godot/core/math/vector3.h
Rémi Verschelde 5ddb518496
Core: Make all Variant math types structs
Some were declared as structs (public by default) and others as classes
(private by default) but in practice all these math types exposed as
Variants are all 100% public.
2022-02-04 16:48:24 +01:00

504 lines
14 KiB
C++

/*************************************************************************/
/* vector3.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef VECTOR3_H
#define VECTOR3_H
#include "core/math/math_funcs.h"
#include "core/math/vector2.h"
#include "core/math/vector3i.h"
#include "core/string/ustring.h"
struct Basis;
struct _NO_DISCARD_ Vector3 {
static const int AXIS_COUNT = 3;
enum Axis {
AXIS_X,
AXIS_Y,
AXIS_Z,
};
union {
struct {
real_t x;
real_t y;
real_t z;
};
real_t coord[3] = { 0 };
};
_FORCE_INLINE_ const real_t &operator[](const int p_axis) const {
return coord[p_axis];
}
_FORCE_INLINE_ real_t &operator[](const int p_axis) {
return coord[p_axis];
}
void set_axis(const int p_axis, const real_t p_value);
real_t get_axis(const int p_axis) const;
_FORCE_INLINE_ void set_all(const real_t p_value) {
x = y = z = p_value;
}
_FORCE_INLINE_ Vector3::Axis min_axis_index() const {
return x < y ? (x < z ? Vector3::AXIS_X : Vector3::AXIS_Z) : (y < z ? Vector3::AXIS_Y : Vector3::AXIS_Z);
}
_FORCE_INLINE_ Vector3::Axis max_axis_index() const {
return x < y ? (y < z ? Vector3::AXIS_Z : Vector3::AXIS_Y) : (x < z ? Vector3::AXIS_Z : Vector3::AXIS_X);
}
_FORCE_INLINE_ real_t length() const;
_FORCE_INLINE_ real_t length_squared() const;
_FORCE_INLINE_ void normalize();
_FORCE_INLINE_ Vector3 normalized() const;
_FORCE_INLINE_ bool is_normalized() const;
_FORCE_INLINE_ Vector3 inverse() const;
Vector3 limit_length(const real_t p_len = 1.0) const;
_FORCE_INLINE_ void zero();
void snap(const Vector3 p_val);
Vector3 snapped(const Vector3 p_val) const;
void rotate(const Vector3 &p_axis, const real_t p_phi);
Vector3 rotated(const Vector3 &p_axis, const real_t p_phi) const;
/* Static Methods between 2 vector3s */
_FORCE_INLINE_ Vector3 lerp(const Vector3 &p_to, const real_t p_weight) const;
_FORCE_INLINE_ Vector3 slerp(const Vector3 &p_to, const real_t p_weight) const;
Vector3 cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, const real_t p_weight) const;
Vector3 move_toward(const Vector3 &p_to, const real_t p_delta) const;
_FORCE_INLINE_ Vector2 octahedron_encode() const {
Vector3 n = *this;
n /= Math::abs(n.x) + Math::abs(n.y) + Math::abs(n.z);
Vector2 o;
if (n.z >= 0.0) {
o.x = n.x;
o.y = n.y;
} else {
o.x = (1.0 - Math::abs(n.y)) * (n.x >= 0.0 ? 1.0 : -1.0);
o.y = (1.0 - Math::abs(n.x)) * (n.y >= 0.0 ? 1.0 : -1.0);
}
o.x = o.x * 0.5 + 0.5;
o.y = o.y * 0.5 + 0.5;
return o;
}
static _FORCE_INLINE_ Vector3 octahedron_decode(const Vector2 &p_oct) {
Vector2 f(p_oct.x * 2.0 - 1.0, p_oct.y * 2.0 - 1.0);
Vector3 n(f.x, f.y, 1.0f - Math::abs(f.x) - Math::abs(f.y));
float t = CLAMP(-n.z, 0.0, 1.0);
n.x += n.x >= 0 ? -t : t;
n.y += n.y >= 0 ? -t : t;
return n.normalized();
}
_FORCE_INLINE_ Vector3 cross(const Vector3 &p_with) const;
_FORCE_INLINE_ real_t dot(const Vector3 &p_with) const;
Basis outer(const Vector3 &p_with) const;
_FORCE_INLINE_ Vector3 abs() const;
_FORCE_INLINE_ Vector3 floor() const;
_FORCE_INLINE_ Vector3 sign() const;
_FORCE_INLINE_ Vector3 ceil() const;
_FORCE_INLINE_ Vector3 round() const;
Vector3 clamp(const Vector3 &p_min, const Vector3 &p_max) const;
