godot/core/image.cpp
Rémi Verschelde 5dbf1809c6 A Whole New World (clang-format edition)
I can show you the code
Pretty, with proper whitespace
Tell me, coder, now when did
You last write readable code?

I can open your eyes
Make you see your bad indent
Force you to respect the style
The core devs agreed upon

A whole new world
A new fantastic code format
A de facto standard
With some sugar
Enforced with clang-format

A whole new world
A dazzling style we all dreamed of
And when we read it through
It's crystal clear
That now we're in a whole new world of code
2017-03-05 16:44:50 +01:00

2127 lines
54 KiB
C++

/*************************************************************************/
/* image.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "image.h"
#include "core/io/image_loader.h"
#include "core/os/copymem.h"
#include "hash_map.h"
#include "hq2x.h"
#include "print_string.h"
#include <stdio.h>
const char *Image::format_names[Image::FORMAT_MAX] = {
"Lum8", //luminance
"LumAlpha8", //luminance-alpha
"Red8",
"RedGreen",
"RGB8",
"RGBA8",
"RGB565", //16 bit
"RGBA4444",
"RGBA5551",
"RFloat", //float
"RGFloat",
"RGBFloat",
"RGBAFloat",
"RHalf", //half float
"RGHalf",
"RGBHalf",
"RGBAHalf",
"DXT1", //s3tc
"DXT3",
"DXT5",
"ATI1",
"ATI2",
"BPTC_RGBA",
"BPTC_RGBF",
"BPTC_RGBFU",
"PVRTC2", //pvrtc
"PVRTC2A",
"PVRTC4",
"PVRTC4A",
"ETC", //etc1
"ETC2_R11", //etc2
"ETC2_R11S", //signed", NOT srgb.
"ETC2_RG11",
"ETC2_RG11S",
"ETC2_RGB8",
"ETC2_RGBA8",
"ETC2_RGB8A1",
};
SavePNGFunc Image::save_png_func = NULL;
void Image::_put_pixelb(int p_x, int p_y, uint32_t p_pixelsize, uint8_t *p_dst, const uint8_t *p_src) {
uint32_t ofs = (p_y * width + p_x) * p_pixelsize;
for (uint32_t i = 0; i < p_pixelsize; i++) {
p_dst[ofs + i] = p_src[i];
}
}
void Image::_get_pixelb(int p_x, int p_y, uint32_t p_pixelsize, const uint8_t *p_src, uint8_t *p_dst) {
uint32_t ofs = (p_y * width + p_x) * p_pixelsize;
for (uint32_t i = 0; i < p_pixelsize; i++) {
p_dst[ofs] = p_src[ofs + i];
}
}
int Image::get_format_pixel_size(Format p_format) {
switch (p_format) {
case FORMAT_L8:
return 1; //luminance
case FORMAT_LA8:
return 2; //luminance-alpha
case FORMAT_R8: return 1;
case FORMAT_RG8: return 2;
case FORMAT_RGB8: return 3;
case FORMAT_RGBA8: return 4;
case FORMAT_RGB565:
return 2; //16 bit
case FORMAT_RGBA4444: return 2;
case FORMAT_RGBA5551: return 2;
case FORMAT_RF:
return 4; //float
case FORMAT_RGF: return 8;
case FORMAT_RGBF: return 12;
case FORMAT_RGBAF: return 16;
case FORMAT_RH:
return 2; //half float
case FORMAT_RGH: return 4;
case FORMAT_RGBH: return 8;
case FORMAT_RGBAH: return 12;
case FORMAT_DXT1:
return 1; //s3tc bc1
case FORMAT_DXT3:
return 1; //bc2
case FORMAT_DXT5:
return 1; //bc3
case FORMAT_ATI1:
return 1; //bc4
case FORMAT_ATI2:
return 1; //bc5
case FORMAT_BPTC_RGBA:
return 1; //btpc bc6h
case FORMAT_BPTC_RGBF:
return 1; //float /
case FORMAT_BPTC_RGBFU:
return 1; //unsigned float
case FORMAT_PVRTC2:
return 1; //pvrtc
case FORMAT_PVRTC2A: return 1;
case FORMAT_PVRTC4: return 1;
case FORMAT_PVRTC4A: return 1;
case FORMAT_ETC:
return 1; //etc1
case FORMAT_ETC2_R11:
return 1; //etc2
case FORMAT_ETC2_R11S:
return 1; //signed: return 1; NOT srgb.
