godot/editor/import/editor_import_collada.cpp

2509 lines
68 KiB
C++

/*************************************************************************/
/* editor_import_collada.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "editor_import_collada.h"
#include "scene/3d/spatial.h"
#include "scene/3d/skeleton.h"
#include "scene/3d/path.h"
#include "scene/3d/camera.h"
#include "scene/3d/light.h"
#include "scene/animation/animation_player.h"
#include "scene/3d/mesh_instance.h"
#include "scene/resources/animation.h"
#include "scene/resources/packed_scene.h"
#include "os/os.h"
#include "editor/collada/collada.h"
#include "editor/editor_node.h"
#include <iostream>
struct ColladaImport {
Collada collada;
Spatial *scene;
Vector<Ref<Animation> > animations;
struct NodeMap {
//String path;
Spatial *node;
int bone;
List<int> anim_tracks;
NodeMap() { node=NULL; bone=-1; }
};
bool found_ambient;
Color ambient;
bool found_directional;
bool force_make_tangents;
bool apply_mesh_xform_to_vertices;
bool use_mesh_builtin_materials;
float bake_fps;
Map<String,NodeMap> node_map; //map from collada node to engine node
Map<String,String> node_name_map; //map from collada node to engine node
Map<String, Ref<Mesh> > mesh_cache;
Map<String, Ref<Curve3D> > curve_cache;
Map<String, Ref<Material> > material_cache;
Map<Collada::Node*,Skeleton*> skeleton_map;
Map< Skeleton*, Map< String, int> > skeleton_bone_map;
Set<String> valid_animated_nodes;
Vector<int> valid_animated_properties;
Map<String,bool> bones_with_animation;
Error _populate_skeleton(Skeleton *p_skeleton,Collada::Node *p_node, int &r_bone, int p_parent);
Error _create_scene_skeletons(Collada::Node *p_node);
Error _create_scene(Collada::Node *p_node, Spatial *p_parent);
Error _create_resources(Collada::Node *p_node);
Error _create_material(const String& p_material);
Error _create_mesh_surfaces(bool p_optimize, Ref<Mesh>& p_mesh, const Map<String,Collada::NodeGeometry::Material>& p_material_map, const Collada::MeshData &meshdata, const Transform& p_local_xform, const Vector<int> &bone_remap, const Collada::SkinControllerData *p_skin_data, const Collada::MorphControllerData *p_morph_data, Vector<Ref<Mesh> > p_morph_meshes=Vector<Ref<Mesh> >(), bool p_for_morph=false, bool p_use_mesh_material=false);
Error load(const String& p_path, int p_flags, bool p_force_make_tangents=false);
void _fix_param_animation_tracks();
void create_animation(int p_clip,bool p_make_tracks_in_all_bones, bool p_import_value_tracks);
void create_animations(bool p_make_tracks_in_all_bones, bool p_import_value_tracks);
Set<String> tracks_in_clips;
Vector<String> missing_textures;
void _pre_process_lights(Collada::Node *p_node);
ColladaImport() {
found_ambient=false;
found_directional=false;
force_make_tangents=false;
apply_mesh_xform_to_vertices=true;
bake_fps=15;
}
};
Error ColladaImport::_populate_skeleton(Skeleton *p_skeleton,Collada::Node *p_node, int &r_bone, int p_parent) {
if (p_node->type!=Collada::Node::TYPE_JOINT)
return OK;
Collada::NodeJoint *joint = static_cast<Collada::NodeJoint*>(p_node);
print_line("populating joint "+joint->name);
p_skeleton->add_bone(p_node->name);
if (p_parent>=0)
p_skeleton->set_bone_parent(r_bone,p_parent);
NodeMap nm;
nm.node=p_skeleton;
nm.bone = r_bone;
node_map[p_node->id]=nm;
node_name_map[p_node->name]=p_node->id;
skeleton_bone_map[p_skeleton][joint->sid]=r_bone;
if (collada.state.bone_rest_map.has(joint->sid)) {
p_skeleton->set_bone_rest(r_bone,collada.fix_transform(collada.state.bone_rest_map[joint->sid]));
//should map this bone to something for animation?
} else {
print_line("no rest: "+joint->sid);
WARN_PRINT("Joint has no rest..");
}
int id = r_bone++;
for(int i=0;i<p_node->children.size();i++) {
Error err = _populate_skeleton(p_skeleton,p_node->children[i],r_bone,id);
if (err)
return err;
}
return OK;
}
void ColladaImport::_pre_process_lights(Collada::Node *p_node) {
if (p_node->type==Collada::Node::TYPE_LIGHT) {
Collada::NodeLight *light=static_cast<Collada::NodeLight*>(p_node);
if (collada.state.light_data_map.has(light->light)) {
Collada::LightData &ld = collada.state.light_data_map[light->light];
if (ld.mode==Collada::LightData::MODE_AMBIENT) {
found_ambient=true;
ambient=ld.color;
}
if (ld.mode==Collada::LightData::MODE_DIRECTIONAL) {
found_directional=true;
}
}
}
for(int i=0;i<p_node->children.size();i++)
_pre_process_lights(p_node->children[i]);
}
Error ColladaImport::_create_scene_skeletons(Collada::Node *p_node) {
if (p_node->type==Collada::Node::TYPE_SKELETON) {
Skeleton *sk = memnew( Skeleton );
int bone = 0;
for(int i=0;i<p_node->children.size();i++) {
_populate_skeleton(sk,p_node->children[i],bone,-1);
}
sk->localize_rests(); //after creating skeleton, rests must be localized...!
skeleton_map[p_node]=sk;
}
for(int i=0;i<p_node->children.size();i++) {
Error err = _create_scene_skeletons(p_node->children[i]);
if (err)
return err;
}
return OK;
}
Error ColladaImport::_create_scene(Collada::Node *p_node, Spatial *p_parent) {
Spatial * node=NULL;
switch(p_node->type) {
case Collada::Node::TYPE_NODE: {
node = memnew( Spatial );
} break;
case Collada::Node::TYPE_JOINT: {
return OK; // do nothing
} break;
case Collada::Node::TYPE_LIGHT: {
//node = memnew( Light)
Collada::NodeLight *light = static_cast<Collada::NodeLight*>(p_node);
if (collada.state.light_data_map.has(light->light)) {
Collada::LightData &ld = collada.state.light_data_map[light->light];
if (ld.mode==Collada::LightData::MODE_AMBIENT) {
if (found_directional)
return OK; //do nothing not needed
if (!bool(GLOBAL_DEF("collada/use_ambient",false)))
return OK;
//well, it's an ambient light..
Light *l = memnew( DirectionalLight );
//l->set_color(Light::COLOR_AMBIENT,ld.color);
//l->set_color(Light::COLOR_DIFFUSE,Color(0,0,0));
//l->set_color(Light::COLOR_SPECULAR,Color(0,0,0));
node = l;
} else if (ld.mode==Collada::LightData::MODE_DIRECTIONAL) {
//well, it's an ambient light..