_FORCE_INLINE_ real_t distance_to(const Vector3 &p_to) const;
_FORCE_INLINE_ real_t distance_squared_to(const Vector3 &p_to) const;
_FORCE_INLINE_ Vector3 posmod(const real_t p_mod) const;
_FORCE_INLINE_ Vector3 posmodv(const Vector3 &p_modv) const;
_FORCE_INLINE_ Vector3 project(const Vector3 &p_to) const;
_FORCE_INLINE_ real_t angle_to(const Vector3 &p_to) const;
_FORCE_INLINE_ real_t signed_angle_to(const Vector3 &p_to, const Vector3 &p_axis) const;
_FORCE_INLINE_ Vector3 direction_to(const Vector3 &p_to) const;
_FORCE_INLINE_ Vector3 slide(const Vector3 &p_normal) const;
_FORCE_INLINE_ Vector3 bounce(const Vector3 &p_normal) const;
_FORCE_INLINE_ Vector3 reflect(const Vector3 &p_normal) const;
bool is_equal_approx(const Vector3 &p_v) const;
/* Operators */
_FORCE_INLINE_ Vector3 &operator+=(const Vector3 &p_v);
_FORCE_INLINE_ Vector3 operator+(const Vector3 &p_v) const;
_FORCE_INLINE_ Vector3 &operator-=(const Vector3 &p_v);
_FORCE_INLINE_ Vector3 operator-(const Vector3 &p_v) const;
_FORCE_INLINE_ Vector3 &operator*=(const Vector3 &p_v);
_FORCE_INLINE_ Vector3 operator*(const Vector3 &p_v) const;
_FORCE_INLINE_ Vector3 &operator/=(const Vector3 &p_v);
_FORCE_INLINE_ Vector3 operator/(const Vector3 &p_v) const;
_FORCE_INLINE_ Vector3 &operator*=(const real_t p_scalar);
_FORCE_INLINE_ Vector3 operator*(const real_t p_scalar) const;
_FORCE_INLINE_ Vector3 &operator/=(const real_t p_scalar);
_FORCE_INLINE_ Vector3 operator/(const real_t p_scalar) const;
_FORCE_INLINE_ Vector3 operator-() const;
_FORCE_INLINE_ bool operator==(const Vector3 &p_v) const;
_FORCE_INLINE_ bool operator!=(const Vector3 &p_v) const;
_FORCE_INLINE_ bool operator<(const Vector3 &p_v) const;
_FORCE_INLINE_ bool operator<=(const Vector3 &p_v) const;
_FORCE_INLINE_ bool operator>(const Vector3 &p_v) const;
_FORCE_INLINE_ bool operator>=(const Vector3 &p_v) const;
operator String() const;
_FORCE_INLINE_ operator Vector3i() const {
return Vector3i(x, y, z);
}
_FORCE_INLINE_ Vector3() {}
_FORCE_INLINE_ Vector3(const Vector3i &p_ivec) {
x = p_ivec.x;
y = p_ivec.y;
z = p_ivec.z;
}
_FORCE_INLINE_ Vector3(const real_t p_x, const real_t p_y, const real_t p_z) {
x = p_x;
y = p_y;
z = p_z;
}
};
Vector3 Vector3::cross(const Vector3 &p_with) const {
Vector3 ret(
(y * p_with.z) - (z * p_with.y),
(z * p_with.x) - (x * p_with.z),
(x * p_with.y) - (y * p_with.x));
return ret;
}
real_t Vector3::dot(const Vector3 &p_with) const {
return x * p_with.x + y * p_with.y + z * p_with.z;
}
Vector3 Vector3::abs() const {
return Vector3(Math::abs(x), Math::abs(y), Math::abs(z));
}
Vector3 Vector3::sign() const {
return Vector3(SIGN(x), SIGN(y), SIGN(z));
}
Vector3 Vector3::floor() const {
return Vector3(Math::floor(x), Math::floor(y), Math::floor(z));
}
Vector3 Vector3::ceil() const {
return Vector3(Math::ceil(x), Math::ceil(y), Math::ceil(z));
}
Vector3 Vector3::round() const {
return Vector3(Math::round(x), Math::round(y), Math::round(z));
}
Vector3 Vector3::lerp(const Vector3 &p_to, const real_t p_weight) const {
return Vector3(
x + (p_weight * (p_to.x - x)),
y + (p_weight * (p_to.y - y)),
z + (p_weight * (p_to.z - z)));
}
Vector3 Vector3::slerp(const Vector3 &p_to, const real_t p_weight) const {
real_t start_length_sq = length_squared();
real_t end_length_sq = p_to.length_squared();
if (unlikely(start_length_sq == 0.0 || end_length_sq == 0.0)) {
// Zero length vectors have no angle, so the best we can do is either lerp or throw an error.
