godot/thirdparty/embree/common/algorithms/parallel_partition.h
jfons a69cc9f13d
Upgrade Embree to the latest official release.
Since Embree v3.13.0 supports AARCH64, switch back to the
official repo instead of using Embree-aarch64.

`thirdparty/embree/patches/godot-changes.patch` should now contain
an accurate diff of the changes done to the library.

(cherry picked from commit 767e374dce)
2021-05-22 15:14:07 +02:00

284 lines
11 KiB
C++

// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "parallel_for.h"
#include "../math/range.h"
namespace embree
{
/* serial partitioning */
template<typename T, typename V, typename IsLeft, typename Reduction_T>
__forceinline size_t serial_partitioning(T* array,
const size_t begin,
const size_t end,
V& leftReduction,
V& rightReduction,
const IsLeft& is_left,
const Reduction_T& reduction_t)
{
T* l = array + begin;
T* r = array + end - 1;
while(1)
{
/* *l < pivot */
while (likely(l <= r && is_left(*l) ))
{
//prefetchw(l+4); // FIXME: enable?
reduction_t(leftReduction,*l);
++l;
}
/* *r >= pivot) */
while (likely(l <= r && !is_left(*r)))
{
//prefetchw(r-4); FIXME: enable?
reduction_t(rightReduction,*r);
--r;
}
if (r<l) break;
reduction_t(leftReduction ,*r);
reduction_t(rightReduction,*l);
xchg(*l,*r);
l++; r--;
}
return l - array;
}
template<typename T, typename V, typename Vi, typename IsLeft, typename Reduction_T, typename Reduction_V>
class __aligned(64) parallel_partition_task
{
ALIGNED_CLASS_(64);
private:
static const size_t MAX_TASKS = 64;
T* array;
size_t N;
const IsLeft& is_left;
const Reduction_T& reduction_t;
const Reduction_V& reduction_v;
const Vi& identity;
size_t numTasks;
__aligned(64) size_t counter_start[MAX_TASKS+1];
__aligned(64) size_t counter_left[MAX_TASKS+1];
__aligned(64) range<ssize_t> leftMisplacedRanges[MAX_TASKS];
__aligned(64) range<ssize_t> rightMisplacedRanges[MAX_TASKS];
__aligned(64) V leftReductions[MAX_TASKS];
__aligned(64) V rightReductions[MAX_TASKS];
public:
__forceinline parallel_partition_task(T* array,
const size_t N,
const Vi& identity,
const IsLeft& is_left,
const Reduction_T& reduction_t,
const Reduction_V& reduction_v,
const size_t BLOCK_SIZE)
: array(array), N(N), is_left(is_left), reduction_t(reduction_t), reduction_v(reduction_v), identity(identity),
numTasks(min((N+BLOCK_SIZE-1)/BLOCK_SIZE,min(TaskScheduler::threadCount(),MAX_TASKS))) {}
__forceinline const range<ssize_t>* findStartRange(size_t& index, const range<ssize_t>* const r, const size_t numRanges)
{
size_t i = 0;
while(index >= (size_t)r[i].size())
{
assert(i < numRanges);
index -= (size_t)r[i].size();
i++;
}
return &r[i];
}
__forceinline void swapItemsInMisplacedRanges(const size_t numLeftMisplacedRanges,
const size_t numRightMisplacedRanges,
const size_t startID,
const size_t endID)
{
size_t leftLocalIndex = startID;
size_t rightLocalIndex = startID;
const range<ssize_t>* l_range = findStartRange(leftLocalIndex,leftMisplacedRanges,numLeftMisplacedRanges);
const range<ssize_t>* r_range = findStartRange(rightLocalIndex,rightMisplacedRanges,numRightMisplacedRanges);
size_t l_left = l_range->size() - leftLocalIndex;
size_t r_left = r_range->size() - rightLocalIndex;
T *__restrict__ l = &array[l_range->begin() + leftLocalIndex];
T *__restrict__ r = &array[r_range->begin() + rightLocalIndex];
size_t size = endID - startID;
size_t items = min(size,min(l_left,r_left));
while (size)
{
if (unlikely(l_left == 0))
{
l_range++;
l_left = l_range->size();
l = &array[l_range->begin()];
items = min(size,min(l_left,r_left));
}
if (unlikely(r_left == 0))
{
r_range++;
r_left = r_range->size();
r = &array[r_range->begin()];
items = min(size,min(l_left,r_left));
}
size -= items;
l_left -= items;
r_left -= items;
while(items) {
items--;
xchg(*l++,*r++);
}
}
}
__forceinline size_t partition(V& leftReduction, V& rightReduction)
{
/* partition the individual ranges for each task */
parallel_for(numTasks,[&] (const size_t taskID) {
const size_t startID = (taskID+0)*N/numTasks;
const size_t endID = (taskID+1)*N/numTasks;
V local_left(identity);
V local_right(identity);
const size_t mid = serial_partitioning(array,startID,endID,local_left,local_right,is_left,reduction_t);