Light *l = memnew( DirectionalLight );
/*
if (found_ambient) //use it here
l->set_color(Light::COLOR_AMBIENT,ambient);
l->set_color(Light::COLOR_DIFFUSE,ld.color);
l->set_color(Light::COLOR_SPECULAR,Color(1,1,1));
*/
node = l;
} else {
Light *l;
if (ld.mode==Collada::LightData::MODE_OMNI)
l=memnew( OmniLight );
else {
l=memnew( SpotLight );
//l->set_parameter(Light::PARAM_SPOT_ANGLE,ld.spot_angle);
//l->set_parameter(Light::PARAM_SPOT_ATTENUATION,ld.spot_exp);
}
//
//l->set_color(Light::COLOR_DIFFUSE,ld.color);
//l->set_color(Light::COLOR_SPECULAR,Color(1,1,1));
//l->approximate_opengl_attenuation(ld.constant_att,ld.linear_att,ld.quad_att);
node=l;
}
} else {
node = memnew( Spatial );
}
} break;
case Collada::Node::TYPE_CAMERA: {
Collada::NodeCamera *cam = static_cast<Collada::NodeCamera*>(p_node);
Camera *camera = memnew( Camera );
if (collada.state.camera_data_map.has(cam->camera)) {
const Collada::CameraData &cd = collada.state.camera_data_map[cam->camera];
switch(cd.mode) {
case Collada::CameraData::MODE_ORTHOGONAL: {
if (cd.orthogonal.y_mag) {
camera->set_keep_aspect_mode(Camera::KEEP_HEIGHT);
camera->set_orthogonal(cd.orthogonal.y_mag*2.0 ,cd.z_near,cd.z_far);
} else if (!cd.orthogonal.y_mag && cd.orthogonal.x_mag) {
camera->set_keep_aspect_mode(Camera::KEEP_WIDTH);
camera->set_orthogonal(cd.orthogonal.x_mag*2.0,cd.z_near,cd.z_far);
}
} break;
case Collada::CameraData::MODE_PERSPECTIVE: {
if (cd.perspective.y_fov) {
camera->set_perspective(cd.perspective.y_fov,cd.z_near,cd.z_far);
} else if (!cd.perspective.y_fov && cd.perspective.x_fov) {
camera->set_perspective(cd.perspective.x_fov / cd.aspect,cd.z_near,cd.z_far);
}
} break;
}
}
node=camera;
} break;
case Collada::Node::TYPE_GEOMETRY: {
Collada::NodeGeometry *ng = static_cast<Collada::NodeGeometry*>(p_node);
if (collada.state.curve_data_map.has(ng->source)) {
node = memnew( Path );
} else {
//mesh since nothing else
node = memnew( MeshInstance );
node->cast_to<MeshInstance>()->set_flag(GeometryInstance::FLAG_USE_BAKED_LIGHT,true);
}
} break;
case Collada::Node::TYPE_SKELETON: {
ERR_FAIL_COND_V(!skeleton_map.has(p_node),ERR_CANT_CREATE);
Skeleton *sk = skeleton_map[p_node];
node=sk;
} break;
}
if (p_node->name!="")
node->set_name(p_node->name);
NodeMap nm;
nm.node=node;
node_map[p_node->id]=nm;
node_name_map[p_node->name]=p_node->id;
Transform xf = p_node->default_transform;
xf = collada.fix_transform( xf ) * p_node->post_transform;
node->set_transform(xf);
p_parent->add_child(node);
node->set_owner(scene);
if (p_node->empty_draw_type!="") {
node->set_meta("empty_draw_type", Variant(p_node->empty_draw_type));
}
for(int i=0;i<p_node->children.size();i++) {
Error err = _create_scene(p_node->children[i],node);
if (err)
return err;
}
return OK;
}
Error ColladaImport::_create_material(const String& p_target) {
ERR_FAIL_COND_V(material_cache.has(p_target),ERR_ALREADY_EXISTS);
ERR_FAIL_COND_V(!collada.state.material_map.has(p_target),ERR_INVALID_PARAMETER);
Collada::Material &src_mat=collada.state.material_map[p_target];
ERR_FAIL_COND_V(!collada.state.effect_map.has(src_mat.instance_effect),ERR_INVALID_PARAMETER);
Collada::Effect &effect=collada.state.effect_map[src_mat.instance_effect];
Ref<FixedSpatialMaterial> material= memnew( FixedSpatialMaterial );
if (src_mat.name!="")
material->set_name(src_mat.name);
else if (effect.name!="")
material->set_name(effect.name);
// DIFFUSE
if (effect.diffuse.texture!="") {
String texfile = effect.get_texture_path(effect.diffuse.texture,collada);
if (texfile!="") {
Ref<Texture> texture = ResourceLoader::load(texfile,"Texture");
if (texture.is_valid()) {
material->set_texture(FixedSpatialMaterial::TEXTURE_ALBEDO,texture);
material->set_albedo(Color(1,1,1,1));
//material->set_parameter(FixedSpatialMaterial::PARAM_DIFFUSE,Color(1,1,1,1));
} else {
missing_textures.push_back(texfile.get_file());
}
}
} else {
//material->set_parameter(FixedSpatialMaterial::PARAM_DIFFUSE,effect.diffuse.color);
}
// SPECULAR
if (effect.specular.texture!="") {
String texfile = effect.get_texture_path(effect.specular.texture,collada);
if (texfile!="") {
Ref<Texture> texture = ResourceLoader::load(texfile,"Texture");
if (texture.is_valid()) {
material->set_texture(FixedSpatialMaterial::TEXTURE_SPECULAR,texture);
material->set_specular(Color(1,1,1,1));
//material->set_texture(FixedSpatialMaterial::PARAM_SPECULAR,texture);
//material->set_parameter(FixedSpatialMaterial::PARAM_SPECULAR,Color(1,1,1,1));
} else {
missing_textures.push_back(texfile.get_file());
}
}
} else {
material->set_metalness(effect.specular.color.get_v());
}
// EMISSION
if (effect.emission.texture!="") {
String texfile = effect.get_texture_path(effect.emission.texture,collada);
if (texfile!="") {
Ref<Texture> texture = ResourceLoader::load(texfile,"Texture");
if (texture.is_valid()) {
material->set_feature(FixedSpatialMaterial::FEATURE_EMISSION,true);
material->set_texture(FixedSpatialMaterial::TEXTURE_EMISSION,texture);
material->set_emission(Color(1,1,1,1));
//material->set_parameter(FixedSpatialMaterial::PARAM_EMISSION,Color(1,1,1,1));
}else {
missing_textures.push_back(texfile.get_file());
}
}
} else {
if (effect.emission.color!=Color()) {
material->set_feature(FixedSpatialMaterial::FEATURE_EMISSION,true);
material->set_emission(effect.emission.color);
}
}
// NORMAL
if (effect.bump.texture!="") {
String texfile = effect.get_texture_path(effect.bump.texture,collada);
if (texfile!="") {
Ref<Texture> texture = ResourceLoader::load(texfile,"Texture");
if (texture.is_valid()) {
material->set_feature(FixedSpatialMaterial::FEATURE_NORMAL_MAPPING,true);
material->set_texture(FixedSpatialMaterial::TEXTURE_NORMAL,texture);
//material->set_emission(Color(1,1,1,1));
//material->set_texture(FixedSpatialMaterial::PARAM_NORMAL,texture);
}else {
//missing_textures.push_back(texfile.get_file());
}
}
}
float roughness = Math::sqrt(1.0-((Math::log(effect.shininess)/Math::log(2.0))/8.0)); //not very right..
material->set_roughness(roughness);
if (effect.double_sided) {
material->set_cull_mode(FixedSpatialMaterial::CULL_DISABLED);
}
material->set_flag(FixedSpatialMaterial::FLAG_UNSHADED,effect.unshaded);
material_cache[p_target]=material;
return OK;
}
static void _generate_normals(const PoolVector<int>& p_indices,const PoolVector<Vector3>& p_vertices,PoolVector<Vector3>&r_normals) {
r_normals.resize(p_vertices.size());
PoolVector<Vector3>::Write narrayw = r_normals.write();
int iacount=p_indices.size()/3;
PoolVector<int>::Read index_arrayr = p_indices.read();
PoolVector<Vector3>::Read vertex_arrayr = p_vertices.read();
for(int idx=0;idx<iacount;idx++) {
Vector3 v[3]={
vertex_arrayr[index_arrayr[idx*3+0]],
vertex_arrayr[index_arrayr[idx*3+1]],
vertex_arrayr[index_arrayr[idx*3+2]]
};
Vector3 normal = Plane(v[0],v[1],v[2]).normal;
narrayw[index_arrayr[idx*3+0]]+=normal;
narrayw[index_arrayr[idx*3+1]]+=normal;
narrayw[index_arrayr[idx*3+2]]+=normal;
}
int vlen=p_vertices.size();
for(int idx=0;idx<vlen;idx++) {
narrayw[idx].normalize();
}
}
static void _generate_tangents_and_binormals(const PoolVector<int>& p_indices,const PoolVector<Vector3>& p_vertices,const PoolVector<Vector3>& p_uvs,const PoolVector<Vector3>& p_normals,PoolVector<real_t>&r_tangents) {
int vlen=p_vertices.size();
Vector<Vector3> tangents;
tangents.resize(vlen);
Vector<Vector3> binormals;
binormals.resize(vlen);
int iacount=p_indices.size()/3;
PoolVector<int>::Read index_arrayr = p_indices.read();
PoolVector<Vector3>::Read vertex_arrayr = p_vertices.read();
PoolVector<Vector3>::Read narrayr = p_normals.read();
PoolVector<Vector3>::Read uvarrayr = p_uvs.read();
for(int idx=0;idx<iacount;idx++) {
Vector3 v1 = vertex_arrayr[ index_arrayr[idx*3+0] ];
Vector3 v2 = vertex_arrayr[ index_arrayr[idx*3+1] ];
Vector3 v3 = vertex_arrayr[ index_arrayr[idx*3+2] ];
Vector3 w1 = uvarrayr[ index_arrayr[idx*3+0] ];
Vector3 w2 = uvarrayr[ index_arrayr[idx*3+1] ];
Vector3 w3 = uvarrayr[ index_arrayr[idx*3+2] ];
real_t x1 = v2.x - v1.x;
real_t x2 = v3.x - v1.x;
real_t y1 = v2.y - v1.y;
real_t y2 = v3.y - v1.y;
real_t z1 = v2.z - v1.z;
real_t z2 = v3.z - v1.z;
real_t s1 = w2.x - w1.x;