return lerp(p_to, p_weight);
}
real_t start_length = Math::sqrt(start_length_sq);
real_t result_length = Math::lerp(start_length, Math::sqrt(end_length_sq), p_weight);
real_t angle = angle_to(p_to);
return rotated(cross(p_to).normalized(), angle * p_weight) * (result_length / start_length);
}
real_t Vector3::distance_to(const Vector3 &p_to) const {
return (p_to - *this).length();
}
real_t Vector3::distance_squared_to(const Vector3 &p_to) const {
return (p_to - *this).length_squared();
}
Vector3 Vector3::posmod(const real_t p_mod) const {
return Vector3(Math::fposmod(x, p_mod), Math::fposmod(y, p_mod), Math::fposmod(z, p_mod));
}
Vector3 Vector3::posmodv(const Vector3 &p_modv) const {
return Vector3(Math::fposmod(x, p_modv.x), Math::fposmod(y, p_modv.y), Math::fposmod(z, p_modv.z));
}
Vector3 Vector3::project(const Vector3 &p_to) const {
return p_to * (dot(p_to) / p_to.length_squared());
}
real_t Vector3::angle_to(const Vector3 &p_to) const {
return Math::atan2(cross(p_to).length(), dot(p_to));
}
real_t Vector3::signed_angle_to(const Vector3 &p_to, const Vector3 &p_axis) const {
Vector3 cross_to = cross(p_to);
real_t unsigned_angle = Math::atan2(cross_to.length(), dot(p_to));
real_t sign = cross_to.dot(p_axis);
return (sign < 0) ? -unsigned_angle : unsigned_angle;
}
Vector3 Vector3::direction_to(const Vector3 &p_to) const {
Vector3 ret(p_to.x - x, p_to.y - y, p_to.z - z);
ret.normalize();
return ret;
}
/* Operators */
Vector3 &Vector3::operator+=(const Vector3 &p_v) {
x += p_v.x;
y += p_v.y;
z += p_v.z;
return *this;
}
Vector3 Vector3::operator+(const Vector3 &p_v) const {
return Vector3(x + p_v.x, y + p_v.y, z + p_v.z);
}
Vector3 &Vector3::operator-=(const Vector3 &p_v) {
x -= p_v.x;
y -= p_v.y;
z -= p_v.z;
return *this;
}
Vector3 Vector3::operator-(const Vector3 &p_v) const {
return Vector3(x - p_v.x, y - p_v.y, z - p_v.z);
}
Vector3 &Vector3::operator*=(const Vector3 &p_v) {
x *= p_v.x;
y *= p_v.y;
z *= p_v.z;
return *this;
}
Vector3 Vector3::operator*(const Vector3 &p_v) const {
return Vector3(x * p_v.x, y * p_v.y, z * p_v.z);
}
Vector3 &Vector3::operator/=(const Vector3 &p_v) {
x /= p_v.x;
y /= p_v.y;
z /= p_v.z;
return *this;
}
Vector3 Vector3::operator/(const Vector3 &p_v) const {
return Vector3(x / p_v.x, y / p_v.y, z / p_v.z);
}
Vector3 &Vector3::operator*=(const real_t p_scalar) {
x *= p_scalar;
y *= p_scalar;
z *= p_scalar;
return *this;
}
_FORCE_INLINE_ Vector3 operator*(const float p_scalar, const Vector3 &p_vec) {
return p_vec * p_scalar;
}
_FORCE_INLINE_ Vector3 operator*(const double p_scalar, const Vector3 &p_vec) {
return p_vec * p_scalar;
}
_FORCE_INLINE_ Vector3 operator*(const int32_t p_scalar, const Vector3 &p_vec) {
return p_vec * p_scalar;
}
_FORCE_INLINE_ Vector3 operator*(const int64_t p_scalar, const Vector3 &p_vec) {
return p_vec * p_scalar;
}
Vector3 Vector3::operator*(const real_t p_scalar) const {
