color[3] = { 0 };
int from_x = MAX(0, j - max_radius);
int to_x = MIN(width - 1, j + max_radius);
int from_y = MAX(0, i - max_radius);
int to_y = MIN(height - 1, i + max_radius);
for (int k = from_y; k <= to_y; k++) {
for (int l = from_x; l <= to_x; l++) {
int dy = i - k;
int dx = j - l;
int dist = dy * dy + dx * dx;
if (dist >= closest_dist) {
continue;
}
const uint8_t *rp2 = &srcptr[(k * width + l) << 2];
if (rp2[3] < alpha_threshold) {
continue;
}
closest_dist = dist;
closest_color[0] = rp2[0];
closest_color[1] = rp2[1];
closest_color[2] = rp2[2];
}
}
if (closest_dist != max_dist) {
wptr[0] = closest_color[0];
wptr[1] = closest_color[1];
wptr[2] = closest_color[2];
}
}
}
}
String Image::get_format_name(Format p_format) {
ERR_FAIL_INDEX_V(p_format, FORMAT_MAX, String());
return format_names[p_format];
}
Error Image::load_png_from_buffer(const Vector<uint8_t> &p_array) {
return _load_from_buffer(p_array, _png_mem_loader_func);
}
Error Image::load_jpg_from_buffer(const Vector<uint8_t> &p_array) {
return _load_from_buffer(p_array, _jpg_mem_loader_func);
}
Error Image::load_webp_from_buffer(const Vector<uint8_t> &p_array) {
return _load_from_buffer(p_array, _webp_mem_loader_func);
}
Error Image::load_tga_from_buffer(const Vector<uint8_t> &p_array) {
ERR_FAIL_NULL_V_MSG(
_tga_mem_loader_func,
ERR_UNAVAILABLE,
"The TGA module isn't enabled. Recompile the Godot editor or export template binary with the `module_tga_enabled=yes` SCons option.");
return _load_from_buffer(p_array, _tga_mem_loader_func);
}
Error Image::load_bmp_from_buffer(const Vector<uint8_t> &p_array) {
ERR_FAIL_NULL_V_MSG(
_bmp_mem_loader_func,
ERR_UNAVAILABLE,
"The BMP module isn't enabled. Recompile the Godot editor or export template binary with the `module_bmp_enabled=yes` SCons option.");
return _load_from_buffer(p_array, _bmp_mem_loader_func);
}
Error Image::load_svg_from_buffer(const Vector<uint8_t> &p_array, float scale) {
ERR_FAIL_NULL_V_MSG(
_svg_scalable_mem_loader_func,
ERR_UNAVAILABLE,
"The SVG module isn't enabled. Recompile the Godot editor or export template binary with the `module_svg_enabled=yes` SCons option.");
int buffer_size = p_array.size();
ERR_FAIL_COND_V(buffer_size == 0, ERR_INVALID_PARAMETER);
Ref<Image> image = _svg_scalable_mem_loader_func(p_array.ptr(), buffer_size, scale);
ERR_FAIL_COND_V(!image.is_valid(), ERR_PARSE_ERROR);
copy_internals_from(image);
return OK;
}
Error Image::load_svg_from_string(const String &p_svg_str, float scale) {
return load_svg_from_buffer(p_svg_str.to_utf8_buffer(), scale);
}
Error Image::load_ktx_from_buffer(const Vector<uint8_t> &p_array) {
ERR_FAIL_NULL_V_MSG(
_ktx_mem_loader_func,
ERR_UNAVAILABLE,
"The KTX module isn't enabled. Recompile the Godot editor or export template binary with the `module_ktx_enabled=yes` SCons option.");
return _load_from_buffer(p_array, _ktx_mem_loader_func);
}
void Image::convert_rg_to_ra_rgba8() {
ERR_FAIL_COND(format != FORMAT_RGBA8);
ERR_FAIL_COND(data.is_empty());
int s = data.size();
uint8_t *w = data.ptrw();
for (int i = 0; i < s; i += 4) {
w[i + 3] = w[i + 1];
w[i + 1] = 0;
w[i + 2] = 0;
}
}
void Image::convert_ra_rgba8_to_rg() {
ERR_FAIL_COND(format != FORMAT_RGBA8);
ERR_FAIL_COND(data.is_empty());
int s = data.size();
uint8_t *w = data.ptrw();
for (int i = 0; i < s; i += 4) {
w[i + 1] = w[i + 3];
w[i + 2] = 0;
w[i + 3] = 255;
}
}
void Image::convert_rgba8_to_bgra8() {
ERR_FAIL_COND(format != FORMAT_RGBA8);