real_t s2 = w3.x - w1.x;
real_t t1 = w2.y - w1.y;
real_t t2 = w3.y - w1.y;
real_t r = (s1 * t2 - s2 * t1);
Vector3 tangent;
Vector3 binormal;
if (r==0) {
binormal=Vector3();
tangent=Vector3();
} else {
tangent = Vector3((t2 * x1 - t1 * x2) * r, (t2 * y1 - t1 * y2) * r,
(t2 * z1 - t1 * z2) * r).normalized();
binormal = Vector3((s1 * x2 - s2 * x1) * r, (s1 * y2 - s2 * y1) * r,
(s1 * z2 - s2 * z1) * r).normalized();
}
tangents[ index_arrayr[idx*3+0] ]+=tangent;
binormals[ index_arrayr[idx*3+0] ]+=binormal;
tangents[ index_arrayr[idx*3+1] ]+=tangent;
binormals[ index_arrayr[idx*3+1] ]+=binormal;
tangents[ index_arrayr[idx*3+2] ]+=tangent;
binormals[ index_arrayr[idx*3+2] ]+=binormal;
//print_line(itos(idx)+" tangent: "+tangent);
//print_line(itos(idx)+" binormal: "+binormal);
}
r_tangents.resize(vlen*4);
PoolVector<real_t>::Write tarrayw = r_tangents.write();
for(int idx=0;idx<vlen;idx++) {
Vector3 tangent = tangents[idx];
Vector3 bingen = narrayr[idx].cross(tangent);
float dir;
if (bingen.dot(binormals[idx]) < 0 )
dir=-1.0;
else
dir=+1.0;
tarrayw[idx*4+0]=tangent.x;
tarrayw[idx*4+1]=tangent.y;
tarrayw[idx*4+2]=tangent.z;
tarrayw[idx*4+3]=dir;
}
}
Error ColladaImport::_create_mesh_surfaces(bool p_optimize,Ref<Mesh>& p_mesh,const Map<String,Collada::NodeGeometry::Material>& p_material_map,const Collada::MeshData &meshdata,const Transform& p_local_xform,const Vector<int> &bone_remap, const Collada::SkinControllerData *skin_controller, const Collada::MorphControllerData *p_morph_data,Vector<Ref<Mesh> > p_morph_meshes,bool p_for_morph,bool p_use_mesh_material) {
bool local_xform_mirror=p_local_xform.basis.determinant() < 0;
if (p_morph_data) {
//add morphie target
ERR_FAIL_COND_V( !p_morph_data->targets.has("MORPH_TARGET"), ERR_INVALID_DATA );
String mt = p_morph_data->targets["MORPH_TARGET"];
ERR_FAIL_COND_V( !p_morph_data->sources.has(mt), ERR_INVALID_DATA);
int morph_targets = p_morph_data->sources[mt].sarray.size();
for(int i=0;i<morph_targets;i++) {
String target = p_morph_data->sources[mt].sarray[i];
ERR_FAIL_COND_V( !collada.state.mesh_data_map.has(target), ERR_INVALID_DATA );
String name = collada.state.mesh_data_map[target].name;
p_mesh->add_blend_shape(name);
}
if (p_morph_data->mode=="RELATIVE")
p_mesh->set_blend_shape_mode(Mesh::BLEND_SHAPE_MODE_RELATIVE);
else if (p_morph_data->mode=="NORMALIZED")
p_mesh->set_blend_shape_mode(Mesh::BLEND_SHAPE_MODE_NORMALIZED);
}
int surface=0;
for(int p_i = 0; p_i < meshdata.primitives.size(); p_i ++ ) {
const Collada::MeshData::Primitives& p = meshdata.primitives[p_i];
/* VERTEX SOURCE */
ERR_FAIL_COND_V(!p.sources.has("VERTEX"),ERR_INVALID_DATA);
String vertex_src_id = p.sources["VERTEX"].source;
int vertex_ofs=p.sources["VERTEX"].offset;
ERR_FAIL_COND_V(!meshdata.vertices.has(vertex_src_id),ERR_INVALID_DATA);
ERR_FAIL_COND_V(!meshdata.vertices[vertex_src_id].sources.has("POSITION"),ERR_INVALID_DATA);
String position_src_id = meshdata.vertices[vertex_src_id].sources["POSITION"];
ERR_FAIL_COND_V(!meshdata.sources.has(position_src_id),ERR_INVALID_DATA);
const Collada::MeshData::Source *vertex_src=&meshdata.sources[position_src_id];
/* NORMAL SOURCE */
const Collada::MeshData::Source *normal_src=NULL;
int normal_ofs=0;
if (p.sources.has("NORMAL")) {
String normal_source_id = p.sources["NORMAL"].source;
normal_ofs = p.sources["NORMAL"].offset;
ERR_FAIL_COND_V( !meshdata.sources.has(normal_source_id),ERR_INVALID_DATA);
normal_src=&meshdata.sources[normal_source_id];
}
const Collada::MeshData::Source *binormal_src=NULL;
int binormal_ofs=0;
if (p.sources.has("TEXBINORMAL")) {
String binormal_source_id = p.sources["TEXBINORMAL"].source;
binormal_ofs = p.sources["TEXBINORMAL"].offset;
ERR_FAIL_COND_V( !meshdata.sources.has(binormal_source_id),ERR_INVALID_DATA);
binormal_src=&meshdata.sources[binormal_source_id];
}
const Collada::MeshData::Source *tangent_src=NULL;
int tangent_ofs=0;
if (p.sources.has("TEXTANGENT")) {
String tangent_source_id = p.sources["TEXTANGENT"].source;
tangent_ofs = p.sources["TEXTANGENT"].offset;
ERR_FAIL_COND_V( !meshdata.sources.has(tangent_source_id),ERR_INVALID_DATA);
tangent_src=&meshdata.sources[tangent_source_id];
}
const Collada::MeshData::Source *uv_src=NULL;
int uv_ofs=0;
if (p.sources.has("TEXCOORD0")) {
String uv_source_id = p.sources["TEXCOORD0"].source;
uv_ofs = p.sources["TEXCOORD0"].offset;
ERR_FAIL_COND_V( !meshdata.sources.has(uv_source_id),ERR_INVALID_DATA);
uv_src=&meshdata.sources[uv_source_id];
}
const Collada::MeshData::Source *uv2_src=NULL;
int uv2_ofs=0;
if (p.sources.has("TEXCOORD1")) {
String uv2_source_id = p.sources["TEXCOORD1"].source;
uv2_ofs = p.sources["TEXCOORD1"].offset;
ERR_FAIL_COND_V( !meshdata.sources.has(uv2_source_id),ERR_INVALID_DATA);
uv2_src=&meshdata.sources[uv2_source_id];
}
const Collada::MeshData::Source *color_src=NULL;
int color_ofs=0;
if (p.sources.has("COLOR")) {
String color_source_id = p.sources["COLOR"].source;
color_ofs = p.sources["COLOR"].offset;
ERR_FAIL_COND_V( !meshdata.sources.has(color_source_id), ERR_INVALID_DATA );
color_src=&meshdata.sources[color_source_id];
}
//find largest source..
/************************/
/* ADD WEIGHTS IF EXIST */
/************************/
Map<int,Vector<Collada::Vertex::Weight> > pre_weights;
bool has_weights=false;
if (skin_controller) {
const Collada::SkinControllerData::Source *weight_src=NULL;
int weight_ofs=0;
if (skin_controller->weights.sources.has("WEIGHT")) {
String weight_id = skin_controller->weights.sources["WEIGHT"].source;
weight_ofs = skin_controller->weights.sources["WEIGHT"].offset;
if (skin_controller->sources.has(weight_id)) {
weight_src = &skin_controller->sources[weight_id];
}
}
int joint_ofs=0;
if (skin_controller->weights.sources.has("JOINT")) {
joint_ofs = skin_controller->weights.sources["JOINT"].offset;
}
//should be OK, given this was pre-checked.
int index_ofs=0;
int wstride = skin_controller->weights.sources.size();
for(int w_i=0;w_i<skin_controller->weights.sets.size();w_i++) {
int amount = skin_controller->weights.sets[w_i];
Vector<Collada::Vertex::Weight> weights;
for (int a_i=0;a_i<amount;a_i++) {
Collada::Vertex::Weight w;
int read_from = index_ofs+a_i*wstride;
ERR_FAIL_INDEX_V(read_from+wstride-1,skin_controller->weights.indices.size(),ERR_INVALID_DATA);
int weight_index = skin_controller->weights.indices[read_from+weight_ofs];
ERR_FAIL_INDEX_V(weight_index,weight_src->array.size(),ERR_INVALID_DATA);
w.weight = weight_src->array[weight_index];
int bone_index = skin_controller->weights.indices[read_from+joint_ofs];
if (bone_index==-1)
continue; //ignore this weight (refers to bind shape)
ERR_FAIL_INDEX_V(bone_index,bone_remap.size(),ERR_INVALID_DATA);
w.bone_idx=bone_remap[bone_index];
weights.push_back(w);
}
/* FIX WEIGHTS */
weights.sort();
if (weights.size()>4) {
//cap to 4 and make weights add up 1
weights.resize(4);
}
//make sure weights allways add up to 1
float total=0;
for(int i=0;i<weights.size();i++)
total+=weights[i].weight;
if (total)
for(int i=0;i<weights.size();i++)
weights[i].weight/=total;
if (weights.size()==0 || total==0) { //if nothing, add a weight to bone 0
//no weights assigned
Collada::Vertex::Weight w;
w.bone_idx=0;
w.weight=1.0;
weights.clear();
weights.push_back(w);
}
pre_weights[w_i]=weights;
/*
for(Set<int>::Element *E=vertex_map[w_i].front();E;E=E->next()) {
int dst = E->get();
ERR_EXPLAIN("invalid vertex index in array");
ERR_FAIL_INDEX_V(dst,vertex_array.size(),ERR_INVALID_DATA);
vertex_array[dst].weights=weights;
}*/
index_ofs+=wstride*amount;
}
//vertices need to be localized
has_weights=true;
}
Set<Collada::Vertex> vertex_set; //vertex set will be the vertices
List<int> indices_list; //indices will be the indices
//Map<int,Set<int> > vertex_map; //map vertices (for setting skinning/morph)
/**************************/
/* CREATE PRIMITIVE ARRAY */
/**************************/
// The way collada uses indices is more optimal, and friendlier with 3D modelling sofware,
// because it can index everything, not only vertices (similar to how the WII works).
// This is, however, more incompatible with standard video cards, so arrays must be converted.
