49646383f1
Happy new year to the wonderful Godot community!
2020 has been a tough year for most of us personally, but a good year for
Godot development nonetheless with a huge amount of work done towards Godot
4.0 and great improvements backported to the long-lived 3.2 branch.
We've had close to 400 contributors to engine code this year, authoring near
7,000 commit! (And that's only for the `master` branch and for the engine code,
there's a lot more when counting docs, demos and other first-party repos.)
Here's to a great year 2021 for all Godot users 🎆
(cherry picked from commit b5334d14f7
)
170 lines
7.0 KiB
C++
170 lines
7.0 KiB
C++
/*************************************************************************/
|
|
/* jacobian_entry_sw.h */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
|
|
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
|
|
/*
|
|
Adapted to Godot from the Bullet library.
|
|
*/
|
|
|
|
#ifndef JACOBIAN_ENTRY_SW_H
|
|
#define JACOBIAN_ENTRY_SW_H
|
|
|
|
/*
|
|
Bullet Continuous Collision Detection and Physics Library
|
|
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
#include "core/math/transform.h"
|
|
|
|
class JacobianEntrySW {
|
|
public:
|
|
JacobianEntrySW(){};
|
|
//constraint between two different rigidbodies
|
|
JacobianEntrySW(
|
|
const Basis &world2A,
|
|
const Basis &world2B,
|
|
const Vector3 &rel_pos1, const Vector3 &rel_pos2,
|
|
const Vector3 &jointAxis,
|
|
const Vector3 &inertiaInvA,
|
|
const real_t massInvA,
|
|
const Vector3 &inertiaInvB,
|
|
const real_t massInvB) :
|
|
m_linearJointAxis(jointAxis) {
|
|
m_aJ = world2A.xform(rel_pos1.cross(m_linearJointAxis));
|
|
m_bJ = world2B.xform(rel_pos2.cross(-m_linearJointAxis));
|
|
m_0MinvJt = inertiaInvA * m_aJ;
|
|
m_1MinvJt = inertiaInvB * m_bJ;
|
|
m_Adiag = massInvA + m_0MinvJt.dot(m_aJ) + massInvB + m_1MinvJt.dot(m_bJ);
|
|
|
|
ERR_FAIL_COND(m_Adiag <= real_t(0.0));
|
|
}
|
|
|
|
//angular constraint between two different rigidbodies
|
|
JacobianEntrySW(const Vector3 &jointAxis,
|
|
const Basis &world2A,
|
|
const Basis &world2B,
|
|
const Vector3 &inertiaInvA,
|
|
const Vector3 &inertiaInvB) :
|
|
m_linearJointAxis(Vector3(real_t(0.), real_t(0.), real_t(0.))) {
|
|
m_aJ = world2A.xform(jointAxis);
|
|
m_bJ = world2B.xform(-jointAxis);
|
|
m_0MinvJt = inertiaInvA * m_aJ;
|
|
m_1MinvJt = inertiaInvB * m_bJ;
|
|
m_Adiag = m_0MinvJt.dot(m_aJ) + m_1MinvJt.dot(m_bJ);
|
|
|
|
ERR_FAIL_COND(m_Adiag <= real_t(0.0));
|
|
}
|
|
|
|
//angular constraint between two different rigidbodies
|
|
JacobianEntrySW(const Vector3 &axisInA,
|
|
const Vector3 &axisInB,
|
|
const Vector3 &inertiaInvA,
|
|
const Vector3 &inertiaInvB) :
|
|
m_linearJointAxis(Vector3(real_t(0.), real_t(0.), real_t(0.))),
|
|
m_aJ(axisInA),
|
|
m_bJ(-axisInB) {
|
|
m_0MinvJt = inertiaInvA * m_aJ;
|
|
m_1MinvJt = inertiaInvB * m_bJ;
|
|
m_Adiag = m_0MinvJt.dot(m_aJ) + m_1MinvJt.dot(m_bJ);
|
|
|
|
ERR_FAIL_COND(m_Adiag <= real_t(0.0));
|
|
}
|
|
|
|
//constraint on one rigidbody
|
|
JacobianEntrySW(
|
|
const Basis &world2A,
|
|
const Vector3 &rel_pos1, const Vector3 &rel_pos2,
|
|
const Vector3 &jointAxis,
|
|
const Vector3 &inertiaInvA,
|
|
const real_t massInvA) :
|
|
m_linearJointAxis(jointAxis) {
|
|
m_aJ = world2A.xform(rel_pos1.cross(jointAxis));
|
|
m_bJ = world2A.xform(rel_pos2.cross(-jointAxis));
|
|
m_0MinvJt = inertiaInvA * m_aJ;
|
|
m_1MinvJt = Vector3(real_t(0.), real_t(0.), real_t(0.));
|
|
m_Adiag = massInvA + m_0MinvJt.dot(m_aJ);
|
|
|
|
ERR_FAIL_COND(m_Adiag <= real_t(0.0));
|
|
}
|
|
|
|
real_t getDiagonal() const { return m_Adiag; }
|
|
|
|
// for two constraints on the same rigidbody (for example vehicle friction)
|
|
real_t getNonDiagonal(const JacobianEntrySW &jacB, const real_t massInvA) const {
|
|
const JacobianEntrySW &jacA = *this;
|
|
real_t lin = massInvA * jacA.m_linearJointAxis.dot(jacB.m_linearJointAxis);
|
|
real_t ang = jacA.m_0MinvJt.dot(jacB.m_aJ);
|
|
return lin + ang;
|
|
}
|
|
|
|
// for two constraints on sharing two same rigidbodies (for example two contact points between two rigidbodies)
|
|
real_t getNonDiagonal(const JacobianEntrySW &jacB, const real_t massInvA, const real_t massInvB) const {
|
|
const JacobianEntrySW &jacA = *this;
|
|
Vector3 lin = jacA.m_linearJointAxis * jacB.m_linearJointAxis;
|
|
Vector3 ang0 = jacA.m_0MinvJt * jacB.m_aJ;
|
|
Vector3 ang1 = jacA.m_1MinvJt * jacB.m_bJ;
|
|
Vector3 lin0 = massInvA * lin;
|
|
Vector3 lin1 = massInvB * lin;
|
|
Vector3 sum = ang0 + ang1 + lin0 + lin1;
|
|
return sum[0] + sum[1] + sum[2];
|
|
}
|
|
|
|
real_t getRelativeVelocity(const Vector3 &linvelA, const Vector3 &angvelA, const Vector3 &linvelB, const Vector3 &angvelB) {
|
|
Vector3 linrel = linvelA - linvelB;
|
|
Vector3 angvela = angvelA * m_aJ;
|
|
Vector3 angvelb = angvelB * m_bJ;
|
|
linrel *= m_linearJointAxis;
|
|
angvela += angvelb;
|
|
angvela += linrel;
|
|
real_t rel_vel2 = angvela[0] + angvela[1] + angvela[2];
|
|
return rel_vel2 + CMP_EPSILON;
|
|
}
|
|
//private:
|
|
|
|
Vector3 m_linearJointAxis;
|
|
Vector3 m_aJ;
|
|
Vector3 m_bJ;
|
|
Vector3 m_0MinvJt;
|
|
Vector3 m_1MinvJt;
|
|
//Optimization: can be stored in the w/last component of one of the vectors
|
|
real_t m_Adiag;
|
|
};
|
|
|
|
#endif // JACOBIAN_ENTRY_SW_H
|