godot/scene/3d/cpu_particles.cpp
Rémi Verschelde a7f49ac9a1 Update copyright statements to 2020
Happy new year to the wonderful Godot community!

We're starting a new decade with a well-established, non-profit, free
and open source game engine, and tons of further improvements in the
pipeline from hundreds of contributors.

Godot will keep getting better, and we're looking forward to all the
games that the community will keep developing and releasing with it.
2020-01-01 11:16:22 +01:00

1568 lines
55 KiB
C++

/*************************************************************************/
/* cpu_particles.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "cpu_particles.h"
#include "scene/3d/camera.h"
#include "scene/3d/particles.h"
#include "scene/resources/particles_material.h"
#include "servers/visual_server.h"
AABB CPUParticles::get_aabb() const {
return AABB();
}
PoolVector<Face3> CPUParticles::get_faces(uint32_t p_usage_flags) const {
return PoolVector<Face3>();
}
void CPUParticles::set_emitting(bool p_emitting) {
if (emitting == p_emitting)
return;
emitting = p_emitting;
if (emitting) {
set_process_internal(true);
// first update before rendering to avoid one frame delay after emitting starts
if (time == 0)
_update_internal();
}
}
void CPUParticles::set_amount(int p_amount) {
ERR_FAIL_COND_MSG(p_amount < 1, "Amount of particles must be greater than 0.");
particles.resize(p_amount);
{
PoolVector<Particle>::Write w = particles.write();
for (int i = 0; i < p_amount; i++) {
w[i].active = false;
}
}
particle_data.resize((12 + 4 + 1) * p_amount);
VS::get_singleton()->multimesh_allocate(multimesh, p_amount, VS::MULTIMESH_TRANSFORM_3D, VS::MULTIMESH_COLOR_8BIT, VS::MULTIMESH_CUSTOM_DATA_FLOAT);
particle_order.resize(p_amount);
}
void CPUParticles::set_lifetime(float p_lifetime) {
ERR_FAIL_COND_MSG(p_lifetime <= 0, "Particles lifetime must be greater than 0.");
lifetime = p_lifetime;
}
void CPUParticles::set_one_shot(bool p_one_shot) {
one_shot = p_one_shot;
}
void CPUParticles::set_pre_process_time(float p_time) {
pre_process_time = p_time;
}
void CPUParticles::set_explosiveness_ratio(float p_ratio) {
explosiveness_ratio = p_ratio;
}
void CPUParticles::set_randomness_ratio(float p_ratio) {
randomness_ratio = p_ratio;
}
void CPUParticles::set_lifetime_randomness(float p_random) {
lifetime_randomness = p_random;
}
void CPUParticles::set_use_local_coordinates(bool p_enable) {
local_coords = p_enable;
}
void CPUParticles::set_speed_scale(float p_scale) {
speed_scale = p_scale;
}
bool CPUParticles::is_emitting() const {
return emitting;
}
int CPUParticles::get_amount() const {
return particles.size();
}
float CPUParticles::get_lifetime() const {
return lifetime;
}
bool CPUParticles::get_one_shot() const {
return one_shot;
}
float CPUParticles::get_pre_process_time() const {
return pre_process_time;
}
float CPUParticles::get_explosiveness_ratio() const {
return explosiveness_ratio;
}
float CPUParticles::get_randomness_ratio() const {
return randomness_ratio;
}
float CPUParticles::get_lifetime_randomness() const {
return lifetime_randomness;
}
bool CPUParticles::get_use_local_coordinates() const {
return local_coords;
}
float CPUParticles::get_speed_scale() const {
return speed_scale;
}
void CPUParticles::set_draw_order(DrawOrder p_order) {
draw_order = p_order;
}
CPUParticles::DrawOrder CPUParticles::get_draw_order() const {
return draw_order;
}
void CPUParticles::set_mesh(const Ref<Mesh> &p_mesh) {
mesh = p_mesh;
if (mesh.is_valid()) {
VS::get_singleton()->multimesh_set_mesh(multimesh, mesh->get_rid());
} else {
VS::get_singleton()->multimesh_set_mesh(multimesh, RID());
}
}
Ref<Mesh> CPUParticles::get_mesh() const {
return mesh;
}
void CPUParticles::set_fixed_fps(int p_count) {
fixed_fps = p_count;
}
int CPUParticles::get_fixed_fps() const {
return fixed_fps;
}
void CPUParticles::set_fractional_delta(bool p_enable) {
fractional_delta = p_enable;
}
bool CPUParticles::get_fractional_delta() const {
return fractional_delta;
}
String CPUParticles::get_configuration_warning() const {
String warnings;
bool mesh_found = false;
bool anim_material_found = false;
if (get_mesh().is_valid()) {
mesh_found = true;
for (int j = 0; j < get_mesh()->get_surface_count(); j++) {
anim_material_found = Object::cast_to<ShaderMaterial>(get_mesh()->surface_get_material(j).ptr()) != NULL;
SpatialMaterial *spat = Object::cast_to<SpatialMaterial>(get_mesh()->surface_get_material(j).ptr());
anim_material_found = anim_material_found || (spat && spat->get_billboard_mode() == SpatialMaterial::BILLBOARD_PARTICLES);
}
}
anim_material_found = anim_material_found || Object::cast_to<ShaderMaterial>(get_material_override().ptr()) != NULL;
SpatialMaterial *spat = Object::cast_to<SpatialMaterial>(get_material_override().ptr());
anim_material_found = anim_material_found || (spat && spat->get_billboard_mode() == SpatialMaterial::BILLBOARD_PARTICLES);
if (!mesh_found) {
if (warnings != String())
warnings += "\n";
warnings += "- " + TTR("Nothing is visible because no mesh has been assigned.");
}
if (!anim_material_found && (get_param(PARAM_ANIM_SPEED) != 0.0 || get_param(PARAM_ANIM_OFFSET) != 0.0 ||
get_param_curve(PARAM_ANIM_SPEED).is_valid() || get_param_curve(PARAM_ANIM_OFFSET).is_valid())) {
if (warnings != String())
warnings += "\n";
warnings += "- " + TTR("CPUParticles animation requires the usage of a SpatialMaterial whose Billboard Mode is set to \"Particle Billboard\".");
}
return warnings;
}
void CPUParticles::restart() {
time = 0;
inactive_time = 0;
frame_remainder = 0;
cycle = 0;
emitting = false;
{
int pc = particles.size();
PoolVector<Particle>::Write w = particles.write();
for (int i = 0; i < pc; i++) {
w[i].active = false;
}
}
set_emitting(true);
}
void CPUParticles::set_direction(Vector3 p_direction) {
direction = p_direction;
}
Vector3 CPUParticles::get_direction() const {
return direction;
}
void CPUParticles::set_spread(float p_spread) {
spread = p_spread;
}
float CPUParticles::get_spread() const {
return spread;
}
void CPUParticles::set_flatness(float p_flatness) {
flatness = p_flatness;
}
float CPUParticles::get_flatness() const {
return flatness;
}
void CPUParticles::set_param(Parameter p_param, float p_value) {
ERR_FAIL_INDEX(p_param, PARAM_MAX);
parameters[p_param] = p_value;
}
float CPUParticles::get_param(Parameter p_param) const {
ERR_FAIL_INDEX_V(p_param, PARAM_MAX, 0);
return parameters[p_param];
}
void CPUParticles::set_param_randomness(Parameter p_param, float p_value) {
ERR_FAIL_INDEX(p_param, PARAM_MAX);
randomness[p_param] = p_value;
}