// Must convert to GL/DX format.
int _prim_ofs=0;
int vertidx=0;
for(int p_i=0;p_i<p.count;p_i++) {
int amount;
if (p.polygons.size()) {
ERR_FAIL_INDEX_V(p_i,p.polygons.size(),ERR_INVALID_DATA);
amount=p.polygons[p_i];
} else {
amount=3; //triangles;
}
//COLLADA_PRINT("amount: "+itos(amount));
int prev2[2]={0,0};
for(int j=0;j<amount;j++) {
int src=_prim_ofs;
//_prim_ofs+=p.sources.size()
ERR_FAIL_INDEX_V(src,p.indices.size(),ERR_INVALID_DATA);
Collada::Vertex vertex;
if (!p_optimize)
vertex.uid=vertidx++;
int vertex_index=p.indices[src+vertex_ofs]; //used for index field (later used by controllers)
int vertex_pos = (vertex_src->stride?vertex_src->stride:3) * vertex_index;
ERR_FAIL_INDEX_V(vertex_pos,vertex_src->array.size(),ERR_INVALID_DATA);
vertex.vertex=Vector3(vertex_src->array[vertex_pos+0],vertex_src->array[vertex_pos+1],vertex_src->array[vertex_pos+2]);
if (pre_weights.has(vertex_index)) {
vertex.weights=pre_weights[vertex_index];
}
if (normal_src) {
int normal_pos = (normal_src->stride?normal_src->stride:3) * p.indices[src+normal_ofs];
ERR_FAIL_INDEX_V(normal_pos,normal_src->array.size(),ERR_INVALID_DATA);
vertex.normal=Vector3(normal_src->array[normal_pos+0],normal_src->array[normal_pos+1],normal_src->array[normal_pos+2]);
vertex.normal=vertex.normal.snapped(0.001);
if (tangent_src && binormal_src) {
int binormal_pos = (binormal_src->stride?binormal_src->stride:3) * p.indices[src+binormal_ofs];
ERR_FAIL_INDEX_V(binormal_pos,binormal_src->array.size(),ERR_INVALID_DATA);
Vector3 binormal =Vector3(binormal_src->array[binormal_pos+0],binormal_src->array[binormal_pos+1],binormal_src->array[binormal_pos+2]);
int tangent_pos = (tangent_src->stride?tangent_src->stride:3) * p.indices[src+tangent_ofs];
ERR_FAIL_INDEX_V(tangent_pos,tangent_src->array.size(),ERR_INVALID_DATA);
Vector3 tangent =Vector3(tangent_src->array[tangent_pos+0],tangent_src->array[tangent_pos+1],tangent_src->array[tangent_pos+2]);
vertex.tangent.normal=tangent;
vertex.tangent.d= vertex.normal.cross(tangent).dot(binormal) > 0 ? 1 : -1;
}
}
if (uv_src) {
int uv_pos = (uv_src->stride?uv_src->stride:2) * p.indices[src+uv_ofs];
ERR_FAIL_INDEX_V(uv_pos,uv_src->array.size(),ERR_INVALID_DATA);
vertex.uv=Vector3(uv_src->array[uv_pos+0],1.0-uv_src->array[uv_pos+1],0);
}
if (uv2_src) {
int uv2_pos = (uv2_src->stride?uv2_src->stride:2) * p.indices[src+uv2_ofs];
ERR_FAIL_INDEX_V(uv2_pos,uv2_src->array.size(),ERR_INVALID_DATA);
vertex.uv2=Vector3(uv2_src->array[uv2_pos+0],1.0-uv2_src->array[uv2_pos+1],0);
}
if (color_src) {
int color_pos = (color_src->stride?color_src->stride:3) * p.indices[src+color_ofs]; // colors are RGB in collada..
ERR_FAIL_INDEX_V(color_pos,color_src->array.size(),ERR_INVALID_DATA);
vertex.color=Color(color_src->array[color_pos+0],color_src->array[color_pos+1],color_src->array[color_pos+2],(color_src->stride>3)?color_src->array[color_pos+3]:1.0);
}
#ifndef NO_UP_AXIS_SWAP
if (collada.state.up_axis==Vector3::AXIS_Z) {
SWAP( vertex.vertex.z, vertex.vertex.y );
vertex.vertex.z = -vertex.vertex.z;
SWAP( vertex.normal.z, vertex.normal.y );
vertex.normal.z = -vertex.normal.z;
SWAP( vertex.tangent.normal.z, vertex.tangent.normal.y );
vertex.tangent.normal.z = -vertex.tangent.normal.z;
}
#endif
vertex.fix_unit_scale(collada);
int index=0;
//COLLADA_PRINT("vertex: "+vertex.vertex);
if (vertex_set.has(vertex)) {
index=vertex_set.find(vertex)->get().idx;
} else {
index=vertex_set.size();
vertex.idx=index;
vertex_set.insert(vertex);
}
/* if (!vertex_map.has(vertex_index))
vertex_map[vertex_index]=Set<int>();
vertex_map[vertex_index].insert(index); //should be outside..*/
//build triangles if needed
if (j==0)
prev2[0]=index;
if (j>=2) {
//insert indices in reverse order (collada uses CCW as frontface)
if (local_xform_mirror) {
indices_list.push_back(prev2[0]);
indices_list.push_back(prev2[1]);
indices_list.push_back(index);
} else {
indices_list.push_back(prev2[0]);
indices_list.push_back(index);
indices_list.push_back(prev2[1]);
}
}
prev2[1]=index;
_prim_ofs+=p.vertex_size;
}
}
Vector<Collada::Vertex> vertex_array; //there we go, vertex array
vertex_array.resize(vertex_set.size());
for(Set<Collada::Vertex>::Element *F=vertex_set.front();F;F=F->next()) {
vertex_array[F->get().idx]=F->get();
}
if (has_weights) {
//if skeleton, localize
Transform local_xform = p_local_xform;
for(int i=0;i<vertex_array.size();i++) {
vertex_array[i].vertex=local_xform.xform(vertex_array[i].vertex);
vertex_array[i].normal=local_xform.basis.xform(vertex_array[i].normal).normalized();
vertex_array[i].tangent.normal=local_xform.basis.xform(vertex_array[i].tangent.normal).normalized();
if (local_xform_mirror) {
//i shouldn't do this? wtf?
//vertex_array[i].normal*=-1.0;
//vertex_array[i].tangent.normal*=-1.0;
}
}
}
PoolVector<int> index_array;
index_array.resize(indices_list.size());
PoolVector<int>::Write index_arrayw = index_array.write();
int iidx=0;
for(List<int>::Element *F=indices_list.front();F;F=F->next()) {
index_arrayw[iidx++]=F->get();
}
index_arrayw=PoolVector<int>::Write();
/*****************/
/* MAKE SURFACES */
/*****************/
{
Ref<FixedSpatialMaterial> material;
//find material
Mesh::PrimitiveType primitive=Mesh::PRIMITIVE_TRIANGLES;
{
if (p_material_map.has(p.material)) {
String target=p_material_map[p.material].target;
if (!material_cache.has(target)) {
Error err = _create_material(target);
if (!err)
material=material_cache[target];
} else
material=material_cache[target];
} else if (p.material!=""){
print_line("Warning, unreferenced material in geometry instance: "+p.material);
}
}
PoolVector<Vector3> final_vertex_array;
PoolVector<Vector3> final_normal_array;
PoolVector<float> final_tangent_array;
PoolVector<Color> final_color_array;
PoolVector<Vector3> final_uv_array;
PoolVector<Vector3> final_uv2_array;
PoolVector<int> final_bone_array;
PoolVector<float> final_weight_array;
uint32_t final_format=0;
//create format
final_format=Mesh::ARRAY_FORMAT_VERTEX|Mesh::ARRAY_FORMAT_INDEX;
if (normal_src) {
final_format|=Mesh::ARRAY_FORMAT_NORMAL;
if (uv_src && binormal_src && tangent_src) {
final_format|=Mesh::ARRAY_FORMAT_TANGENT;
}
}
if (color_src)
final_format|=Mesh::ARRAY_FORMAT_COLOR;
if (uv_src)
final_format|=Mesh::ARRAY_FORMAT_TEX_UV;
if (uv2_src)
final_format|=Mesh::ARRAY_FORMAT_TEX_UV2;
if (has_weights) {
final_format|=Mesh::ARRAY_FORMAT_WEIGHTS;
final_format|=Mesh::ARRAY_FORMAT_BONES;
}
//set arrays
int vlen = vertex_array.size();
{ //vertices
PoolVector<Vector3> varray;
varray.resize(vertex_array.size());
PoolVector<Vector3>::Write varrayw = varray.write();
for(int k=0;k<vlen;k++)
varrayw[k]=vertex_array[k].vertex;
varrayw = PoolVector<Vector3>::Write();
final_vertex_array=varray;
}
if (uv_src) { //compute uv first, may be needed for computing tangent/bionrmal
PoolVector<Vector3> uvarray;
uvarray.resize(vertex_array.size());
PoolVector<Vector3>::Write uvarrayw = uvarray.write();
for(int k=0;k<vlen;k++) {
uvarrayw[k]=vertex_array[k].uv;
}
uvarrayw = PoolVector<Vector3>::Write();
final_uv_array=uvarray;
}
if (uv2_src) { //compute uv first, may be needed for computing tangent/bionrmal
PoolVector<Vector3> uv2array;
uv2array.resize(vertex_array.size());
PoolVector<Vector3>::Write uv2arrayw = uv2array.write();
for(int k=0;k<vlen;k++) {