case FORMAT_ETC2_RG11: return 1;
case FORMAT_ETC2_RG11S: return 1;
case FORMAT_ETC2_RGB8: return 1;
case FORMAT_ETC2_RGBA8: return 1;
case FORMAT_ETC2_RGB8A1: return 1;
case FORMAT_MAX: {
}
}
return 0;
}
void Image::get_format_min_pixel_size(Format p_format, int &r_w, int &r_h) {
switch (p_format) {
case FORMAT_DXT1: //s3tc bc1
case FORMAT_DXT3: //bc2
case FORMAT_DXT5: //bc3
case FORMAT_ATI1: //bc4
case FORMAT_ATI2: { //bc5 case case FORMAT_DXT1:
r_w = 4;
r_h = 4;
} break;
case FORMAT_PVRTC2:
case FORMAT_PVRTC2A: {
r_w = 16;
r_h = 8;
} break;
case FORMAT_PVRTC4A:
case FORMAT_PVRTC4: {
r_w = 8;
r_h = 8;
} break;
case FORMAT_ETC: {
r_w = 4;
r_h = 4;
} break;
case FORMAT_BPTC_RGBA:
case FORMAT_BPTC_RGBF:
case FORMAT_BPTC_RGBFU: {
r_w = 4;
r_h = 4;
} break;
case FORMAT_ETC2_R11: //etc2
case FORMAT_ETC2_R11S: //signed: NOT srgb.
case FORMAT_ETC2_RG11:
case FORMAT_ETC2_RG11S:
case FORMAT_ETC2_RGB8:
case FORMAT_ETC2_RGBA8:
case FORMAT_ETC2_RGB8A1: {
r_w = 4;
r_h = 4;
} break;
default: {
r_w = 1;
r_h = 1;
} break;
}
}
int Image::get_format_pixel_rshift(Format p_format) {
if (p_format == FORMAT_DXT1 || p_format == FORMAT_ATI1 || p_format == FORMAT_PVRTC4 || p_format == FORMAT_PVRTC4A || p_format == FORMAT_ETC || p_format == FORMAT_ETC2_R11 || p_format == FORMAT_ETC2_R11S || p_format == FORMAT_ETC2_RGB8 || p_format == FORMAT_ETC2_RGB8A1)
return 1;
else if (p_format == FORMAT_PVRTC2 || p_format == FORMAT_PVRTC2A)
return 2;
else
return 0;
}
void Image::_get_mipmap_offset_and_size(int p_mipmap, int &r_offset, int &r_width, int &r_height) const {
int w = width;
int h = height;
int ofs = 0;
int pixel_size = get_format_pixel_size(format);
int pixel_rshift = get_format_pixel_rshift(format);
int minw, minh;
get_format_min_pixel_size(format, minw, minh);
for (int i = 0; i < p_mipmap; i++) {
int s = w * h;
s *= pixel_size;
s >>= pixel_rshift;
ofs += s;
w = MAX(minw, w >> 1);
h = MAX(minh, h >> 1);
}
r_offset = ofs;
r_width = w;
r_height = h;
}
int Image::get_mipmap_offset(int p_mipmap) const {
ERR_FAIL_INDEX_V(p_mipmap, get_mipmap_count() + 1, -1);
int ofs, w, h;
_get_mipmap_offset_and_size(p_mipmap, ofs, w, h);
return ofs;
}
void Image::get_mipmap_offset_and_size(int p_mipmap, int &r_ofs, int &r_size) const {
int ofs, w, h;
_get_mipmap_offset_and_size(p_mipmap, ofs, w, h);
int ofs2;
_get_mipmap_offset_and_size(p_mipmap + 1, ofs2, w, h);
r_ofs = ofs;
r_size = ofs2 - ofs;
}
void Image::get_mipmap_offset_size_and_dimensions(int p_mipmap, int &r_ofs, int &r_size, int &w, int &h) const {
int ofs;
_get_mipmap_offset_and_size(p_mipmap, ofs, w, h);
int ofs2, w2, h2;
_get_mipmap_offset_and_size(p_mipmap + 1, ofs2, w2, h2);
r_ofs = ofs;
r_size = ofs2 - ofs;
}
int Image::get_width() const {
return width;
}
int Image::get_height() const {
return height;
}
bool Image::has_mipmaps() const {
return mipmaps;
}
int Image::get_mipmap_count() const {
if (mipmaps)
return get_image_required_mipmaps(width, height, format);
else
return 0;
}
//using template generates perfectly optimized code due to constant expression reduction and unused variable removal present in all compilers