counter_start[taskID] = startID;
counter_left [taskID] = mid-startID;
leftReductions[taskID] = local_left;
rightReductions[taskID] = local_right;
});
counter_start[numTasks] = N;
counter_left[numTasks] = 0;
/* finalize the reductions */
for (size_t i=0; i<numTasks; i++) {
reduction_v(leftReduction,leftReductions[i]);
reduction_v(rightReduction,rightReductions[i]);
}
/* calculate mid point for partitioning */
size_t mid = counter_left[0];
for (size_t i=1; i<numTasks; i++)
mid += counter_left[i];
const range<ssize_t> globalLeft (0,mid);
const range<ssize_t> globalRight(mid,N);
/* calculate all left and right ranges that are on the wrong global side */
size_t numMisplacedRangesLeft = 0;
size_t numMisplacedRangesRight = 0;
size_t numMisplacedItemsLeft = 0;
size_t numMisplacedItemsRight = 0;
for (size_t i=0; i<numTasks; i++)
{
const range<ssize_t> left_range (counter_start[i], counter_start[i] + counter_left[i]);
const range<ssize_t> right_range(counter_start[i] + counter_left[i], counter_start[i+1]);
const range<ssize_t> left_misplaced = globalLeft. intersect(right_range);
const range<ssize_t> right_misplaced = globalRight.intersect(left_range);
if (!left_misplaced.empty())
{
numMisplacedItemsLeft += left_misplaced.size();
leftMisplacedRanges[numMisplacedRangesLeft++] = left_misplaced;
}
if (!right_misplaced.empty())
{
numMisplacedItemsRight += right_misplaced.size();
rightMisplacedRanges[numMisplacedRangesRight++] = right_misplaced;
}
}
assert( numMisplacedItemsLeft == numMisplacedItemsRight );
/* if no items are misplaced we are done */
if (numMisplacedItemsLeft == 0)
return mid;
/* otherwise we copy the items to the right place in parallel */
parallel_for(numTasks,[&] (const size_t taskID) {
const size_t startID = (taskID+0)*numMisplacedItemsLeft/numTasks;
const size_t endID = (taskID+1)*numMisplacedItemsLeft/numTasks;
swapItemsInMisplacedRanges(numMisplacedRangesLeft,numMisplacedRangesRight,startID,endID);
});
return mid;
}
};
template<typename T, typename V, typename Vi, typename IsLeft, typename Reduction_T, typename Reduction_V>
__noinline size_t parallel_partitioning(T* array,
const size_t begin,
const size_t end,
const Vi &identity,
V &leftReduction,
V &rightReduction,
const IsLeft& is_left,
const Reduction_T& reduction_t,
const Reduction_V& reduction_v,
size_t BLOCK_SIZE = 128)
{
/* fall back to single threaded partitioning for small N */
if (unlikely(end-begin < BLOCK_SIZE))
return serial_partitioning(array,begin,end,leftReduction,rightReduction,is_left,reduction_t);
/* otherwise use parallel code */
else {
typedef parallel_partition_task<T,V,Vi,IsLeft,Reduction_T,Reduction_V> partition_task;
std::unique_ptr<partition_task> p(new partition_task(&array[begin],end-begin,identity,is_left,reduction_t,reduction_v,BLOCK_SIZE));
return begin+p->partition(leftReduction,rightReduction);
}
}
template<typename T, typename V, typename Vi, typename IsLeft, typename Reduction_T, typename Reduction_V>
__noinline size_t parallel_partitioning(T* array,
const size_t begin,
const size_t end,
const Vi &identity,
V &leftReduction,
V &rightReduction,
const IsLeft& is_left,
const Reduction_T& reduction_t,
const Reduction_V& reduction_v,
size_t BLOCK_SIZE,
size_t PARALLEL_THRESHOLD)
{
/* fall back to single threaded partitioning for small N */
if (unlikely(end-begin < PARALLEL_THRESHOLD))
return serial_partitioning(array,begin,end,leftReduction,rightReduction,is_left,reduction_t);
/* otherwise use parallel code */
else {
typedef parallel_partition_task<T,V,Vi,IsLeft,Reduction_T,Reduction_V> partition_task;
std::unique_ptr<partition_task> p(new partition_task(&array[begin],end-begin,identity,is_left,reduction_t,reduction_v,BLOCK_SIZE));
return begin+p->partition(leftReduction,rightReduction);
}
}
template<typename T, typename IsLeft>
inline size_t parallel_partitioning(T* array,
const size_t begin,
const size_t end,
const IsLeft& is_left,
size_t BLOCK_SIZE = 128)
{
size_t leftReduction = 0;
size_t rightReduction = 0;
return parallel_partitioning(
array,begin,end,0,leftReduction,rightReduction,is_left,
[] (size_t& t,const T& ref) { },
[] (size_t& t0,size_t& t1) { },
BLOCK_SIZE);
}
}