uv2arrayw[k]=vertex_array[k].uv2;
}
uv2arrayw = PoolVector<Vector3>::Write();
final_uv2_array=uv2array;
}
if (normal_src) {
PoolVector<Vector3> narray;
narray.resize(vertex_array.size());
PoolVector<Vector3>::Write narrayw = narray.write();
for(int k=0;k<vlen;k++) {
narrayw[k]=vertex_array[k].normal;
}
narrayw = PoolVector<Vector3>::Write();
final_normal_array=narray;
/*
PoolVector<Vector3> altnaray;
_generate_normals(index_array,final_vertex_array,altnaray);
for(int i=0;i<altnaray.size();i++)
print_line(rtos(altnaray[i].dot(final_normal_array[i])));
*/
} else if (primitive==Mesh::PRIMITIVE_TRIANGLES) {
//generate normals (even if unused later)
_generate_normals(index_array,final_vertex_array,final_normal_array);
if (OS::get_singleton()->is_stdout_verbose())
print_line("Collada: Triangle mesh lacks normals, so normals were generated.");
final_format|=Mesh::ARRAY_FORMAT_NORMAL;
}
if (final_normal_array.size() && uv_src && binormal_src && tangent_src && !force_make_tangents) {
PoolVector<real_t> tarray;
tarray.resize(vertex_array.size()*4);
PoolVector<real_t>::Write tarrayw = tarray.write();
for(int k=0;k<vlen;k++) {
tarrayw[k*4+0]=vertex_array[k].tangent.normal.x;
tarrayw[k*4+1]=vertex_array[k].tangent.normal.y;
tarrayw[k*4+2]=vertex_array[k].tangent.normal.z;
tarrayw[k*4+3]=vertex_array[k].tangent.d;
}
tarrayw = PoolVector<real_t>::Write();
final_tangent_array=tarray;
} else if (final_normal_array.size() && primitive==Mesh::PRIMITIVE_TRIANGLES && final_uv_array.size() && (force_make_tangents || (material.is_valid()))){
//if this uses triangles, there are uvs and the material is using a normalmap, generate tangents and binormals, because they WILL be needed
//generate binormals/tangents
_generate_tangents_and_binormals(index_array,final_vertex_array,final_uv_array,final_normal_array,final_tangent_array);
final_format|=Mesh::ARRAY_FORMAT_TANGENT;
if (OS::get_singleton()->is_stdout_verbose())
print_line("Collada: Triangle mesh lacks tangents (And normalmap was used), so tangents were generated.");
}
if (color_src) {
PoolVector<Color> colorarray;
colorarray.resize(vertex_array.size());
PoolVector<Color>::Write colorarrayw = colorarray.write();
for(int k=0;k<vlen;k++) {
colorarrayw[k]=vertex_array[k].color;
}
colorarrayw = PoolVector<Color>::Write();
final_color_array=colorarray;
}
if (has_weights) {
PoolVector<float> weightarray;
PoolVector<int> bonearray;
weightarray.resize(vertex_array.size()*4);
PoolVector<float>::Write weightarrayw = weightarray.write();
bonearray.resize(vertex_array.size()*4);
PoolVector<int>::Write bonearrayw = bonearray.write();
for(int k=0;k<vlen;k++) {
float sum=0;
for(int l=0;l<VS::ARRAY_WEIGHTS_SIZE;l++) {
if (l<vertex_array[k].weights.size()) {
weightarrayw[k*VS::ARRAY_WEIGHTS_SIZE+l]=vertex_array[k].weights[l].weight;
sum+=weightarrayw[k*VS::ARRAY_WEIGHTS_SIZE+l];
bonearrayw[k*VS::ARRAY_WEIGHTS_SIZE+l]=int(vertex_array[k].weights[l].bone_idx);
//COLLADA_PRINT(itos(k)+": "+rtos(bonearrayw[k*VS::ARRAY_WEIGHTS_SIZE+l])+":"+rtos(weightarray[k*VS::ARRAY_WEIGHTS_SIZE+l]));
} else {
weightarrayw[k*VS::ARRAY_WEIGHTS_SIZE+l]=0;
bonearrayw[k*VS::ARRAY_WEIGHTS_SIZE+l]=0;
}
}
/*
if (sum<0.8)
COLLADA_PRINT("ERROR SUMMING INDEX "+itos(k)+" had weights: "+itos(vertex_array[k].weights.size()));
*/
}
weightarrayw = PoolVector<float>::Write();
bonearrayw = PoolVector<int>::Write();
final_weight_array = weightarray;
final_bone_array = bonearray;
}
////////////////////////////
// FINALLY CREATE SUFRACE //
////////////////////////////
Array d;
d.resize(VS::ARRAY_MAX);
d[Mesh::ARRAY_INDEX]=index_array;
d[Mesh::ARRAY_VERTEX]=final_vertex_array;
if (final_normal_array.size())
d[Mesh::ARRAY_NORMAL]=final_normal_array;
if (final_tangent_array.size())
d[Mesh::ARRAY_TANGENT]=final_tangent_array;
if (final_uv_array.size())
d[Mesh::ARRAY_TEX_UV]=final_uv_array;
if (final_uv2_array.size())
d[Mesh::ARRAY_TEX_UV2]=final_uv2_array;
if (final_color_array.size())
d[Mesh::ARRAY_COLOR]=final_color_array;
if (final_weight_array.size())
d[Mesh::ARRAY_WEIGHTS]=final_weight_array;
if (final_bone_array.size())
d[Mesh::ARRAY_BONES]=final_bone_array;
Array mr;
////////////////////////////
// THEN THE MORPH TARGETS //
////////////////////////////
#if 0
if (p_morph_data) {
//add morphie target
ERR_FAIL_COND_V( !p_morph_data->targets.has("MORPH_TARGET"), ERR_INVALID_DATA );
String mt = p_morph_data->targets["MORPH_TARGET"];
ERR_FAIL_COND_V( !p_morph_data->sources.has(mt), ERR_INVALID_DATA);
int morph_targets = p_morph_data->sources[mt].sarray.size();
mr.resize(morph_targets);
for(int j=0;j<morph_targets;j++) {
Array mrt;
mrt.resize(VS::ARRAY_MAX);
String target = p_morph_data->sources[mt].sarray[j];
ERR_FAIL_COND_V( !collada.state.mesh_data_map.has(target), ERR_INVALID_DATA );
String name = collada.state.mesh_data_map[target].name;
Collada::MeshData &md = collada.state.mesh_data_map[target];
// collada in itself supports morphing everything. However, the spec is unclear and no examples or exporters that
// morph anything but "POSITIONS" seem to exit. Because of this, normals and binormals/tangents have to be regenerated here,
// which may result in inaccurate (but most of the time good enough) results.
PoolVector<Vector3> vertices;
vertices.resize(vlen);
ERR_FAIL_COND_V( md.vertices.size() != 1, ERR_INVALID_DATA);
String vertex_src_id=md.vertices.front()->key();
ERR_FAIL_COND_V(!md.vertices[vertex_src_id].sources.has("POSITION"),ERR_INVALID_DATA);
String position_src_id = md.vertices[vertex_src_id].sources["POSITION"];
ERR_FAIL_COND_V(!md.sources.has(position_src_id),ERR_INVALID_DATA);
const Collada::MeshData::Source *m=&md.sources[position_src_id];
ERR_FAIL_COND_V( m->array.size() != vertex_src->array.size(), ERR_INVALID_DATA);
int stride=m->stride;
if (stride==0)
stride=3;
//read vertices from morph target
PoolVector<Vector3>::Write vertw = vertices.write();
for(int m_i=0;m_i<m->array.size()/stride;m_i++) {
int pos = m_i*stride;
Vector3 vtx( m->array[pos+0], m->array[pos+1], m->array[pos+2] );
#ifndef NO_UP_AXIS_SWAP
if (collada.state.up_axis==Vector3::AXIS_Z) {
SWAP( vtx.z, vtx.y );
vtx.z = -vtx.z;
}
#endif
Collada::Vertex vertex;
vertex.vertex=vtx;
vertex.fix_unit_scale(collada);
vtx=vertex.vertex;
vtx = p_local_xform.xform(vtx);
if (vertex_map.has(m_i)) { //vertex may no longer be here, don't bother converting
for (Set<int> ::Element *E=vertex_map[m_i].front() ; E; E=E->next() ) {
vertw[E->get()]=vtx;
}
}
}
//vertices are in place, now generate everything else
vertw = PoolVector<Vector3>::Write();
PoolVector<Vector3> normals;
PoolVector<float> tangents;
print_line("vertex source id: "+vertex_src_id);
if(md.vertices[vertex_src_id].sources.has("NORMAL")){
//has normals
normals.resize(vlen);
//std::cout << "has normals" << std::endl;
String normal_src_id = md.vertices[vertex_src_id].sources["NORMAL"];
//std::cout << "normals source: "<< normal_src_id.utf8().get_data() <<std::endl;
ERR_FAIL_COND_V(!md.sources.has(normal_src_id),ERR_INVALID_DATA);
const Collada::MeshData::Source *m=&md.sources[normal_src_id];
ERR_FAIL_COND_V( m->array.size() != vertex_src->array.size(), ERR_INVALID_DATA);
int stride=m->stride;
if (stride==0)
stride=3;
//read normals from morph target
PoolVector<Vector3>::Write vertw = normals.write();