float CPUParticles::get_param_randomness(Parameter p_param) const {
ERR_FAIL_INDEX_V(p_param, PARAM_MAX, 0);
return randomness[p_param];
}
static void _adjust_curve_range(const Ref<Curve> &p_curve, float p_min, float p_max) {
Ref<Curve> curve = p_curve;
if (!curve.is_valid())
return;
curve->ensure_default_setup(p_min, p_max);
}
void CPUParticles::set_param_curve(Parameter p_param, const Ref<Curve> &p_curve) {
ERR_FAIL_INDEX(p_param, PARAM_MAX);
curve_parameters[p_param] = p_curve;
switch (p_param) {
case PARAM_INITIAL_LINEAR_VELOCITY: {
//do none for this one
} break;
case PARAM_ANGULAR_VELOCITY: {
_adjust_curve_range(p_curve, -360, 360);
} break;
case PARAM_ORBIT_VELOCITY: {
_adjust_curve_range(p_curve, -500, 500);
} break;
case PARAM_LINEAR_ACCEL: {
_adjust_curve_range(p_curve, -200, 200);
} break;
case PARAM_RADIAL_ACCEL: {
_adjust_curve_range(p_curve, -200, 200);
} break;
case PARAM_TANGENTIAL_ACCEL: {
_adjust_curve_range(p_curve, -200, 200);
} break;
case PARAM_DAMPING: {
_adjust_curve_range(p_curve, 0, 100);
} break;
case PARAM_ANGLE: {
_adjust_curve_range(p_curve, -360, 360);
} break;
case PARAM_SCALE: {
} break;
case PARAM_HUE_VARIATION: {
_adjust_curve_range(p_curve, -1, 1);
} break;
case PARAM_ANIM_SPEED: {
_adjust_curve_range(p_curve, 0, 200);
} break;
case PARAM_ANIM_OFFSET: {
} break;
default: {
}
}
}
Ref<Curve> CPUParticles::get_param_curve(Parameter p_param) const {
ERR_FAIL_INDEX_V(p_param, PARAM_MAX, Ref<Curve>());
return curve_parameters[p_param];
}
void CPUParticles::set_color(const Color &p_color) {
color = p_color;
}
Color CPUParticles::get_color() const {
return color;
}
void CPUParticles::set_color_ramp(const Ref<Gradient> &p_ramp) {
color_ramp = p_ramp;
}
Ref<Gradient> CPUParticles::get_color_ramp() const {
return color_ramp;
}
void CPUParticles::set_particle_flag(Flags p_flag, bool p_enable) {
ERR_FAIL_INDEX(p_flag, FLAG_MAX);
flags[p_flag] = p_enable;
if (p_flag == FLAG_DISABLE_Z) {
_change_notify();
}
}
bool CPUParticles::get_particle_flag(Flags p_flag) const {
ERR_FAIL_INDEX_V(p_flag, FLAG_MAX, false);
return flags[p_flag];
}
void CPUParticles::set_emission_shape(EmissionShape p_shape) {
emission_shape = p_shape;
}
void CPUParticles::set_emission_sphere_radius(float p_radius) {
emission_sphere_radius = p_radius;
}
void CPUParticles::set_emission_box_extents(Vector3 p_extents) {
emission_box_extents = p_extents;
}
void CPUParticles::set_emission_points(const PoolVector<Vector3> &p_points) {
emission_points = p_points;
}
void CPUParticles::set_emission_normals(const PoolVector<Vector3> &p_normals) {
emission_normals = p_normals;
}
void CPUParticles::set_emission_colors(const PoolVector<Color> &p_colors) {
emission_colors = p_colors;
}
float CPUParticles::get_emission_sphere_radius() const {
return emission_sphere_radius;
}
Vector3 CPUParticles::get_emission_box_extents() const {
return emission_box_extents;
}
PoolVector<Vector3> CPUParticles::get_emission_points() const {
return emission_points;
}
PoolVector<Vector3> CPUParticles::get_emission_normals() const {
return emission_normals;
}
PoolVector<Color> CPUParticles::get_emission_colors() const {
return emission_colors;
}
CPUParticles::EmissionShape CPUParticles::get_emission_shape() const {
return emission_shape;
}
void CPUParticles::set_gravity(const Vector3 &p_gravity) {
gravity = p_gravity;
}
Vector3 CPUParticles::get_gravity() const {
return gravity;
}
void CPUParticles::_validate_property(PropertyInfo &property) const {
if (property.name == "color" && color_ramp.is_valid()) {
property.usage = 0;
}
if (property.name == "emission_sphere_radius" && emission_shape != EMISSION_SHAPE_SPHERE) {
property.usage = 0;
}
if (property.name == "emission_box_extents" && emission_shape != EMISSION_SHAPE_BOX) {
property.usage = 0;
}
if ((property.name == "emission_point_texture" || property.name == "emission_color_texture") && (emission_shape < EMISSION_SHAPE_POINTS)) {
property.usage = 0;
}
if (property.name == "emission_normals" && emission_shape != EMISSION_SHAPE_DIRECTED_POINTS) {
property.usage = 0;
}
if (property.name.begins_with("orbit_") && !flags[FLAG_DISABLE_Z]) {
property.usage = 0;
}
}
static uint32_t idhash(uint32_t x) {
x = ((x >> uint32_t(16)) ^ x) * uint32_t(0x45d9f3b);
x = ((x >> uint32_t(16)) ^ x) * uint32_t(0x45d9f3b);
x = (x >> uint32_t(16)) ^ x;
return x;
}
static float rand_from_seed(uint32_t &seed) {
int k;
int s = int(seed);
if (s == 0)
s = 305420679;
k = s / 127773;
s = 16807 * (s - k * 127773) - 2836 * k;
if (s < 0)
s += 2147483647;
seed = uint32_t(s);
return float(seed % uint32_t(65536)) / 65535.0;
}
void CPUParticles::_update_internal() {
if (particles.size() == 0 || !is_visible_in_tree()) {
_set_redraw(false);
return;
}
float delta = get_process_delta_time();
if (emitting) {
inactive_time = 0;
} else {
inactive_time += delta;
if (inactive_time > lifetime * 1.2) {
set_process_internal(false);
_set_redraw(false);
//reset variables
time = 0;
inactive_time = 0;
frame_remainder = 0;
cycle = 0;
return;
}
}
_set_redraw(true);
bool processed = false;
if (time == 0 && pre_process_time > 0.0) {
float frame_time;
if (fixed_fps > 0)
frame_time = 1.0 / fixed_fps;
else
frame_time = 1.0 / 30.0;
float todo = pre_process_time;
while (todo >= 0) {
_particles_process(frame_time);
processed = true;
todo -= frame_time;
}
}
if (fixed_fps > 0) {
float frame_time = 1.0 / fixed_fps;
float decr = frame_time;
float ldelta = delta;
if (ldelta > 0.1) { //avoid recursive stalls if fps goes below 10
ldelta = 0.1;
} else if (ldelta <= 0.0) { //unlikely but..
ldelta = 0.001;
}
float todo = frame_remainder + ldelta;
while (todo >= frame_time) {
_particles_process(frame_time);
processed = true;
todo -= decr;
}
frame_remainder = todo;
} else {
_particles_process(delta);
processed = true;
}
if (processed) {
_update_particle_data_buffer();
}
}
void CPUParticles::_particles_process(float p_delta) {
p_delta *= speed_scale;
int pcount = particles.size();
PoolVector<Particle>::Write w = particles.write();
Particle *parray = w.ptr();
float prev_time = time;
time += p_delta;
if (time > lifetime) {
time = Math::fmod(time, lifetime);
cycle++;
if (one_shot && cycle > 0) {
set_emitting(false);
_change_notify();
}
}
Transform emission_xform;
Basis velocity_xform;
if (!local_coords) {
emission_xform = get_global_transform();
velocity_xform = emission_xform.basis;
}
float system_phase = time / lifetime;
for (int i = 0; i < pcount; i++) {
Particle &p = parray[i];
if (!emitting && !p.active)
continue;
float local_delta = p_delta;
// The phase is a ratio between 0 (birth) and 1 (end of life) for each particle.