ERR_FAIL_COND(data.is_empty());
int s = data.size();
uint8_t *w = data.ptrw();
for (int i = 0; i < s; i += 4) {
uint8_t r = w[i];
w[i] = w[i + 2]; // Swap R to B
w[i + 2] = r; // Swap B to R
}
}
Error Image::_load_from_buffer(const Vector<uint8_t> &p_array, ImageMemLoadFunc p_loader) {
int buffer_size = p_array.size();
ERR_FAIL_COND_V(buffer_size == 0, ERR_INVALID_PARAMETER);
ERR_FAIL_NULL_V(p_loader, ERR_INVALID_PARAMETER);
const uint8_t *r = p_array.ptr();
Ref<Image> image = p_loader(r, buffer_size);
ERR_FAIL_COND_V(!image.is_valid(), ERR_PARSE_ERROR);
copy_internals_from(image);
return OK;
}
void Image::average_4_uint8(uint8_t &p_out, const uint8_t &p_a, const uint8_t &p_b, const uint8_t &p_c, const uint8_t &p_d) {
p_out = static_cast<uint8_t>((p_a + p_b + p_c + p_d + 2) >> 2);
}
void Image::average_4_float(float &p_out, const float &p_a, const float &p_b, const float &p_c, const float &p_d) {
p_out = (p_a + p_b + p_c + p_d) * 0.25f;
}
void Image::average_4_half(uint16_t &p_out, const uint16_t &p_a, const uint16_t &p_b, const uint16_t &p_c, const uint16_t &p_d) {
p_out = Math::make_half_float((Math::half_to_float(p_a) + Math::half_to_float(p_b) + Math::half_to_float(p_c) + Math::half_to_float(p_d)) * 0.25f);
}
void Image::average_4_rgbe9995(uint32_t &p_out, const uint32_t &p_a, const uint32_t &p_b, const uint32_t &p_c, const uint32_t &p_d) {
p_out = ((Color::from_rgbe9995(p_a) + Color::from_rgbe9995(p_b) + Color::from_rgbe9995(p_c) + Color::from_rgbe9995(p_d)) * 0.25f).to_rgbe9995();
}
void Image::renormalize_uint8(uint8_t *p_rgb) {
Vector3 n(p_rgb[0] / 255.0, p_rgb[1] / 255.0, p_rgb[2] / 255.0);
n *= 2.0;
n -= Vector3(1, 1, 1);
n.normalize();
n += Vector3(1, 1, 1);
n *= 0.5;
n *= 255;
p_rgb[0] = CLAMP(int(n.x), 0, 255);
p_rgb[1] = CLAMP(int(n.y), 0, 255);
p_rgb[2] = CLAMP(int(n.z), 0, 255);
}
void Image::renormalize_float(float *p_rgb) {
Vector3 n(p_rgb[0], p_rgb[1], p_rgb[2]);
n.normalize();
p_rgb[0] = n.x;
p_rgb[1] = n.y;
p_rgb[2] = n.z;
}
void Image::renormalize_half(uint16_t *p_rgb) {
Vector3 n(Math::half_to_float(p_rgb[0]), Math::half_to_float(p_rgb[1]), Math::half_to_float(p_rgb[2]));
n.normalize();
p_rgb[0] = Math::make_half_float(n.x);
p_rgb[1] = Math::make_half_float(n.y);
p_rgb[2] = Math::make_half_float(n.z);
}
void Image::renormalize_rgbe9995(uint32_t *p_rgb) {
// Never used
}
Image::Image(const uint8_t *p_mem_png_jpg, int p_len) {
width = 0;
height = 0;
mipmaps = false;
format = FORMAT_L8;
if (_png_mem_loader_func) {
copy_internals_from(_png_mem_loader_func(p_mem_png_jpg, p_len));
}
if (is_empty() && _jpg_mem_loader_func) {
copy_internals_from(_jpg_mem_loader_func(p_mem_png_jpg, p_len));
}
if (is_empty() && _webp_mem_loader_func) {
copy_internals_from(_webp_mem_loader_func(p_mem_png_jpg, p_len));
}
}
Ref<Resource> Image::duplicate(bool p_subresources) const {
Ref<Image> copy;
copy.instantiate();
copy->_copy_internals_from(*this);
return copy;
}
void Image::set_as_black() {
memset(data.ptrw(), 0, data.size());
}
Dictionary Image::compute_image_metrics(const Ref<Image> p_compared_image, bool p_luma_metric) {
// https://github.com/richgel999/bc7enc_rdo/blob/master/LICENSE
//
// This is free and unencumbered software released into the public domain.
// Anyone is free to copy, modify, publish, use, compile, sell, or distribute this
// software, either in source code form or as a compiled binary, for any purpose,
// commercial or non - commercial, and by any means.