for(int m_i=0;m_i<m->array.size()/stride;m_i++) {
int pos = m_i*stride;
Vector3 vtx( m->array[pos+0], m->array[pos+1], m->array[pos+2] );
#ifndef NO_UP_AXIS_SWAP
if (collada.state.up_axis==Vector3::AXIS_Z) {
SWAP( vtx.z, vtx.y );
vtx.z = -vtx.z;
}
#endif
Collada::Vertex vertex;
vertex.vertex=vtx;
vertex.fix_unit_scale(collada);
vtx=vertex.vertex;
vtx = p_local_xform.xform(vtx);
if (vertex_map.has(m_i)) { //vertex may no longer be here, don't bother converting
for (Set<int> ::Element *E=vertex_map[m_i].front() ; E; E=E->next() ) {
vertw[E->get()]=vtx;
}
}
}
print_line("using built-in normals");
}else{
print_line("generating normals");
_generate_normals(index_array,vertices,normals);//no normals
}
if (final_tangent_array.size() && final_uv_array.size()) {
_generate_tangents_and_binormals(index_array,vertices,final_uv_array,normals,tangents);
}
mrt[Mesh::ARRAY_VERTEX]=vertices;
mrt[Mesh::ARRAY_NORMAL]=normals;
if (tangents.size())
mrt[Mesh::ARRAY_TANGENT]=tangents;
if (final_uv_array.size())
mrt[Mesh::ARRAY_TEX_UV]=final_uv_array;
if (final_uv2_array.size())
mrt[Mesh::ARRAY_TEX_UV2]=final_uv2_array;
if (final_color_array.size())
mrt[Mesh::ARRAY_COLOR]=final_color_array;
mr[j]=mrt;
}
}
#endif
for(int mi=0;mi<p_morph_meshes.size();mi++) {
//print_line("want surface "+itos(mi)+" has "+itos(p_morph_meshes[mi]->get_surface_count()));
Array a = p_morph_meshes[mi]->surface_get_arrays(surface);
//add valid weight and bone arrays if they exist, TODO check if they are unique to shape (generally not)
if (final_weight_array.size())
a[Mesh::ARRAY_WEIGHTS]=final_weight_array;
if (final_bone_array.size())
a[Mesh::ARRAY_BONES]=final_bone_array;
a[Mesh::ARRAY_INDEX]=Variant();
//a.resize(Mesh::ARRAY_MAX); //no need for index
mr.push_back(a);
}
p_mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES,d,mr,p_for_morph?0:Mesh::ARRAY_COMPRESS_DEFAULT);
if (material.is_valid()) {
if (p_use_mesh_material) {
p_mesh->surface_set_material(surface, material);
}
p_mesh->surface_set_name(surface, material->get_name());
}
}
/*****************/
/* FIND MATERIAL */
/*****************/
surface++;
}
return OK;
}
Error ColladaImport::_create_resources(Collada::Node *p_node) {
if (p_node->type==Collada::Node::TYPE_GEOMETRY && node_map.has(p_node->id)) {
Spatial * node=node_map[p_node->id].node;
Collada::NodeGeometry *ng = static_cast<Collada::NodeGeometry*>(p_node);
if (node->cast_to<Path>()) {
Path *path = node->cast_to<Path>();
String curve = ng->source;
if (curve_cache.has(ng->source)) {
path->set_curve(curve_cache[ng->source]);
} else {
Ref<Curve3D> c = memnew( Curve3D );
const Collada::CurveData &cd = collada.state.curve_data_map[ng->source];
ERR_FAIL_COND_V( !cd.control_vertices.has("POSITION") , ERR_INVALID_DATA);
ERR_FAIL_COND_V( !cd.control_vertices.has("IN_TANGENT") , ERR_INVALID_DATA);
ERR_FAIL_COND_V( !cd.control_vertices.has("OUT_TANGENT") , ERR_INVALID_DATA);
ERR_FAIL_COND_V( !cd.control_vertices.has("INTERPOLATION") , ERR_INVALID_DATA);
ERR_FAIL_COND_V( !cd.sources.has(cd.control_vertices["POSITION"] ) , ERR_INVALID_DATA);
const Collada::CurveData::Source &vertices = cd.sources[ cd.control_vertices["POSITION"] ];
ERR_FAIL_COND_V( vertices.stride!=3, ERR_INVALID_DATA );
ERR_FAIL_COND_V( !cd.sources.has(cd.control_vertices["IN_TANGENT"] ) , ERR_INVALID_DATA);
const Collada::CurveData::Source &in_tangents = cd.sources[ cd.control_vertices["IN_TANGENT"] ];
ERR_FAIL_COND_V( in_tangents.stride!=3 , ERR_INVALID_DATA);
ERR_FAIL_COND_V( !cd.sources.has(cd.control_vertices["OUT_TANGENT"] ), ERR_INVALID_DATA );
const Collada::CurveData::Source &out_tangents = cd.sources[ cd.control_vertices["OUT_TANGENT"] ];
ERR_FAIL_COND_V( out_tangents.stride!=3, ERR_INVALID_DATA );
ERR_FAIL_COND_V( !cd.sources.has(cd.control_vertices["INTERPOLATION"] ), ERR_INVALID_DATA );
const Collada::CurveData::Source &interps = cd.sources[ cd.control_vertices["INTERPOLATION"] ];
ERR_FAIL_COND_V( interps.stride!=1, ERR_INVALID_DATA );
const Collada::CurveData::Source *tilts=NULL;
if (cd.control_vertices.has("TILT") && cd.sources.has(cd.control_vertices["TILT"]))
tilts=&cd.sources[ cd.control_vertices["TILT"] ];
if (tilts) {
print_line("FOUND TILTS!!!");
}
int pc = vertices.array.size()/3;
for(int i=0;i<pc;i++) {
Vector3 pos( vertices.array[i*3+0], vertices.array[i*3+1], vertices.array[i*3+2] );
Vector3 in( in_tangents.array[i*3+0], in_tangents.array[i*3+1], in_tangents.array[i*3+2] );
Vector3 out( out_tangents.array[i*3+0], out_tangents.array[i*3+1], out_tangents.array[i*3+2] );
#ifndef NO_UP_AXIS_SWAP
if (collada.state.up_axis==Vector3::AXIS_Z) {
SWAP(pos.y,pos.z);
pos.z=-pos.z;
SWAP(in.y,in.z);
in.z=-in.z;
SWAP(out.y,out.z);
out.z=-out.z;
}
#endif
pos*=collada.state.unit_scale;
in*=collada.state.unit_scale;
out*=collada.state.unit_scale;
c->add_point(pos,in-pos,out-pos);
if (tilts)
c->set_point_tilt(i,tilts->array[i]);
}
curve_cache[ng->source]=c;
path->set_curve(c);
}
}
if (node->cast_to<MeshInstance>()) {
Collada::NodeGeometry *ng = static_cast<Collada::NodeGeometry*>(p_node);
MeshInstance *mi = node->cast_to<MeshInstance>();
ERR_FAIL_COND_V(!mi,ERR_BUG);
Collada::SkinControllerData *skin=NULL;
Collada::MorphControllerData *morph=NULL;
String meshid;
Transform apply_xform;
Vector<int> bone_remap;
Vector<Ref<Mesh> > morphs;
print_line("mesh: "+String(mi->get_name()));
if (ng->controller) {
print_line("has controller");
String ngsource = ng->source;
if (collada.state.skin_controller_data_map.has(ngsource)) {
ERR_FAIL_COND_V(!collada.state.skin_controller_data_map.has(ngsource),ERR_INVALID_DATA);
skin=&collada.state.skin_controller_data_map[ngsource];
Vector<String> skeletons = ng->skeletons;
ERR_FAIL_COND_V( skeletons.empty(), ERR_INVALID_DATA );
String skname = skeletons[0];
if (!node_map.has(skname)) {
print_line("no node for skeleton "+skname);
}
ERR_FAIL_COND_V( !node_map.has(skname), ERR_INVALID_DATA );
NodeMap nmsk = node_map[skname];
Skeleton *sk = nmsk.node->cast_to<Skeleton>();
ERR_FAIL_COND_V( !sk, ERR_INVALID_DATA );
ERR_FAIL_COND_V( !skeleton_bone_map.has(sk), ERR_INVALID_DATA );
Map<String, int> &bone_remap_map=skeleton_bone_map[sk];
meshid=skin->base;
if (collada.state.morph_controller_data_map.has(meshid)) {
//it's a morph!!
morph = &collada.state.morph_controller_data_map[meshid];
ngsource=meshid;
meshid=morph->mesh;
} else {
ngsource="";
}
if (apply_mesh_xform_to_vertices) {
apply_xform=collada.fix_transform(p_node->default_transform);
node->set_transform(Transform());
} else {
apply_xform=Transform();
}
Collada::SkinControllerData::Source *joint_src=NULL;
ERR_FAIL_COND_V(!skin->weights.sources.has("JOINT"),ERR_INVALID_DATA);
String joint_id = skin->weights.sources["JOINT"].source;
ERR_FAIL_COND_V(!skin->sources.has(joint_id),ERR_INVALID_DATA);
joint_src = &skin->sources[joint_id];
bone_remap.resize(joint_src->sarray.size());
for(int i=0;i<bone_remap.size();i++) {
String str = joint_src->sarray[i];
if (!bone_remap_map.has(str)) {
print_line("bone not found for remap: "+str);
print_line("in skeleton: "+skname);
}
ERR_FAIL_COND_V( !bone_remap_map.has(str), ERR_INVALID_DATA );
bone_remap[i]=bone_remap_map[str];
}
}
if (collada.state.morph_controller_data_map.has(ngsource)) {
print_line("is morph "+ngsource);
//it's a morph!!