template <uint32_t read_bytes, bool read_alpha, uint32_t write_bytes, bool write_alpha, bool read_gray, bool write_gray>
static void _convert(int p_width, int p_height, const uint8_t *p_src, uint8_t *p_dst) {
for (int y = 0; y < p_height; y++) {
for (int x = 0; x < p_width; x++) {
const uint8_t *rofs = &p_src[((y * p_width) + x) * (read_bytes + (read_alpha ? 1 : 0))];
uint8_t *wofs = &p_dst[((y * p_width) + x) * (write_bytes + (write_alpha ? 1 : 0))];
uint8_t rgba[4];
if (read_gray) {
rgba[0] = rofs[0];
rgba[1] = rofs[0];
rgba[2] = rofs[0];
} else {
for (uint32_t i = 0; i < MAX(read_bytes, write_bytes); i++) {
rgba[i] = (i < read_bytes) ? rofs[i] : 0;
}
}
if (read_alpha || write_alpha) {
rgba[3] = read_alpha ? rofs[read_bytes] : 255;
}
if (write_gray) {
//TODO: not correct grayscale, should use fixed point version of actual weights
wofs[0] = uint8_t((uint16_t(rofs[0]) + uint16_t(rofs[1]) + uint16_t(rofs[2])) / 3);
} else {
for (uint32_t i = 0; i < write_bytes; i++) {
wofs[i] = rgba[i];
}
}
if (write_alpha) {
wofs[write_bytes] = rgba[3];
}
}
}
}
void Image::convert(Format p_new_format) {
if (data.size() == 0)
return;
if (p_new_format == format)
return;
if (format >= FORMAT_RGB565 || p_new_format >= FORMAT_RGB565) {
ERR_EXPLAIN("Cannot convert to <-> from non byte formats.");
ERR_FAIL();
}
Image new_img(width, height, 0, p_new_format);
//int len=data.size();
PoolVector<uint8_t>::Read r = data.read();
PoolVector<uint8_t>::Write w = new_img.data.write();
const uint8_t *rptr = r.ptr();
uint8_t *wptr = w.ptr();
int conversion_type = format | p_new_format << 8;
switch (conversion_type) {
case FORMAT_L8 | (FORMAT_LA8 << 8): _convert<1, false, 1, true, true, true>(width, height, rptr, wptr); break;
case FORMAT_L8 | (FORMAT_R8 << 8): _convert<1, false, 1, false, true, false>(width, height, rptr, wptr); break;
case FORMAT_L8 | (FORMAT_RG8 << 8): _convert<1, false, 2, false, true, false>(width, height, rptr, wptr); break;
case FORMAT_L8 | (FORMAT_RGB8 << 8): _convert<1, false, 3, false, true, false>(width, height, rptr, wptr); break;
case FORMAT_L8 | (FORMAT_RGBA8 << 8): _convert<1, false, 3, true, true, false>(width, height, rptr, wptr); break;
case FORMAT_LA8 | (FORMAT_L8 << 8): _convert<1, true, 1, false, true, true>(width, height, rptr, wptr); break;
case FORMAT_LA8 | (FORMAT_R8 << 8): _convert<1, true, 1, false, true, false>(width, height, rptr, wptr); break;
case FORMAT_LA8 | (FORMAT_RG8 << 8): _convert<1, true, 2, false, true, false>(width, height, rptr, wptr); break;
case FORMAT_LA8 | (FORMAT_RGB8 << 8): _convert<1, true, 3, false, true, false>(width, height, rptr, wptr); break;
case FORMAT_LA8 | (FORMAT_RGBA8 << 8): _convert<1, true, 3, true, true, false>(width, height, rptr, wptr); break;
case FORMAT_R8 | (FORMAT_L8 << 8): _convert<1, false, 1, false, false, true>(width, height, rptr, wptr); break;
case FORMAT_R8 | (FORMAT_LA8 << 8): _convert<1, false, 1, true, false, true>(width, height, rptr, wptr); break;
case FORMAT_R8 | (FORMAT_RG8 << 8): _convert<1, false, 2, false, false, false>(width, height, rptr, wptr); break;