return Vector3(x * p_scalar, y * p_scalar, z * p_scalar);
}
Vector3 &Vector3::operator/=(const real_t p_scalar) {
x /= p_scalar;
y /= p_scalar;
z /= p_scalar;
return *this;
}
Vector3 Vector3::operator/(const real_t p_scalar) const {
return Vector3(x / p_scalar, y / p_scalar, z / p_scalar);
}
Vector3 Vector3::operator-() const {
return Vector3(-x, -y, -z);
}
bool Vector3::operator==(const Vector3 &p_v) const {
return x == p_v.x && y == p_v.y && z == p_v.z;
}
bool Vector3::operator!=(const Vector3 &p_v) const {
return x != p_v.x || y != p_v.y || z != p_v.z;
}
bool Vector3::operator<(const Vector3 &p_v) const {
if (x == p_v.x) {
if (y == p_v.y) {
return z < p_v.z;
}
return y < p_v.y;
}
return x < p_v.x;
}
bool Vector3::operator>(const Vector3 &p_v) const {
if (x == p_v.x) {
if (y == p_v.y) {
return z > p_v.z;
}
return y > p_v.y;
}
return x > p_v.x;
}
bool Vector3::operator<=(const Vector3 &p_v) const {
if (x == p_v.x) {
if (y == p_v.y) {
return z <= p_v.z;
}
return y < p_v.y;
}
return x < p_v.x;
}
bool Vector3::operator>=(const Vector3 &p_v) const {
if (x == p_v.x) {
if (y == p_v.y) {
return z >= p_v.z;
}
return y > p_v.y;
}
return x > p_v.x;
}
_FORCE_INLINE_ Vector3 vec3_cross(const Vector3 &p_a, const Vector3 &p_b) {
return p_a.cross(p_b);
}
_FORCE_INLINE_ real_t vec3_dot(const Vector3 &p_a, const Vector3 &p_b) {
return p_a.dot(p_b);
}
real_t Vector3::length() const {
real_t x2 = x * x;
real_t y2 = y * y;
real_t z2 = z * z;
return Math::sqrt(x2 + y2 + z2);
}
real_t Vector3::length_squared() const {
real_t x2 = x * x;
real_t y2 = y * y;
real_t z2 = z * z;
return x2 + y2 + z2;
}
void Vector3::normalize() {
real_t lengthsq = length_squared();
if (lengthsq == 0) {
x = y = z = 0;
} else {
real_t length = Math::sqrt(lengthsq);
x /= length;
y /= length;
z /= length;
}
}
Vector3 Vector3::normalized() const {
Vector3 v = *this;
v.normalize();
return v;
}
bool Vector3::is_normalized() const {
// use length_squared() instead of length() to avoid sqrt(), makes it more stringent.
return Math::is_equal_approx(length_squared(), 1, (real_t)UNIT_EPSILON);
}
Vector3 Vector3::inverse() const {
return Vector3(1.0 / x, 1.0 / y, 1.0 / z);
}
void Vector3::zero() {
x = y = z = 0;
}
// slide returns the component of the vector along the given plane, specified by its normal vector.
Vector3 Vector3::slide(const Vector3 &p_normal) const {
#ifdef MATH_CHECKS
ERR_FAIL_COND_V_MSG(!p_normal.is_normalized(), Vector3(), "The normal Vector3 must be normalized.");
#endif
return *this - p_normal * this->dot(p_normal);
}
Vector3 Vector3::bounce(const Vector3 &p_normal) const {
return -reflect(p_normal);
}
Vector3 Vector3::reflect(const Vector3 &p_normal) const {
#ifdef MATH_CHECKS
ERR_FAIL_COND_V_MSG(!p_normal.is_normalized(), Vector3(), "The normal Vector3 must be normalized.");
#endif
return 2.0 * p_normal * this->dot(p_normal) - *this;
}
#endif // VECTOR3_H