morph = &collada.state.morph_controller_data_map[ngsource];
meshid=morph->mesh;
printf("KKmorph: %p\n",morph);
print_line("morph mshid: "+meshid);
Vector<String> targets;
morph->targets.has("MORPH_TARGET");
String target = morph->targets["MORPH_TARGET"];
bool valid=false;
if (morph->sources.has(target)) {
valid=true;
Vector<String> names = morph->sources[target].sarray;
for(int i=0;i<names.size();i++) {
String meshid=names[i];
if (collada.state.mesh_data_map.has(meshid)) {
Ref<Mesh> mesh=Ref<Mesh>(memnew( Mesh ));
const Collada::MeshData &meshdata = collada.state.mesh_data_map[meshid];
Error err = _create_mesh_surfaces(false,mesh,ng->material_map,meshdata,apply_xform,bone_remap,skin,NULL,Vector<Ref<Mesh> >(),true);
ERR_FAIL_COND_V(err,err);
morphs.push_back(mesh);
} else {
valid=false;
}
}
}
if (!valid)
morphs.clear();
ngsource="";
}
if (ngsource!=""){
ERR_EXPLAIN("Controller Instance Source '"+ngsource+"' is neither skin or morph!");
ERR_FAIL_V( ERR_INVALID_DATA );
}
} else {
meshid=ng->source;
}
Ref<Mesh> mesh;
if (mesh_cache.has(meshid)) {
mesh=mesh_cache[meshid];
} else {
if (collada.state.mesh_data_map.has(meshid)) {
//bleh, must ignore invalid
ERR_FAIL_COND_V(!collada.state.mesh_data_map.has(meshid),ERR_INVALID_DATA);
mesh=Ref<Mesh>(memnew( Mesh ));
const Collada::MeshData &meshdata = collada.state.mesh_data_map[meshid];
mesh->set_name( meshdata.name );
Error err = _create_mesh_surfaces(morphs.size()==0,mesh,ng->material_map,meshdata,apply_xform,bone_remap,skin,morph,morphs,false,use_mesh_builtin_materials);
ERR_FAIL_COND_V(err,err);
mesh_cache[meshid]=mesh;
} else {
print_line("Warning, will not import geometry: "+meshid);
}
}
if (!mesh.is_null()) {
mi->set_mesh(mesh);
if (!use_mesh_builtin_materials) {
const Collada::MeshData &meshdata = collada.state.mesh_data_map[meshid];
for(int i=0;i<meshdata.primitives.size();i++) {
String matname=meshdata.primitives[i].material;
if (ng->material_map.has(matname)) {
String target=ng->material_map[matname].target;
Ref<Material> material;
if (!material_cache.has(target)) {
Error err = _create_material(target);
if (!err)
material=material_cache[target];
} else
material=material_cache[target];
mi->set_surface_material(i,material);
} else if (matname!=""){
print_line("Warning, unreferenced material in geometry instance: "+matname);
}
}
}
}
}
}
for(int i=0;i<p_node->children.size();i++) {
Error err = _create_resources(p_node->children[i]);
if (err)
return err;
}
return OK;
}
Error ColladaImport::load(const String& p_path,int p_flags,bool p_force_make_tangents) {
Error err = collada.load(p_path,p_flags);
ERR_FAIL_COND_V(err,err);
force_make_tangents=p_force_make_tangents;
ERR_FAIL_COND_V( !collada.state.visual_scene_map.has( collada.state.root_visual_scene ), ERR_INVALID_DATA );
Collada::VisualScene &vs = collada.state.visual_scene_map[ collada.state.root_visual_scene ];
scene = memnew( Spatial ); // root
//determine what's going on with the lights
for(int i=0;i<vs.root_nodes.size();i++) {
_pre_process_lights(vs.root_nodes[i]);
}
//import scene
for(int i=0;i<vs.root_nodes.size();i++) {
Error err = _create_scene_skeletons(vs.root_nodes[i]);
if (err!=OK) {
memdelete(scene);
ERR_FAIL_COND_V(err,err);
}
}
for(int i=0;i<vs.root_nodes.size();i++) {
Error err = _create_scene(vs.root_nodes[i],scene);
if (err!=OK) {
memdelete(scene);
ERR_FAIL_COND_V(err,err);
}
Error err2 = _create_resources(vs.root_nodes[i]);
if (err2!=OK) {
memdelete(scene);
ERR_FAIL_COND_V(err2,err2);
}
}
//optatively, set unit scale in the root
scene->set_transform(collada.get_root_transform());
return OK;
}
void ColladaImport::_fix_param_animation_tracks() {
for (Map<String,Collada::Node*>::Element *E=collada.state.scene_map.front();E;E=E->next()) {
Collada::Node *n = E->get();
switch(n->type) {
case Collada::Node::TYPE_NODE: {
// ? do nothing
} break;
case Collada::Node::TYPE_JOINT: {
} break;
case Collada::Node::TYPE_SKELETON: {
} break;
case Collada::Node::TYPE_LIGHT: {
} break;
case Collada::Node::TYPE_CAMERA: {
} break;
case Collada::Node::TYPE_GEOMETRY: {
Collada::NodeGeometry *ng = static_cast<Collada::NodeGeometry*>(n);
// test source(s)
String source = ng->source;
while (source!="") {
if (collada.state.skin_controller_data_map.has(source)) {
const Collada::SkinControllerData& skin = collada.state.skin_controller_data_map[source];
//nothing to animate here i think
source=skin.base;
} else if (collada.state.morph_controller_data_map.has(source)) {
const Collada::MorphControllerData& morph = collada.state.morph_controller_data_map[source];
if (morph.targets.has("MORPH_WEIGHT") && morph.targets.has("MORPH_TARGET")) {
String weights = morph.targets["MORPH_WEIGHT"];
String targets = morph.targets["MORPH_TARGET"];
//fails here
if (morph.sources.has(targets) && morph.sources.has(weights)) {
const Collada::MorphControllerData::Source &weight_src=morph.sources[weights];
const Collada::MorphControllerData::Source &target_src=morph.sources[targets];
ERR_FAIL_COND(weight_src.array.size() != target_src.sarray.size());
for(int i=0;i<weight_src.array.size();i++) {
String track_name = weights+"("+itos(i)+")";
String mesh_name = target_src.sarray[i];
if (collada.state.mesh_name_map.has(mesh_name) && collada.state.referenced_tracks.has(track_name)) {
const Vector<int>&rt = collada.state.referenced_tracks[track_name];
for(int rti=0;rti<rt.size();rti++) {
Collada::AnimationTrack *at = &collada.state.animation_tracks[rt[rti]];
at->target=E->key();
at->param="morph/"+collada.state.mesh_name_map[mesh_name];
at->property=true;
//at->param
}
}
}
}
}
source=morph.mesh;
} else {
source=""; // for now nothing else supported
}
}
} break;
}
}
}
void ColladaImport::create_animations(bool p_make_tracks_in_all_bones, bool p_import_value_tracks) {
_fix_param_animation_tracks();
for(int i=0;i<collada.state.animation_clips.size();i++) {
for(int j=0;j<collada.state.animation_clips[i].tracks.size();j++)
tracks_in_clips.insert(collada.state.animation_clips[i].tracks[j]);
}
for(int i=0;i<collada.state.animation_tracks.size();i++) {
Collada::AnimationTrack &at = collada.state.animation_tracks[i];
//print_line("CHANNEL: "+at.target+" PARAM: "+at.param);
String node;
if (!node_map.has(at.target)) {
if (node_name_map.has(at.target)) {
node=node_name_map[at.target];
} else {
print_line("Coudlnt find node: "+at.target);
continue;
}
} else {
node=at.target;
}
if (at.property) {
valid_animated_properties.push_back(i);
} else {
node_map[node].anim_tracks.push_back(i);
valid_animated_nodes.insert(node);
}
}
create_animation(-1,p_make_tracks_in_all_bones, p_import_value_tracks);
//print_line("clipcount: "+itos(collada.state.animation_clips.size()));
for(int i=0;i<collada.state.animation_clips.size();i++)
create_animation(i, p_make_tracks_in_all_bones, p_import_value_tracks);
}
void ColladaImport::create_animation(int p_clip, bool p_make_tracks_in_all_bones, bool p_import_value_tracks) {
Ref<Animation> animation = Ref<Animation>( memnew( Animation ));
if (p_clip==-1) {
//print_line("default");
animation->set_name("default");
} else {
//print_line("clip name: "+collada.state.animation_clips[p_clip].name);
animation->set_name(collada.state.animation_clips[p_clip].name);
}
for(Map<String,NodeMap>::Element *E=node_map.front();E;E=E->next()) {
if (E->get().bone<0)
continue;
bones_with_animation[E->key()]=false;
}
//store and validate tracks
if (p_clip==-1) {
//main anim
}
Set<int> track_filter;
if (p_clip==-1) {
for(int i=0;i<collada.state.animation_clips.size();i++) {
int tc = collada.state.animation_clips[i].tracks.size();
for(int j=0;j<tc;j++) {
String n = collada.state.animation_clips[i].tracks[j];
if (collada.state.by_id_tracks.has(n)) {
const Vector<int>&ti = collada.state.by_id_tracks[n];
for(int k=0;k<ti.size();k++) {
track_filter.insert(ti[k]);
}
}
}
}
} else {
int tc = collada.state.animation_clips[p_clip].tracks.size();
for(int j=0;j<tc;j++) {
String n = collada.state.animation_clips[p_clip].tracks[j];
if (collada.state.by_id_tracks.has(n)) {
const Vector<int>&ti = collada.state.by_id_tracks[n];
for(int k=0;k<ti.size();k++) {
track_filter.insert(ti[k]);
}
}
}
}
//animation->set_loop(true);
//create animation tracks
Vector<float> base_snapshots;
float f=0;
float snapshot_interval = 1.0/bake_fps; //should be customizable somewhere...