// While we use time in tests later on, for randomness we use the phase as done in the
// original shader code, and we later multiply by lifetime to get the time.
float restart_phase = float(i) / float(pcount);
if (randomness_ratio > 0.0) {
uint32_t seed = cycle;
if (restart_phase >= system_phase) {
seed -= uint32_t(1);
}
seed *= uint32_t(pcount);
seed += uint32_t(i);
float random = float(idhash(seed) % uint32_t(65536)) / 65536.0;
restart_phase += randomness_ratio * random * 1.0 / float(pcount);
}
restart_phase *= (1.0 - explosiveness_ratio);
float restart_time = restart_phase * lifetime;
bool restart = false;
if (time > prev_time) {
// restart_time >= prev_time is used so particles emit in the first frame they are processed
if (restart_time >= prev_time && restart_time < time) {
restart = true;
if (fractional_delta) {
local_delta = time - restart_time;
}
}
} else if (local_delta > 0.0) {
if (restart_time >= prev_time) {
restart = true;
if (fractional_delta) {
local_delta = lifetime - restart_time + time;
}
} else if (restart_time < time) {
restart = true;
if (fractional_delta) {
local_delta = time - restart_time;
}
}
}
if (p.time * (1.0 - explosiveness_ratio) > p.lifetime) {
restart = true;
}
if (restart) {
if (!emitting) {
p.active = false;
continue;
}
p.active = true;
/*float tex_linear_velocity = 0;
if (curve_parameters[PARAM_INITIAL_LINEAR_VELOCITY].is_valid()) {
tex_linear_velocity = curve_parameters[PARAM_INITIAL_LINEAR_VELOCITY]->interpolate(0);
}*/
float tex_angle = 0.0;
if (curve_parameters[PARAM_ANGLE].is_valid()) {
tex_angle = curve_parameters[PARAM_ANGLE]->interpolate(0);
}
float tex_anim_offset = 0.0;
if (curve_parameters[PARAM_ANGLE].is_valid()) {
tex_anim_offset = curve_parameters[PARAM_ANGLE]->interpolate(0);
}
p.seed = Math::rand();
p.angle_rand = Math::randf();
p.scale_rand = Math::randf();
p.hue_rot_rand = Math::randf();
p.anim_offset_rand = Math::randf();
if (flags[FLAG_DISABLE_Z]) {
float angle1_rad = Math::atan2(direction.y, direction.x) + (Math::randf() * 2.0 - 1.0) * Math_PI * spread / 180.0;
Vector3 rot = Vector3(Math::cos(angle1_rad), Math::sin(angle1_rad), 0.0);
p.velocity = rot * parameters[PARAM_INITIAL_LINEAR_VELOCITY] * Math::lerp(1.0f, float(Math::randf()), randomness[PARAM_INITIAL_LINEAR_VELOCITY]);
} else {
//initiate velocity spread in 3D
float angle1_rad = Math::atan2(direction.x, direction.z) + (Math::randf() * 2.0 - 1.0) * Math_PI * spread / 180.0;
float angle2_rad = Math::atan2(direction.y, Math::abs(direction.z)) + (Math::randf() * 2.0 - 1.0) * (1.0 - flatness) * Math_PI * spread / 180.0;
Vector3 direction_xz = Vector3(Math::sin(angle1_rad), 0, Math::cos(angle1_rad));
Vector3 direction_yz = Vector3(0, Math::sin(angle2_rad), Math::cos(angle2_rad));
direction_yz.z = direction_yz.z / MAX(0.0001, Math::sqrt(ABS(direction_yz.z))); //better uniform distribution
Vector3 direction = Vector3(direction_xz.x * direction_yz.z, direction_yz.y, direction_xz.z * direction_yz.z);
direction.normalize();
p.velocity = direction * parameters[PARAM_INITIAL_LINEAR_VELOCITY] * Math::lerp(1.0f, float(Math::randf()), randomness[PARAM_INITIAL_LINEAR_VELOCITY]);
}
float base_angle = (parameters[PARAM_ANGLE] + tex_angle) * Math::lerp(1.0f, p.angle_rand, randomness[PARAM_ANGLE]);
p.custom[0] = Math::deg2rad(base_angle); //angle
p.custom[1] = 0.0; //phase
p.custom[2] = (parameters[PARAM_ANIM_OFFSET] + tex_anim_offset) * Math::lerp(1.0f, p.anim_offset_rand, randomness[PARAM_ANIM_OFFSET]); //animation offset (0-1)
p.transform = Transform();
p.time = 0;
p.lifetime = lifetime * (1.0 - Math::randf() * lifetime_randomness);
p.base_color = Color(1, 1, 1, 1);
switch (emission_shape) {
case EMISSION_SHAPE_POINT: {
//do none
} break;
case EMISSION_SHAPE_SPHERE: {
float s = 2.0 * Math::randf() - 1.0, t = 2.0 * Math_PI * Math::randf();
float radius = emission_sphere_radius * Math::sqrt(1.0 - s * s);
p.transform.origin = Vector3(radius * Math::cos(t), radius * Math::sin(t), emission_sphere_radius * s);
} break;
case EMISSION_SHAPE_BOX: {
p.transform.origin = Vector3(Math::randf() * 2.0 - 1.0, Math::randf() * 2.0 - 1.0, Math::randf() * 2.0 - 1.0) * emission_box_extents;
} break;
case EMISSION_SHAPE_POINTS:
case EMISSION_SHAPE_DIRECTED_POINTS: {
int pc = emission_points.size();
if (pc == 0)
break;
int random_idx = Math::rand() % pc;
p.transform.origin = emission_points.get(random_idx);
if (emission_shape == EMISSION_SHAPE_DIRECTED_POINTS && emission_normals.size() == pc) {
if (flags[FLAG_DISABLE_Z]) {
/*
mat2 rotm;
";
rotm[0] = texelFetch(emission_texture_normal, emission_tex_ofs, 0).xy;
rotm[1] = rotm[0].yx * vec2(1.0, -1.0);
VELOCITY.xy = rotm * VELOCITY.xy;
*/
} else {
Vector3 normal = emission_normals.get(random_idx);
Vector3 v0 = Math::abs(normal.z) < 0.999 ? Vector3(0.0, 0.0, 1.0) : Vector3(0, 1.0, 0.0);
Vector3 tangent = v0.cross(normal).normalized();
Vector3 bitangent = tangent.cross(normal).normalized();
Basis m3;
m3.set_axis(0, tangent);
m3.set_axis(1, bitangent);
m3.set_axis(2, normal);
p.velocity = m3.xform(p.velocity);
}
}
if (emission_colors.size() == pc) {
p.base_color = emission_colors.get(random_idx);
}
} break;
}
if (!local_coords) {
p.velocity = velocity_xform.xform(p.velocity);
p.transform = emission_xform * p.transform;
}
if (flags[FLAG_DISABLE_Z]) {
p.velocity.z = 0.0;
p.transform.origin.z = 0.0;
}
} else if (!p.active) {
continue;
} else if (p.time > p.lifetime) {
p.active = false;
} else {
uint32_t alt_seed = p.seed;
p.time += local_delta;
p.custom[1] = p.time / lifetime;
float tex_linear_velocity = 0.0;
if (curve_parameters[PARAM_INITIAL_LINEAR_VELOCITY].is_valid()) {
tex_linear_velocity = curve_parameters[PARAM_INITIAL_LINEAR_VELOCITY]->interpolate(p.custom[1]);
}
float tex_orbit_velocity = 0.0;
if (flags[FLAG_DISABLE_Z]) {
if (curve_parameters[PARAM_ORBIT_VELOCITY].is_valid()) {
tex_orbit_velocity = curve_parameters[PARAM_ORBIT_VELOCITY]->interpolate(p.custom[1]);
}
}
float tex_angular_velocity = 0.0;
if (curve_parameters[PARAM_ANGULAR_VELOCITY].is_valid()) {
tex_angular_velocity = curve_parameters[PARAM_ANGULAR_VELOCITY]->interpolate(p.custom[1]);
}
float tex_linear_accel = 0.0;
if (curve_parameters[PARAM_LINEAR_ACCEL].is_valid()) {
tex_linear_accel = curve_parameters[PARAM_LINEAR_ACCEL]->interpolate(p.custom[1]);
}
float tex_tangential_accel = 0.0;
if (curve_parameters[PARAM_TANGENTIAL_ACCEL].is_valid()) {
tex_tangential_accel = curve_parameters[PARAM_TANGENTIAL_ACCEL]->interpolate(p.custom[1]);
}
float tex_radial_accel = 0.0;
if (curve_parameters[PARAM_RADIAL_ACCEL].is_valid()) {
tex_radial_accel = curve_parameters[PARAM_RADIAL_ACCEL]->interpolate(p.custom[1]);