// In jurisdictions that recognize copyright laws, the author or authors of this
// software dedicate any and all copyright interest in the software to the public
// domain. We make this dedication for the benefit of the public at large and to
// the detriment of our heirs and successors. We intend this dedication to be an
// overt act of relinquishment in perpetuity of all present and future rights to
// this software under copyright law.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
// AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
// ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Dictionary result;
result["max"] = INFINITY;
result["mean"] = INFINITY;
result["mean_squared"] = INFINITY;
result["root_mean_squared"] = INFINITY;
result["peak_snr"] = 0.0f;
ERR_FAIL_COND_V(p_compared_image.is_null(), result);
Error err = OK;
Ref<Image> compared_image = duplicate(true);
if (compared_image->is_compressed()) {
err = compared_image->decompress();
}
ERR_FAIL_COND_V(err != OK, result);
Ref<Image> source_image = p_compared_image->duplicate(true);
if (source_image->is_compressed()) {
err = source_image->decompress();
}
ERR_FAIL_COND_V(err != OK, result);
ERR_FAIL_COND_V(err != OK, result);
ERR_FAIL_COND_V_MSG((compared_image->get_format() >= Image::FORMAT_RH) && (compared_image->get_format() <= Image::FORMAT_RGBE9995), result, "Metrics on HDR images are not supported.");
ERR_FAIL_COND_V_MSG((source_image->get_format() >= Image::FORMAT_RH) && (source_image->get_format() <= Image::FORMAT_RGBE9995), result, "Metrics on HDR images are not supported.");
double image_metric_max, image_metric_mean, image_metric_mean_squared, image_metric_root_mean_squared, image_metric_peak_snr = 0.0;
const bool average_component_error = true;
const uint32_t w = MIN(compared_image->get_width(), source_image->get_width());
const uint32_t h = MIN(compared_image->get_height(), source_image->get_height());
// Histogram approach originally due to Charles Bloom.
double hist[256];
memset(hist, 0, sizeof(hist));
for (uint32_t y = 0; y < h; y++) {
for (uint32_t x = 0; x < w; x++) {
const Color color_a = compared_image->get_pixel(x, y);
const Color color_b = source_image->get_pixel(x, y);
if (!p_luma_metric) {
ERR_FAIL_COND_V_MSG(color_a.r > 1.0f, Dictionary(), "Can't compare HDR colors.");
ERR_FAIL_COND_V_MSG(color_b.r > 1.0f, Dictionary(), "Can't compare HDR colors.");
hist[Math::abs(color_a.get_r8() - color_b.get_r8())]++;
ERR_FAIL_COND_V_MSG(color_a.g > 1.0f, Dictionary(), "Can't compare HDR colors.");
ERR_FAIL_COND_V_MSG(color_b.g > 1.0f, Dictionary(), "Can't compare HDR colors.");
hist[Math::abs(color_a.get_g8() - color_b.get_g8())]++;
ERR_FAIL_COND_V_MSG(color_a.b > 1.0f, Dictionary(), "Can't compare HDR colors.");
ERR_FAIL_COND_V_MSG(color_b.b > 1.0f, Dictionary(), "Can't compare HDR colors.");
hist[Math::abs(color_a.get_b8() - color_b.get_b8())]++;
ERR_FAIL_COND_V_MSG(color_a.a > 1.0f, Dictionary(), "Can't compare HDR colors.");
ERR_FAIL_COND_V_MSG(color_b.a > 1.0f, Dictionary(), "Can't compare HDR colors.");
hist[Math::abs(color_a.get_a8() - color_b.get_a8())]++;
} else {
ERR_FAIL_COND_V_MSG(color_a.r > 1.0f, Dictionary(), "Can't compare HDR colors.");
ERR_FAIL_COND_V_MSG(color_b.r > 1.0f, Dictionary(), "Can't compare HDR colors.");
// REC709 weightings
int luma_a = (13938U * color_a.get_r8() + 46869U * color_a.get_g8() + 4729U * color_a.get_b8() + 32768U) >> 16U;
int luma_b = (13938U * color_b.get_r8() + 46869U * color_b.get_g8() + 4729U * color_b.get_b8() + 32768U) >> 16U;
hist[Math::abs(luma_a - luma_b)]++;
}
}
}
image_metric_max = 0;
double sum = 0.0f, sum2 = 0.0f;
for (uint32_t i = 0; i < 256; i++) {
if (!hist[i]) {
continue;
}
image_metric_max = i;
double x = i * hist[i];
sum += x;
sum2 += i * x;
}
// See http://richg42.blogspot.com/2016/09/how-to-compute-psnr-from-old-berkeley.html
double total_values = w * h;
if (average_component_error) {
total_values *= 4;
}
image_metric_mean = CLAMP(sum / total_values, 0.0f, 255.0f);
image_metric_mean_squared = CLAMP(sum2 / total_values, 0.0f, 255.0f * 255.0f);
image_metric_root_mean_squared = sqrt(image_metric_mean_squared);
if (!image_metric_root_mean_squared) {
image_metric_peak_snr = 1e+10f;
} else {
image_metric_peak_snr = CLAMP(log10(255.0f / image_metric_root_mean_squared) * 20.0f, 0.0f, 500.0f);
}
result["max"] = image_metric_max;
result["mean"] = image_metric_mean;
result["mean_squared"] = image_metric_mean_squared;
result["root_mean_squared"] = image_metric_root_mean_squared;
result["peak_snr"] = image_metric_peak_snr;
return result;
}