case FORMAT_R8 | (FORMAT_RGB8 << 8): _convert<1, false, 3, false, false, false>(width, height, rptr, wptr); break;
case FORMAT_R8 | (FORMAT_RGBA8 << 8): _convert<1, false, 3, true, false, false>(width, height, rptr, wptr); break;
case FORMAT_RG8 | (FORMAT_L8 << 8): _convert<2, false, 1, false, false, true>(width, height, rptr, wptr); break;
case FORMAT_RG8 | (FORMAT_LA8 << 8): _convert<2, false, 1, true, false, true>(width, height, rptr, wptr); break;
case FORMAT_RG8 | (FORMAT_R8 << 8): _convert<2, false, 1, false, false, false>(width, height, rptr, wptr); break;
case FORMAT_RG8 | (FORMAT_RGB8 << 8): _convert<2, false, 3, false, false, false>(width, height, rptr, wptr); break;
case FORMAT_RG8 | (FORMAT_RGBA8 << 8): _convert<2, false, 3, true, false, false>(width, height, rptr, wptr); break;
case FORMAT_RGB8 | (FORMAT_L8 << 8): _convert<3, false, 1, false, false, true>(width, height, rptr, wptr); break;
case FORMAT_RGB8 | (FORMAT_LA8 << 8): _convert<3, false, 1, true, false, true>(width, height, rptr, wptr); break;
case FORMAT_RGB8 | (FORMAT_R8 << 8): _convert<3, false, 1, false, false, false>(width, height, rptr, wptr); break;
case FORMAT_RGB8 | (FORMAT_RG8 << 8): _convert<3, false, 2, false, false, false>(width, height, rptr, wptr); break;
case FORMAT_RGB8 | (FORMAT_RGBA8 << 8): _convert<3, false, 3, true, false, false>(width, height, rptr, wptr); break;
case FORMAT_RGBA8 | (FORMAT_L8 << 8): _convert<3, true, 1, false, false, true>(width, height, rptr, wptr); break;
case FORMAT_RGBA8 | (FORMAT_LA8 << 8): _convert<3, true, 1, true, false, true>(width, height, rptr, wptr); break;
case FORMAT_RGBA8 | (FORMAT_R8 << 8): _convert<3, true, 1, false, false, false>(width, height, rptr, wptr); break;
case FORMAT_RGBA8 | (FORMAT_RG8 << 8): _convert<3, true, 2, false, false, false>(width, height, rptr, wptr); break;
case FORMAT_RGBA8 | (FORMAT_RGB8 << 8): _convert<3, true, 3, false, false, false>(width, height, rptr, wptr); break;
}
r = PoolVector<uint8_t>::Read();
w = PoolVector<uint8_t>::Write();
bool gen_mipmaps = mipmaps;
//mipmaps=false;
*this = new_img;
if (gen_mipmaps)
generate_mipmaps();
}
Image::Format Image::get_format() const {
return format;
}
static double _bicubic_interp_kernel(double x) {
x = ABS(x);
double bc = 0;
if (x <= 1)
bc = (1.5 * x - 2.5) * x * x + 1;
else if (x < 2)
bc = ((-0.5 * x + 2.5) * x - 4) * x + 2;
return bc;
}
template <int CC>
static void _scale_cubic(const uint8_t *p_src, uint8_t *p_dst, uint32_t p_src_width, uint32_t p_src_height, uint32_t p_dst_width, uint32_t p_dst_height) {
// get source image size
int width = p_src_width;
int height = p_src_height;
double xfac = (double)width / p_dst_width;
double yfac = (double)height / p_dst_height;
// coordinates of source points and cooefficiens
double ox, oy, dx, dy, k1, k2;
int ox1, oy1, ox2, oy2;
// destination pixel values
// width and height decreased by 1
int ymax = height - 1;
int xmax = width - 1;
// temporary pointer
for (uint32_t y = 0; y < p_dst_height; y++) {
// Y coordinates
oy = (double)y * yfac - 0.5f;