}
float tex_damping = 0.0;
if (curve_parameters[PARAM_DAMPING].is_valid()) {
tex_damping = curve_parameters[PARAM_DAMPING]->interpolate(p.custom[1]);
}
float tex_angle = 0.0;
if (curve_parameters[PARAM_ANGLE].is_valid()) {
tex_angle = curve_parameters[PARAM_ANGLE]->interpolate(p.custom[1]);
}
float tex_anim_speed = 0.0;
if (curve_parameters[PARAM_ANIM_SPEED].is_valid()) {
tex_anim_speed = curve_parameters[PARAM_ANIM_SPEED]->interpolate(p.custom[1]);
}
float tex_anim_offset = 0.0;
if (curve_parameters[PARAM_ANIM_OFFSET].is_valid()) {
tex_anim_offset = curve_parameters[PARAM_ANIM_OFFSET]->interpolate(p.custom[1]);
}
Vector3 force = gravity;
Vector3 position = p.transform.origin;
if (flags[FLAG_DISABLE_Z]) {
position.z = 0.0;
}
//apply linear acceleration
force += p.velocity.length() > 0.0 ? p.velocity.normalized() * (parameters[PARAM_LINEAR_ACCEL] + tex_linear_accel) * Math::lerp(1.0f, rand_from_seed(alt_seed), randomness[PARAM_LINEAR_ACCEL]) : Vector3();
//apply radial acceleration
Vector3 org = emission_xform.origin;
Vector3 diff = position - org;
force += diff.length() > 0.0 ? diff.normalized() * (parameters[PARAM_RADIAL_ACCEL] + tex_radial_accel) * Math::lerp(1.0f, rand_from_seed(alt_seed), randomness[PARAM_RADIAL_ACCEL]) : Vector3();
//apply tangential acceleration;
if (flags[FLAG_DISABLE_Z]) {
Vector2 yx = Vector2(diff.y, diff.x);
Vector2 yx2 = (yx * Vector2(-1.0, 1.0)).normalized();
force += yx.length() > 0.0 ? Vector3(yx2.x, yx2.y, 0.0) * ((parameters[PARAM_TANGENTIAL_ACCEL] + tex_tangential_accel) * Math::lerp(1.0f, rand_from_seed(alt_seed), randomness[PARAM_TANGENTIAL_ACCEL])) : Vector3();
} else {
Vector3 crossDiff = diff.normalized().cross(gravity.normalized());
force += crossDiff.length() > 0.0 ? crossDiff.normalized() * ((parameters[PARAM_TANGENTIAL_ACCEL] + tex_tangential_accel) * Math::lerp(1.0f, rand_from_seed(alt_seed), randomness[PARAM_TANGENTIAL_ACCEL])) : Vector3();
}
//apply attractor forces
p.velocity += force * local_delta;
//orbit velocity
if (flags[FLAG_DISABLE_Z]) {
float orbit_amount = (parameters[PARAM_ORBIT_VELOCITY] + tex_orbit_velocity) * Math::lerp(1.0f, rand_from_seed(alt_seed), randomness[PARAM_ORBIT_VELOCITY]);
if (orbit_amount != 0.0) {
float ang = orbit_amount * local_delta * Math_PI * 2.0;
// Not sure why the ParticlesMaterial code uses a clockwise rotation matrix,
// but we use -ang here to reproduce its behavior.
Transform2D rot = Transform2D(-ang, Vector2());
Vector2 rotv = rot.basis_xform(Vector2(diff.x, diff.y));
p.transform.origin -= Vector3(diff.x, diff.y, 0);
p.transform.origin += Vector3(rotv.x, rotv.y, 0);
}
}
if (curve_parameters[PARAM_INITIAL_LINEAR_VELOCITY].is_valid()) {
p.velocity = p.velocity.normalized() * tex_linear_velocity;
}
if (parameters[PARAM_DAMPING] + tex_damping > 0.0) {
float v = p.velocity.length();
float damp = (parameters[PARAM_DAMPING] + tex_damping) * Math::lerp(1.0f, rand_from_seed(alt_seed), randomness[PARAM_DAMPING]);
v -= damp * local_delta;
if (v < 0.0) {
p.velocity = Vector3();
} else {
p.velocity = p.velocity.normalized() * v;
}
}
float base_angle = (parameters[PARAM_ANGLE] + tex_angle) * Math::lerp(1.0f, p.angle_rand, randomness[PARAM_ANGLE]);
base_angle += p.custom[1] * lifetime * (parameters[PARAM_ANGULAR_VELOCITY] + tex_angular_velocity) * Math::lerp(1.0f, rand_from_seed(alt_seed) * 2.0f - 1.0f, randomness[PARAM_ANGULAR_VELOCITY]);
p.custom[0] = Math::deg2rad(base_angle); //angle
p.custom[2] = (parameters[PARAM_ANIM_OFFSET] + tex_anim_offset) * Math::lerp(1.0f, p.anim_offset_rand, randomness[PARAM_ANIM_OFFSET]) + p.custom[1] * (parameters[PARAM_ANIM_SPEED] + tex_anim_speed) * Math::lerp(1.0f, rand_from_seed(alt_seed), randomness[PARAM_ANIM_SPEED]); //angle
}
//apply color
//apply hue rotation
float tex_scale = 1.0;
if (curve_parameters[PARAM_SCALE].is_valid()) {
tex_scale = curve_parameters[PARAM_SCALE]->interpolate(p.custom[1]);
}
float tex_hue_variation = 0.0;
if (curve_parameters[PARAM_HUE_VARIATION].is_valid()) {
tex_hue_variation = curve_parameters[PARAM_HUE_VARIATION]->interpolate(p.custom[1]);
}
float hue_rot_angle = (parameters[PARAM_HUE_VARIATION] + tex_hue_variation) * Math_PI * 2.0 * Math::lerp(1.0f, p.hue_rot_rand * 2.0f - 1.0f, randomness[PARAM_HUE_VARIATION]);
float hue_rot_c = Math::cos(hue_rot_angle);
float hue_rot_s = Math::sin(hue_rot_angle);
Basis hue_rot_mat;
{
Basis mat1(0.299, 0.587, 0.114, 0.299, 0.587, 0.114, 0.299, 0.587, 0.114);
Basis mat2(0.701, -0.587, -0.114, -0.299, 0.413, -0.114, -0.300, -0.588, 0.886);
Basis mat3(0.168, 0.330, -0.497, -0.328, 0.035, 0.292, 1.250, -1.050, -0.203);
for (int j = 0; j < 3; j++) {
hue_rot_mat[j] = mat1[j] + mat2[j] * hue_rot_c + mat3[j] * hue_rot_s;
}
}
if (color_ramp.is_valid()) {
p.color = color_ramp->get_color_at_offset(p.custom[1]) * color;
} else {
p.color = color;
}
Vector3 color_rgb = hue_rot_mat.xform_inv(Vector3(p.color.r, p.color.g, p.color.b));
p.color.r = color_rgb.x;
p.color.g = color_rgb.y;
p.color.b = color_rgb.z;
p.color *= p.base_color;
if (flags[FLAG_DISABLE_Z]) {
if (flags[FLAG_ALIGN_Y_TO_VELOCITY]) {
if (p.velocity.length() > 0.0) {
p.transform.basis.set_axis(1, p.velocity.normalized());
} else {
p.transform.basis.set_axis(1, p.transform.basis.get_axis(1));
}
p.transform.basis.set_axis(0, p.transform.basis.get_axis(1).cross(p.transform.basis.get_axis(2)).normalized());
p.transform.basis.set_axis(2, Vector3(0, 0, 1));
} else {
p.transform.basis.set_axis(0, Vector3(Math::cos(p.custom[0]), -Math::sin(p.custom[0]), 0.0));
p.transform.basis.set_axis(1, Vector3(Math::sin(p.custom[0]), Math::cos(p.custom[0]), 0.0));
p.transform.basis.set_axis(2, Vector3(0, 0, 1));
}
} else {
//orient particle Y towards velocity
if (flags[FLAG_ALIGN_Y_TO_VELOCITY]) {
if (p.velocity.length() > 0.0) {
p.transform.basis.set_axis(1, p.velocity.normalized());
} else {
p.transform.basis.set_axis(1, p.transform.basis.get_axis(1).normalized());
}
if (p.transform.basis.get_axis(1) == p.transform.basis.get_axis(0)) {
p.transform.basis.set_axis(0, p.transform.basis.get_axis(1).cross(p.transform.basis.get_axis(2)).normalized());
p.transform.basis.set_axis(2, p.transform.basis.get_axis(0).cross(p.transform.basis.get_axis(1)).normalized());
} else {
p.transform.basis.set_axis(2, p.transform.basis.get_axis(0).cross(p.transform.basis.get_axis(1)).normalized());
p.transform.basis.set_axis(0, p.transform.basis.get_axis(1).cross(p.transform.basis.get_axis(2)).normalized());
}
} else {
p.transform.basis.orthonormalize();
}
//turn particle by rotation in Y
if (flags[FLAG_ROTATE_Y]) {
Basis rot_y(Vector3(0, 1, 0), p.custom[0]);