float anim_length=collada.state.animation_length;
if (p_clip>=0 && collada.state.animation_clips[p_clip].end)
anim_length=collada.state.animation_clips[p_clip].end;
while(f<anim_length) {
base_snapshots.push_back(f);
f+=snapshot_interval;
if (f>=anim_length) {
base_snapshots.push_back(anim_length);
}
}
//print_line("anim len: "+rtos(anim_length));
animation->set_length(anim_length);
bool tracks_found=false;
for(Set<String>::Element* E=valid_animated_nodes.front();E;E=E->next()) {
// take snapshots
if (!collada.state.scene_map.has(E->get())) {
continue;
}
NodeMap &nm = node_map[E->get()];
String path = scene->get_path_to(nm.node);
if (nm.bone>=0) {
Skeleton *sk = static_cast<Skeleton*>(nm.node);
String name = sk->get_bone_name(nm.bone);
path=path+":"+name;
}
bool found_anim=false;
Collada::Node *cn = collada.state.scene_map[E->get()];
if (cn->ignore_anim) {
continue;
}
animation->add_track(Animation::TYPE_TRANSFORM);
int track = animation->get_track_count() -1;
animation->track_set_path( track , path );
animation->track_set_imported( track , true ); //helps merging later
Vector<float> snapshots = base_snapshots;
if (nm.anim_tracks.size()==1) {
//use snapshot keys from anim track instead, because this was most likely exported baked
Collada::AnimationTrack &at = collada.state.animation_tracks[nm.anim_tracks.front()->get()];
snapshots.clear();
for(int i=0;i<at.keys.size();i++)
snapshots.push_back(at.keys[i].time);
}
for(int i=0;i<snapshots.size();i++) {
for(List<int>::Element *ET=nm.anim_tracks.front();ET;ET=ET->next()) {
//apply tracks
if (p_clip==-1) {
if (track_filter.has(ET->get())) {
continue;
}
} else {
if (!track_filter.has(ET->get()))
continue;
}
found_anim=true;
Collada::AnimationTrack &at = collada.state.animation_tracks[ET->get()];
int xform_idx=-1;
for(int j=0;j<cn->xform_list.size();j++) {
if (cn->xform_list[j].id==at.param) {
xform_idx=j;
break;
}
}
if (xform_idx==-1) {
print_line("couldnt find matching node "+at.target+" xform for track "+at.param);
continue;
}
ERR_CONTINUE(xform_idx==-1);
Vector<float> data = at.get_value_at_time(snapshots[i]);
ERR_CONTINUE(data.empty());
Collada::Node::XForm &xf = cn->xform_list[xform_idx];
if (at.component=="ANGLE") {
ERR_CONTINUE(data.size()!=1);
ERR_CONTINUE(xf.op!=Collada::Node::XForm::OP_ROTATE);
ERR_CONTINUE(xf.data.size()<4);
xf.data[3]=data[0];
} else if (at.component=="X" || at.component=="Y" || at.component=="Z") {
int cn=at.component[0]-'X';
ERR_CONTINUE(cn>=xf.data.size());
ERR_CONTINUE(data.size()>1);
xf.data[cn]=data[0];
} else if (data.size()==xf.data.size()) {
xf.data=data;
} else {
if ( data.size()!=xf.data.size() ) {
print_line("component "+at.component+" datasize "+itos(data.size())+" xfdatasize "+itos(xf.data.size()));
}
ERR_CONTINUE( data.size()!=xf.data.size() );
}
}
Transform xform = cn->compute_transform(collada);
xform = collada.fix_transform(xform) * cn->post_transform;
if (nm.bone>=0) {
//make bone transform relative to rest (in case of skeleton)
Skeleton *sk = nm.node->cast_to<Skeleton>();
if (sk) {
xform = sk->get_bone_rest(nm.bone).affine_inverse() * xform;
} else {
ERR_PRINT("INVALID SKELETON!!!!");
}
}
Quat q = xform.basis;
q.normalize();
Vector3 s = xform.basis.get_scale();
Vector3 l = xform.origin;
animation->transform_track_insert_key(track,snapshots[i],l,q,s);
}
if (nm.bone>=0) {
if (found_anim)
bones_with_animation[E->get()]=true;
}
if (found_anim)
tracks_found=true;
else {
animation->remove_track( track );
}
}
if (p_make_tracks_in_all_bones) {
//some bones may lack animation, but since we don't store pose as a property, we must add keyframes!
for(Map<String,bool>::Element *E=bones_with_animation.front();E;E=E->next()) {
if (E->get())
continue;
//print_line("BONE LACKS ANIM: "+E->key());
NodeMap &nm = node_map[E->key()];
String path = scene->get_path_to(nm.node);
ERR_CONTINUE( nm.bone <0 );
Skeleton *sk = static_cast<Skeleton*>(nm.node);
String name = sk->get_bone_name(nm.bone);
path=path+":"+name;
Collada::Node *cn = collada.state.scene_map[E->key()];
if (cn->ignore_anim) {
print_line("warning, ignoring animation on node: "+path);
continue;
}
animation->add_track(Animation::TYPE_TRANSFORM);
int track = animation->get_track_count() -1;
animation->track_set_path( track , path );
animation->track_set_imported( track , true ); //helps merging later
Transform xform = cn->compute_transform(collada);
xform = collada.fix_transform(xform) * cn->post_transform;
xform = sk->get_bone_rest(nm.bone).affine_inverse() * xform;
Quat q = xform.basis;
q.normalize();
Vector3 s = xform.basis.get_scale();
Vector3 l = xform.origin;
animation->transform_track_insert_key(track,0,l,q,s);
tracks_found=true;
}
}
if (p_import_value_tracks) {
for (int i = 0; i < valid_animated_properties.size(); i++) {
int ti = valid_animated_properties[i];
if (p_clip == -1) {
if (track_filter.has(ti))
continue;
}
else {
if (!track_filter.has(ti))
continue;
}
Collada::AnimationTrack &at = collada.state.animation_tracks[ti];
// take snapshots
if (!collada.state.scene_map.has(at.target))
continue;
NodeMap &nm = node_map[at.target];
String path = scene->get_path_to(nm.node);
animation->add_track(Animation::TYPE_VALUE);
int track = animation->get_track_count() - 1;
path = path + ":" + at.param;
animation->track_set_path(track, path);
animation->track_set_imported(track, true); //helps merging later
for (int i = 0; i < at.keys.size(); i++) {
float time = at.keys[i].time;
Variant value;
Vector<float> data = at.keys[i].data;
if (data.size() == 1) {
//push a float
value = data[0];
}
else if (data.size() == 16) {
//matrix
print_line("value keys for matrices not supported");
}
else {
print_line("don't know what to do with this amount of value keys: " + itos(data.size()));
}
animation->track_insert_key(track, time, value);
}
tracks_found = true;
}
}
if (tracks_found) {
animations.push_back(animation);
}
}
/*********************************************************************************/
/*************************************** SCENE ***********************************/
/*********************************************************************************/
#define DEBUG_ANIMATION
uint32_t EditorSceneImporterCollada::get_import_flags() const {
return IMPORT_SCENE|IMPORT_ANIMATION;
}
void EditorSceneImporterCollada::get_extensions(List<String> *r_extensions) const {
r_extensions->push_back("dae");
}
Node* EditorSceneImporterCollada::import_scene(const String& p_path, uint32_t p_flags,int p_bake_fps, List<String> *r_missing_deps, Error* r_err) {
ColladaImport state;
uint32_t flags=Collada::IMPORT_FLAG_SCENE;
if (p_flags&IMPORT_ANIMATION)
flags|=Collada::IMPORT_FLAG_ANIMATION;
state.use_mesh_builtin_materials=!(p_flags&IMPORT_MATERIALS_IN_INSTANCES);
state.bake_fps=p_bake_fps;
Error err = state.load(p_path,flags,p_flags&EditorSceneImporter::IMPORT_GENERATE_TANGENT_ARRAYS);
ERR_FAIL_COND_V(err!=OK,NULL);
if (state.missing_textures.size()) {
/*
for(int i=0;i<state.missing_textures.size();i++) {
EditorNode::add_io_error("Texture Not Found: "+state.missing_textures[i]);
}
*/
if (r_missing_deps) {
for(int i=0;i<state.missing_textures.size();i++) {
//EditorNode::add_io_error("Texture Not Found: "+state.missing_textures[i]);
r_missing_deps->push_back(state.missing_textures[i]);
}
}
}
if (p_flags&IMPORT_ANIMATION) {
state.create_animations(p_flags&IMPORT_ANIMATION_FORCE_ALL_TRACKS_IN_ALL_CLIPS,p_flags&EditorSceneImporter::IMPORT_ANIMATION_KEEP_VALUE_TRACKS);
AnimationPlayer *ap = memnew( AnimationPlayer );
for(int i=0;i<state.animations.size();i++) {
String name;
if (state.animations[i]->get_name()=="")
name="default";
else
name=state.animations[i]->get_name();
if (p_flags&IMPORT_ANIMATION_DETECT_LOOP) {
if (name.begins_with("loop") || name.ends_with("loop") || name.begins_with("cycle") || name.ends_with("cycle")) {
state.animations[i]->set_loop(true);
}
}
ap->add_animation(name,state.animations[i]);
}
state.scene->add_child(ap);
ap->set_owner(state.scene);
}
return state.scene;
}
Ref<Animation> EditorSceneImporterCollada::import_animation(const String& p_path,uint32_t p_flags) {
ColladaImport state;
state.use_mesh_builtin_materials=false;
Error err = state.load(p_path,Collada::IMPORT_FLAG_ANIMATION,p_flags&EditorSceneImporter::IMPORT_GENERATE_TANGENT_ARRAYS);
ERR_FAIL_COND_V(err!=OK,RES());
state.create_animations(p_flags&EditorSceneImporter::IMPORT_ANIMATION_FORCE_ALL_TRACKS_IN_ALL_CLIPS,p_flags&EditorSceneImporter::IMPORT_ANIMATION_KEEP_VALUE_TRACKS);
if (state.scene)
memdelete(state.scene);
if (state.animations.size()==0)
return Ref<Animation>();
Ref<Animation> anim=state.animations[0];
anim=state.animations[0];
print_line("Anim Load OK");
String base = p_path.get_basename().to_lower();
if (p_flags&IMPORT_ANIMATION_DETECT_LOOP) {
if (base.begins_with("loop") || base.ends_with("loop") || base.begins_with("cycle") || base.ends_with("cycle")) {
anim->set_loop(true);
}
}
return anim;
}
EditorSceneImporterCollada::EditorSceneImporterCollada() {
}