oy1 = (int)oy;
dy = oy - (double)oy1;
for (uint32_t x = 0; x < p_dst_width; x++) {
// X coordinates
ox = (double)x * xfac - 0.5f;
ox1 = (int)ox;
dx = ox - (double)ox1;
// initial pixel value
uint8_t *dst = p_dst + (y * p_dst_width + x) * CC;
double color[CC];
for (int i = 0; i < CC; i++) {
color[i] = 0;
}
for (int n = -1; n < 3; n++) {
// get Y cooefficient
k1 = _bicubic_interp_kernel(dy - (double)n);
oy2 = oy1 + n;
if (oy2 < 0)
oy2 = 0;
if (oy2 > ymax)
oy2 = ymax;
for (int m = -1; m < 3; m++) {
// get X cooefficient
k2 = k1 * _bicubic_interp_kernel((double)m - dx);
ox2 = ox1 + m;
if (ox2 < 0)
ox2 = 0;
if (ox2 > xmax)
ox2 = xmax;
// get pixel of original image
const uint8_t *p = p_src + (oy2 * p_src_width + ox2) * CC;
for (int i = 0; i < CC; i++) {
color[i] += p[i] * k2;
}
}
}
for (int i = 0; i < CC; i++) {
dst[i] = CLAMP(Math::fast_ftoi(color[i]), 0, 255);
}
}
}
}
template <int CC>
static void _scale_bilinear(const uint8_t *p_src, uint8_t *p_dst, uint32_t p_src_width, uint32_t p_src_height, uint32_t p_dst_width, uint32_t p_dst_height) {
enum {
FRAC_BITS = 8,
FRAC_LEN = (1 << FRAC_BITS),
FRAC_MASK = FRAC_LEN - 1
};
for (uint32_t i = 0; i < p_dst_height; i++) {
uint32_t src_yofs_up_fp = (i * p_src_height * FRAC_LEN / p_dst_height);
uint32_t src_yofs_frac = src_yofs_up_fp & FRAC_MASK;
uint32_t src_yofs_up = src_yofs_up_fp >> FRAC_BITS;
uint32_t src_yofs_down = (i + 1) * p_src_height / p_dst_height;
if (src_yofs_down >= p_src_height)
src_yofs_down = p_src_height - 1;
//src_yofs_up*=CC;
//src_yofs_down*=CC;
uint32_t y_ofs_up = src_yofs_up * p_src_width * CC;
uint32_t y_ofs_down = src_yofs_down * p_src_width * CC;
for (uint32_t j = 0; j < p_dst_width; j++) {
uint32_t src_xofs_left_fp = (j * p_src_width * FRAC_LEN / p_dst_width);
uint32_t src_xofs_frac = src_xofs_left_fp & FRAC_MASK;
uint32_t src_xofs_left = src_xofs_left_fp >> FRAC_BITS;
uint32_t src_xofs_right = (j + 1) * p_src_width / p_dst_width;
if (src_xofs_right >= p_src_width)
src_xofs_right = p_src_width - 1;
src_xofs_left *= CC;
src_xofs_right *= CC;
for (uint32_t l = 0; l < CC; l++) {
uint32_t p00 = p_src[y_ofs_up + src_xofs_left + l] << FRAC_BITS;
uint32_t p10 = p_src[y_ofs_up + src_xofs_right + l] << FRAC_BITS;
uint32_t p01 = p_src[y_ofs_down + src_xofs_left + l] << FRAC_BITS;
uint32_t p11 = p_src[y_ofs_down + src_xofs_right + l] << FRAC_BITS;
uint32_t interp_up = p00 + (((p10 - p00) * src_xofs_frac) >> FRAC_BITS);
uint32_t interp_down = p01 + (((p11 - p01) * src_xofs_frac) >> FRAC_BITS);
uint32_t interp = interp_up + (((interp_down - interp_up) * src_yofs_frac) >> FRAC_BITS);
interp >>= FRAC_BITS;
p_dst[i * p_dst_width * CC + j * CC + l] = interp;
}
}
}
}
template <int CC>
static void _scale_nearest(const uint8_t *p_src, uint8_t *p_dst, uint32_t p_src_width, uint32_t p_src_height, uint32_t p_dst_width, uint32_t p_dst_height) {
for (uint32_t i = 0; i < p_dst_height; i++) {
uint32_t src_yofs = i * p_src_height / p_dst_height;
uint32_t y_ofs = src_yofs * p_src_width * CC;
for (uint32_t j = 0; j < p_dst_width; j++) {
uint32_t src_xofs = j * p_src_width / p_dst_width;