p.transform.basis = p.transform.basis * rot_y;
}
}
//scale by scale
float base_scale = tex_scale * Math::lerp(parameters[PARAM_SCALE], 1.0f, p.scale_rand * randomness[PARAM_SCALE]);
if (base_scale < 0.000001) base_scale = 0.000001;
p.transform.basis.scale(Vector3(1, 1, 1) * base_scale);
if (flags[FLAG_DISABLE_Z]) {
p.velocity.z = 0.0;
p.transform.origin.z = 0.0;
}
p.transform.origin += p.velocity * local_delta;
}
}
void CPUParticles::_update_particle_data_buffer() {
#ifndef NO_THREADS
update_mutex->lock();
#endif
{
int pc = particles.size();
PoolVector<int>::Write ow;
int *order = NULL;
PoolVector<float>::Write w = particle_data.write();
PoolVector<Particle>::Read r = particles.read();
float *ptr = w.ptr();
if (draw_order != DRAW_ORDER_INDEX) {
ow = particle_order.write();
order = ow.ptr();
for (int i = 0; i < pc; i++) {
order[i] = i;
}
if (draw_order == DRAW_ORDER_LIFETIME) {
SortArray<int, SortLifetime> sorter;
sorter.compare.particles = r.ptr();
sorter.sort(order, pc);
} else if (draw_order == DRAW_ORDER_VIEW_DEPTH) {
Camera *c = get_viewport()->get_camera();
if (c) {
Vector3 dir = c->get_global_transform().basis.get_axis(2); //far away to close
if (local_coords) {
// will look different from Particles in editor as this is based on the camera in the scenetree
// and not the editor camera
dir = inv_emission_transform.xform(dir).normalized();
} else {
dir = dir.normalized();
}
SortArray<int, SortAxis> sorter;
sorter.compare.particles = r.ptr();
sorter.compare.axis = dir;
sorter.sort(order, pc);
}
}
}
for (int i = 0; i < pc; i++) {
int idx = order ? order[i] : i;
Transform t = r[idx].transform;
if (!local_coords) {
t = inv_emission_transform * t;
}
if (r[idx].active) {
ptr[0] = t.basis.elements[0][0];
ptr[1] = t.basis.elements[0][1];
ptr[2] = t.basis.elements[0][2];
ptr[3] = t.origin.x;
ptr[4] = t.basis.elements[1][0];
ptr[5] = t.basis.elements[1][1];
ptr[6] = t.basis.elements[1][2];
ptr[7] = t.origin.y;
ptr[8] = t.basis.elements[2][0];
ptr[9] = t.basis.elements[2][1];
ptr[10] = t.basis.elements[2][2];
ptr[11] = t.origin.z;
} else {
zeromem(ptr, sizeof(float) * 12);
}
Color c = r[idx].color;
uint8_t *data8 = (uint8_t *)&ptr[12];
data8[0] = CLAMP(c.r * 255.0, 0, 255);
data8[1] = CLAMP(c.g * 255.0, 0, 255);
data8[2] = CLAMP(c.b * 255.0, 0, 255);
data8[3] = CLAMP(c.a * 255.0, 0, 255);
ptr[13] = r[idx].custom[0];
ptr[14] = r[idx].custom[1];
ptr[15] = r[idx].custom[2];
ptr[16] = r[idx].custom[3];
ptr += 17;
}
can_update = true;
}
#ifndef NO_THREADS
update_mutex->unlock();
#endif
}
void CPUParticles::_set_redraw(bool p_redraw) {
if (redraw == p_redraw)
return;
redraw = p_redraw;
#ifndef NO_THREADS
update_mutex->lock();
#endif
if (redraw) {
VS::get_singleton()->connect("frame_pre_draw", this, "_update_render_thread");
VS::get_singleton()->instance_geometry_set_flag(get_instance(), VS::INSTANCE_FLAG_DRAW_NEXT_FRAME_IF_VISIBLE, true);
VS::get_singleton()->multimesh_set_visible_instances(multimesh, -1);
} else {
if (VS::get_singleton()->is_connected("frame_pre_draw", this, "_update_render_thread")) {
VS::get_singleton()->disconnect("frame_pre_draw", this, "_update_render_thread");
}
VS::get_singleton()->instance_geometry_set_flag(get_instance(), VS::INSTANCE_FLAG_DRAW_NEXT_FRAME_IF_VISIBLE, false);
VS::get_singleton()->multimesh_set_visible_instances(multimesh, 0);
}
#ifndef NO_THREADS
update_mutex->unlock();
#endif
}
void CPUParticles::_update_render_thread() {
#ifndef NO_THREADS
update_mutex->lock();
#endif
if (can_update) {
VS::get_singleton()->multimesh_set_as_bulk_array(multimesh, particle_data);
can_update = false; //wait for next time
}
#ifndef NO_THREADS
update_mutex->unlock();
#endif
}
void CPUParticles::_notification(int p_what) {
if (p_what == NOTIFICATION_ENTER_TREE) {
set_process_internal(emitting);
// first update before rendering to avoid one frame delay after emitting starts
if (emitting && (time == 0))
_update_internal();
}
if (p_what == NOTIFICATION_EXIT_TREE) {
_set_redraw(false);
}
if (p_what == NOTIFICATION_VISIBILITY_CHANGED) {
// first update before rendering to avoid one frame delay after emitting starts
if (emitting && (time == 0))
_update_internal();
}
if (p_what == NOTIFICATION_INTERNAL_PROCESS) {
_update_internal();
}
if (p_what == NOTIFICATION_TRANSFORM_CHANGED) {
inv_emission_transform = get_global_transform().affine_inverse();
if (!local_coords) {
int pc = particles.size();
PoolVector<float>::Write w = particle_data.write();
PoolVector<Particle>::Read r = particles.read();
float *ptr = w.ptr();
for (int i = 0; i < pc; i++) {
Transform t = inv_emission_transform * r[i].transform;
if (r[i].active) {
ptr[0] = t.basis.elements[0][0];
ptr[1] = t.basis.elements[0][1];
ptr[2] = t.basis.elements[0][2];
ptr[3] = t.origin.x;
ptr[4] = t.basis.elements[1][0];
ptr[5] = t.basis.elements[1][1];
ptr[6] = t.basis.elements[1][2];
ptr[7] = t.origin.y;
ptr[8] = t.basis.elements[2][0];
ptr[9] = t.basis.elements[2][1];
ptr[10] = t.basis.elements[2][2];
ptr[11] = t.origin.z;
} else {
zeromem(ptr, sizeof(float) * 12);
}
ptr += 17;
}
can_update = true;
}
}
}
void CPUParticles::convert_from_particles(Node *p_particles) {
Particles *particles = Object::cast_to<Particles>(p_particles);
ERR_FAIL_COND_MSG(!particles, "Only Particles nodes can be converted to CPUParticles.");
set_emitting(particles->is_emitting());
set_amount(particles->get_amount());
set_lifetime(particles->get_lifetime());
set_one_shot(particles->get_one_shot());
set_pre_process_time(particles->get_pre_process_time());
set_explosiveness_ratio(particles->get_explosiveness_ratio());
set_randomness_ratio(particles->get_randomness_ratio());
set_use_local_coordinates(particles->get_use_local_coordinates());
set_fixed_fps(particles->get_fixed_fps());
set_fractional_delta(particles->get_fractional_delta());
set_speed_scale(particles->get_speed_scale());
set_draw_order(DrawOrder(particles->get_draw_order()));
set_mesh(particles->get_draw_pass_mesh(0));
Ref<ParticlesMaterial> material = particles->get_process_material();
if (material.is_null())
return;
set_direction(material->get_direction());
set_spread(material->get_spread());
set_flatness(material->get_flatness());
set_color(material->get_color());
Ref<GradientTexture> gt = material->get_color_ramp();
if (gt.is_valid()) {
set_color_ramp(gt->get_gradient());
}
set_particle_flag(FLAG_ALIGN_Y_TO_VELOCITY, material->get_flag(ParticlesMaterial::FLAG_ALIGN_Y_TO_VELOCITY));
set_particle_flag(FLAG_ROTATE_Y, material->get_flag(ParticlesMaterial::FLAG_ROTATE_Y));
set_particle_flag(FLAG_DISABLE_Z, material->get_flag(ParticlesMaterial::FLAG_DISABLE_Z));
set_emission_shape(EmissionShape(material->get_emission_shape()));
set_emission_sphere_radius(material->get_emission_sphere_radius());
set_emission_box_extents(material->get_emission_box_extents());
set_gravity(material->get_gravity());
set_lifetime_randomness(material->get_lifetime_randomness());
#define CONVERT_PARAM(m_param) \
set_param(m_param, material->get_param(ParticlesMaterial::m_param)); \
{ \
Ref<CurveTexture> ctex = material->get_param_texture(ParticlesMaterial::m_param); \
if (ctex.is_valid()) set_param_curve(m_param, ctex->get_curve()); \
} \
set_param_randomness(m_param, material->get_param_randomness(ParticlesMaterial::m_param));
CONVERT_PARAM(PARAM_INITIAL_LINEAR_VELOCITY);
CONVERT_PARAM(PARAM_ANGULAR_VELOCITY);
CONVERT_PARAM(PARAM_ORBIT_VELOCITY);
CONVERT_PARAM(PARAM_LINEAR_ACCEL);
CONVERT_PARAM(PARAM_RADIAL_ACCEL);
CONVERT_PARAM(PARAM_TANGENTIAL_ACCEL);
CONVERT_PARAM(PARAM_DAMPING);
CONVERT_PARAM(PARAM_ANGLE);
CONVERT_PARAM(PARAM_SCALE);
CONVERT_PARAM(PARAM_HUE_VARIATION);
CONVERT_PARAM(PARAM_ANIM_SPEED);
CONVERT_PARAM(PARAM_ANIM_OFFSET);
#undef CONVERT_PARAM
}
void CPUParticles::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_emitting", "emitting"), &CPUParticles::set_emitting);
ClassDB::bind_method(D_METHOD("set_amount", "amount"), &CPUParticles::set_amount);
ClassDB::bind_method(D_METHOD("set_lifetime", "secs"), &CPUParticles::set_lifetime);
ClassDB::bind_method(D_METHOD("set_one_shot", "enable"), &CPUParticles::set_one_shot);
ClassDB::bind_method(D_METHOD("set_pre_process_time", "secs"), &CPUParticles::set_pre_process_time);
ClassDB::bind_method(D_METHOD("set_explosiveness_ratio", "ratio"), &CPUParticles::set_explosiveness_ratio);
ClassDB::bind_method(D_METHOD("set_randomness_ratio", "ratio"), &CPUParticles::set_randomness_ratio);
ClassDB::bind_method(D_METHOD("set_lifetime_randomness", "random"), &CPUParticles::set_lifetime_randomness);
ClassDB::bind_method(D_METHOD("set_use_local_coordinates", "enable"), &CPUParticles::set_use_local_coordinates);
ClassDB::bind_method(D_METHOD("set_fixed_fps", "fps"), &CPUParticles::set_fixed_fps);
ClassDB::bind_method(D_METHOD("set_fractional_delta", "enable"), &CPUParticles::set_fractional_delta);
ClassDB::bind_method(D_METHOD("set_speed_scale", "scale"), &CPUParticles::set_speed_scale);
ClassDB::bind_method(D_METHOD("is_emitting"), &CPUParticles::is_emitting);
ClassDB::bind_method(D_METHOD("get_amount"), &CPUParticles::get_amount);
ClassDB::bind_method(D_METHOD("get_lifetime"), &CPUParticles::get_lifetime);
ClassDB::bind_method(D_METHOD("get_one_shot"), &CPUParticles::get_one_shot);
ClassDB::bind_method(D_METHOD("get_pre_process_time"), &CPUParticles::get_pre_process_time);
ClassDB::bind_method(D_METHOD("get_explosiveness_ratio"), &CPUParticles::get_explosiveness_ratio);
ClassDB::bind_method(D_METHOD("get_randomness_ratio"), &CPUParticles::get_randomness_ratio);
ClassDB::bind_method(D_METHOD("get_lifetime_randomness"), &CPUParticles::get_lifetime_randomness);
ClassDB::bind_method(D_METHOD("get_use_local_coordinates"), &CPUParticles::get_use_local_coordinates);
ClassDB::bind_method(D_METHOD("get_fixed_fps"), &CPUParticles::get_fixed_fps);
ClassDB::bind_method(D_METHOD("get_fractional_delta"), &CPUParticles::get_fractional_delta);
ClassDB::bind_method(D_METHOD("get_speed_scale"), &CPUParticles::get_speed_scale);
ClassDB::bind_method(D_METHOD("set_draw_order", "order"), &CPUParticles::set_draw_order);
ClassDB::bind_method(D_METHOD("get_draw_order"), &CPUParticles::get_draw_order);
ClassDB::bind_method(D_METHOD("set_mesh", "mesh"), &CPUParticles::set_mesh);
ClassDB::bind_method(D_METHOD("get_mesh"), &CPUParticles::get_mesh);
ClassDB::bind_method(D_METHOD("restart"), &CPUParticles::restart);
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "emitting"), "set_emitting", "is_emitting");
ADD_PROPERTY(PropertyInfo(Variant::INT, "amount", PROPERTY_HINT_EXP_RANGE, "1,1000000,1"), "set_amount", "get_amount");
ADD_GROUP("Time", "");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "lifetime", PROPERTY_HINT_EXP_RANGE, "0.01,600.0,0.01,or_greater"), "set_lifetime", "get_lifetime");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "one_shot"), "set_one_shot", "get_one_shot");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "preprocess", PROPERTY_HINT_EXP_RANGE, "0.00,600.0,0.01"), "set_pre_process_time", "get_pre_process_time");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "speed_scale", PROPERTY_HINT_RANGE, "0,64,0.01"), "set_speed_scale", "get_speed_scale");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "explosiveness", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_explosiveness_ratio", "get_explosiveness_ratio");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "randomness", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_randomness_ratio", "get_randomness_ratio");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "lifetime_randomness", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_lifetime_randomness", "get_lifetime_randomness");
ADD_PROPERTY(PropertyInfo(Variant::INT, "fixed_fps", PROPERTY_HINT_RANGE, "0,1000,1"), "set_fixed_fps", "get_fixed_fps");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "fract_delta"), "set_fractional_delta", "get_fractional_delta");
ADD_GROUP("Drawing", "");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "local_coords"), "set_use_local_coordinates", "get_use_local_coordinates");
ADD_PROPERTY(PropertyInfo(Variant::INT, "draw_order", PROPERTY_HINT_ENUM, "Index,Lifetime,View Depth"), "set_draw_order", "get_draw_order");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "mesh", PROPERTY_HINT_RESOURCE_TYPE, "Mesh"), "set_mesh", "get_mesh");
BIND_ENUM_CONSTANT(DRAW_ORDER_INDEX);
BIND_ENUM_CONSTANT(DRAW_ORDER_LIFETIME);
BIND_ENUM_CONSTANT(DRAW_ORDER_VIEW_DEPTH);
////////////////////////////////
ClassDB::bind_method(D_METHOD("set_direction", "direction"), &CPUParticles::set_direction);
ClassDB::bind_method(D_METHOD("get_direction"), &CPUParticles::get_direction);
ClassDB::bind_method(D_METHOD("set_spread", "degrees"), &CPUParticles::set_spread);
ClassDB::bind_method(D_METHOD("get_spread"), &CPUParticles::get_spread);
ClassDB::bind_method(D_METHOD("set_flatness", "amount"), &CPUParticles::set_flatness);
ClassDB::bind_method(D_METHOD("get_flatness"), &CPUParticles::get_flatness);
ClassDB::bind_method(D_METHOD("set_param", "param", "value"), &CPUParticles::set_param);
ClassDB::bind_method(D_METHOD("get_param", "param"), &CPUParticles::get_param);
ClassDB::bind_method(D_METHOD("set_param_randomness", "param", "randomness"), &CPUParticles::set_param_randomness);
ClassDB::bind_method(D_METHOD("get_param_randomness", "param"), &CPUParticles::get_param_randomness);
ClassDB::bind_method(D_METHOD("set_param_curve", "param", "curve"), &CPUParticles::set_param_curve);
ClassDB::bind_method(D_METHOD("get_param_curve", "param"), &CPUParticles::get_param_curve);
ClassDB::bind_method(D_METHOD("set_color", "color"), &CPUParticles::set_color);
ClassDB::bind_method(D_METHOD("get_color"), &CPUParticles::get_color);
ClassDB::bind_method(D_METHOD("set_color_ramp", "ramp"), &CPUParticles::set_color_ramp);
ClassDB::bind_method(D_METHOD("get_color_ramp"), &CPUParticles::get_color_ramp);
ClassDB::bind_method(D_METHOD("set_particle_flag", "flag", "enable"), &CPUParticles::set_particle_flag);
ClassDB::bind_method(D_METHOD("get_particle_flag", "flag"), &CPUParticles::get_particle_flag);
ClassDB::bind_method(D_METHOD("set_emission_shape", "shape"), &CPUParticles::set_emission_shape);
ClassDB::bind_method(D_METHOD("get_emission_shape"), &CPUParticles::get_emission_shape);
ClassDB::bind_method(D_METHOD("set_emission_sphere_radius", "radius"), &CPUParticles::set_emission_sphere_radius);
ClassDB::bind_method(D_METHOD("get_emission_sphere_radius"), &CPUParticles::get_emission_sphere_radius);
ClassDB::bind_method(D_METHOD("set_emission_box_extents", "extents"), &CPUParticles::set_emission_box_extents);
ClassDB::bind_method(D_METHOD("get_emission_box_extents"), &CPUParticles::get_emission_box_extents);
ClassDB::bind_method(D_METHOD("set_emission_points", "array"), &CPUParticles::set_emission_points);
ClassDB::bind_method(D_METHOD("get_emission_points"), &CPUParticles::get_emission_points);
ClassDB::bind_method(D_METHOD("set_emission_normals", "array"), &CPUParticles::set_emission_normals);
ClassDB::bind_method(D_METHOD("get_emission_normals"), &CPUParticles::get_emission_normals);
ClassDB::bind_method(D_METHOD("set_emission_colors", "array"), &CPUParticles::set_emission_colors);
ClassDB::bind_method(D_METHOD("get_emission_colors"), &CPUParticles::get_emission_colors);
ClassDB::bind_method(D_METHOD("get_gravity"), &CPUParticles::get_gravity);
ClassDB::bind_method(D_METHOD("set_gravity", "accel_vec"), &CPUParticles::set_gravity);
ClassDB::bind_method(D_METHOD("convert_from_particles", "particles"), &CPUParticles::convert_from_particles);
ClassDB::bind_method(D_METHOD("_update_render_thread"), &CPUParticles::_update_render_thread);
ADD_GROUP("Emission Shape", "emission_");
ADD_PROPERTY(PropertyInfo(Variant::INT, "emission_shape", PROPERTY_HINT_ENUM, "Point,Sphere,Box,Points,Directed Points"), "set_emission_shape", "get_emission_shape");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "emission_sphere_radius", PROPERTY_HINT_RANGE, "0.01,128,0.01"), "set_emission_sphere_radius", "get_emission_sphere_radius");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "emission_box_extents"), "set_emission_box_extents", "get_emission_box_extents");
ADD_PROPERTY(PropertyInfo(Variant::POOL_VECTOR3_ARRAY, "emission_points"), "set_emission_points", "get_emission_points");
ADD_PROPERTY(PropertyInfo(Variant::POOL_VECTOR3_ARRAY, "emission_normals"), "set_emission_normals", "get_emission_normals");
ADD_PROPERTY(PropertyInfo(Variant::POOL_COLOR_ARRAY, "emission_colors"), "set_emission_colors", "get_emission_colors");
ADD_GROUP("Flags", "flag_");
ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "flag_align_y"), "set_particle_flag", "get_particle_flag", FLAG_ALIGN_Y_TO_VELOCITY);
ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "flag_rotate_y"), "set_particle_flag", "get_particle_flag", FLAG_ROTATE_Y);
ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "flag_disable_z"), "set_particle_flag", "get_particle_flag", FLAG_DISABLE_Z);
ADD_GROUP("Direction", "");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "direction"), "set_direction", "get_direction");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "spread", PROPERTY_HINT_RANGE, "0,180,0.01"), "set_spread", "get_spread");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "flatness", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_flatness", "get_flatness");
ADD_GROUP("Gravity", "");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "gravity"), "set_gravity", "get_gravity");
ADD_GROUP("Initial Velocity", "initial_");
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "initial_velocity", PROPERTY_HINT_RANGE, "0,1000,0.01,or_greater"), "set_param", "get_param", PARAM_INITIAL_LINEAR_VELOCITY);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "initial_velocity_random", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param_randomness", "get_param_randomness", PARAM_INITIAL_LINEAR_VELOCITY);
ADD_GROUP("Angular Velocity", "angular_");
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "angular_velocity", PROPERTY_HINT_RANGE, "-720,720,0.01,or_lesser,or_greater"), "set_param", "get_param", PARAM_ANGULAR_VELOCITY);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "angular_velocity_random", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param_randomness", "get_param_randomness", PARAM_ANGULAR_VELOCITY);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "angular_velocity_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_ANGULAR_VELOCITY);
ADD_GROUP("Orbit Velocity", "orbit_");
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "orbit_velocity", PROPERTY_HINT_RANGE, "-1000,1000,0.01,or_lesser,or_greater"), "set_param", "get_param", PARAM_ORBIT_VELOCITY);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "orbit_velocity_random", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param_randomness", "get_param_randomness", PARAM_ORBIT_VELOCITY);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "orbit_velocity_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_ORBIT_VELOCITY);
ADD_GROUP("Linear Accel", "linear_");
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "linear_accel", PROPERTY_HINT_RANGE, "-100,100,0.01,or_lesser,or_greater"), "set_param", "get_param", PARAM_LINEAR_ACCEL);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "linear_accel_random", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param_randomness", "get_param_randomness", PARAM_LINEAR_ACCEL);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "linear_accel_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_LINEAR_ACCEL);
ADD_GROUP("Radial Accel", "radial_");
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "radial_accel", PROPERTY_HINT_RANGE, "-100,100,0.01,or_lesser,or_greater"), "set_param", "get_param", PARAM_RADIAL_ACCEL);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "radial_accel_random", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param_randomness", "get_param_randomness", PARAM_RADIAL_ACCEL);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "radial_accel_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_RADIAL_ACCEL);
ADD_GROUP("Tangential Accel", "tangential_");
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "tangential_accel", PROPERTY_HINT_RANGE, "-100,100,0.01,or_lesser,or_greater"), "set_param", "get_param", PARAM_TANGENTIAL_ACCEL);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "tangential_accel_random", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param_randomness", "get_param_randomness", PARAM_TANGENTIAL_ACCEL);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "tangential_accel_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_TANGENTIAL_ACCEL);
ADD_GROUP("Damping", "");
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "damping", PROPERTY_HINT_RANGE, "0,100,0.01"), "set_param", "get_param", PARAM_DAMPING);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "damping_random", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param_randomness", "get_param_randomness", PARAM_DAMPING);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "damping_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_DAMPING);
ADD_GROUP("Angle", "");
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "angle", PROPERTY_HINT_RANGE, "-720,720,0.1,or_lesser,or_greater"), "set_param", "get_param", PARAM_ANGLE);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "angle_random", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param_randomness", "get_param_randomness", PARAM_ANGLE);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "angle_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_ANGLE);
ADD_GROUP("Scale", "");
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "scale_amount", PROPERTY_HINT_RANGE, "0,1000,0.01,or_greater"), "set_param", "get_param", PARAM_SCALE);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "scale_amount_random", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param_randomness", "get_param_randomness", PARAM_SCALE);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "scale_amount_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_SCALE);
ADD_GROUP("Color", "");
ADD_PROPERTY(PropertyInfo(Variant::COLOR, "color"), "set_color", "get_color");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "color_ramp", PROPERTY_HINT_RESOURCE_TYPE, "Gradient"), "set_color_ramp", "get_color_ramp");
ADD_GROUP("Hue Variation", "hue_");
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "hue_variation", PROPERTY_HINT_RANGE, "-1,1,0.01"), "set_param", "get_param", PARAM_HUE_VARIATION);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "hue_variation_random", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param_randomness", "get_param_randomness", PARAM_HUE_VARIATION);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "hue_variation_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_HUE_VARIATION);
ADD_GROUP("Animation", "anim_");
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "anim_speed", PROPERTY_HINT_RANGE, "0,128,0.01,or_greater"), "set_param", "get_param", PARAM_ANIM_SPEED);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "anim_speed_random", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param_randomness", "get_param_randomness", PARAM_ANIM_SPEED);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "anim_speed_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_ANIM_SPEED);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "anim_offset", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param", "get_param", PARAM_ANIM_OFFSET);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "anim_offset_random", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param_randomness", "get_param_randomness", PARAM_ANIM_OFFSET);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "anim_offset_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_ANIM_OFFSET);
BIND_ENUM_CONSTANT(PARAM_INITIAL_LINEAR_VELOCITY);
BIND_ENUM_CONSTANT(PARAM_ANGULAR_VELOCITY);
BIND_ENUM_CONSTANT(PARAM_ORBIT_VELOCITY);
BIND_ENUM_CONSTANT(PARAM_LINEAR_ACCEL);
BIND_ENUM_CONSTANT(PARAM_RADIAL_ACCEL);
BIND_ENUM_CONSTANT(PARAM_TANGENTIAL_ACCEL);
BIND_ENUM_CONSTANT(PARAM_DAMPING);
BIND_ENUM_CONSTANT(PARAM_ANGLE);
BIND_ENUM_CONSTANT(PARAM_SCALE);
BIND_ENUM_CONSTANT(PARAM_HUE_VARIATION);
BIND_ENUM_CONSTANT(PARAM_ANIM_SPEED);
BIND_ENUM_CONSTANT(PARAM_ANIM_OFFSET);
BIND_ENUM_CONSTANT(PARAM_MAX);
BIND_ENUM_CONSTANT(FLAG_ALIGN_Y_TO_VELOCITY);
BIND_ENUM_CONSTANT(FLAG_ROTATE_Y);
BIND_ENUM_CONSTANT(FLAG_DISABLE_Z);
BIND_ENUM_CONSTANT(FLAG_MAX);
BIND_ENUM_CONSTANT(EMISSION_SHAPE_POINT);
BIND_ENUM_CONSTANT(EMISSION_SHAPE_SPHERE);
BIND_ENUM_CONSTANT(EMISSION_SHAPE_BOX);
BIND_ENUM_CONSTANT(EMISSION_SHAPE_POINTS);
BIND_ENUM_CONSTANT(EMISSION_SHAPE_DIRECTED_POINTS);
}
CPUParticles::CPUParticles() {
time = 0;
inactive_time = 0;
frame_remainder = 0;
cycle = 0;
redraw = false;
emitting = false;
set_notify_transform(true);
multimesh = VisualServer::get_singleton()->multimesh_create();
VisualServer::get_singleton()->multimesh_set_visible_instances(multimesh, 0);
set_base(multimesh);
set_emitting(true);
set_one_shot(false);
set_amount(8);
set_lifetime(1);
set_fixed_fps(0);
set_fractional_delta(true);
set_pre_process_time(0);
set_explosiveness_ratio(0);
set_randomness_ratio(0);
set_lifetime_randomness(0);
set_use_local_coordinates(true);
set_draw_order(DRAW_ORDER_INDEX);
set_speed_scale(1);
set_direction(Vector3(1, 0, 0));
set_spread(45);
set_flatness(0);
set_param(PARAM_INITIAL_LINEAR_VELOCITY, 0);
set_param(PARAM_ANGULAR_VELOCITY, 0);
set_param(PARAM_ORBIT_VELOCITY, 0);
set_param(PARAM_LINEAR_ACCEL, 0);
set_param(PARAM_RADIAL_ACCEL, 0);
set_param(PARAM_TANGENTIAL_ACCEL, 0);
set_param(PARAM_DAMPING, 0);
set_param(PARAM_ANGLE, 0);
set_param(PARAM_SCALE, 1);
set_param(PARAM_HUE_VARIATION, 0);
set_param(PARAM_ANIM_SPEED, 0);
set_param(PARAM_ANIM_OFFSET, 0);
set_emission_shape(EMISSION_SHAPE_POINT);
set_emission_sphere_radius(1);
set_emission_box_extents(Vector3(1, 1, 1));
set_gravity(Vector3(0, -9.8, 0));
for (int i = 0; i < PARAM_MAX; i++) {
set_param_randomness(Parameter(i), 0);
}
for (int i = 0; i < FLAG_MAX; i++) {
flags[i] = false;
}
can_update = false;
set_color(Color(1, 1, 1, 1));
#ifndef NO_THREADS
update_mutex = Mutex::create();
#endif
}
CPUParticles::~CPUParticles() {
VS::get_singleton()->free(multimesh);
#ifndef NO_THREADS
memdelete(update_mutex);
#endif
}