src_xofs *= CC;
for (uint32_t l = 0; l < CC; l++) {
uint32_t p = p_src[y_ofs + src_xofs + l];
p_dst[i * p_dst_width * CC + j * CC + l] = p;
}
}
}
}
void Image::resize_to_po2(bool p_square) {
if (!_can_modify(format)) {
ERR_EXPLAIN("Cannot resize in indexed, compressed or custom image formats.");
ERR_FAIL();
}
int w = nearest_power_of_2(width);
int h = nearest_power_of_2(height);
if (w == width && h == height) {
if (!p_square || w == h)
return; //nothing to do
}
resize(w, h);
}
Image Image::resized(int p_width, int p_height, int p_interpolation) {
Image ret = *this;
ret.resize(p_width, p_height, (Interpolation)p_interpolation);
return ret;
};
void Image::resize(int p_width, int p_height, Interpolation p_interpolation) {
if (!_can_modify(format)) {
ERR_EXPLAIN("Cannot resize in indexed, compressed or custom image formats.");
ERR_FAIL();
}
ERR_FAIL_COND(p_width <= 0);
ERR_FAIL_COND(p_height <= 0);
ERR_FAIL_COND(p_width > MAX_WIDTH);
ERR_FAIL_COND(p_height > MAX_HEIGHT);
if (p_width == width && p_height == height)
return;
Image dst(p_width, p_height, 0, format);
PoolVector<uint8_t>::Read r = data.read();
const unsigned char *r_ptr = r.ptr();
PoolVector<uint8_t>::Write w = dst.data.write();
unsigned char *w_ptr = w.ptr();
switch (p_interpolation) {
case INTERPOLATE_NEAREST: {
switch (get_format_pixel_size(format)) {
case 1: _scale_nearest<1>(r_ptr, w_ptr, width, height, p_width, p_height); break;
case 2: _scale_nearest<2>(r_ptr, w_ptr, width, height, p_width, p_height); break;
case 3: _scale_nearest<3>(r_ptr, w_ptr, width, height, p_width, p_height); break;
case 4: _scale_nearest<4>(r_ptr, w_ptr, width, height, p_width, p_height); break;
}
} break;
case INTERPOLATE_BILINEAR: {
switch (get_format_pixel_size(format)) {
case 1: _scale_bilinear<1>(r_ptr, w_ptr, width, height, p_width, p_height); break;
case 2: _scale_bilinear<2>(r_ptr, w_ptr, width, height, p_width, p_height); break;
case 3: _scale_bilinear<3>(r_ptr, w_ptr, width, height, p_width, p_height); break;
case 4: _scale_bilinear<4>(r_ptr, w_ptr, width, height, p_width, p_height); break;
}
} break;
case INTERPOLATE_CUBIC: {
switch (get_format_pixel_size(format)) {
case 1: _scale_cubic<1>(r_ptr, w_ptr, width, height, p_width, p_height); break;
case 2: _scale_cubic<2>(r_ptr, w_ptr, width, height, p_width, p_height); break;
case 3: _scale_cubic<3>(r_ptr, w_ptr, width, height, p_width, p_height); break;
case 4: _scale_cubic<4>(r_ptr, w_ptr, width, height, p_width, p_height); break;
}
} break;
}
r = PoolVector<uint8_t>::Read();
w = PoolVector<uint8_t>::Write();
if (mipmaps > 0)
dst.generate_mipmaps();
*this = dst;
}
void Image::crop(int p_width, int p_height) {
if (!_can_modify(format)) {
ERR_EXPLAIN("Cannot crop in indexed, compressed or custom image formats.");
ERR_FAIL();
}
ERR_FAIL_COND(p_width <= 0);
ERR_FAIL_COND(p_height <= 0);
ERR_FAIL_COND(p_width > MAX_WIDTH);
ERR_FAIL_COND(p_height > MAX_HEIGHT);
/* to save memory, cropping should be done in-place, however, since this function
will most likely either not be used much, or in critical areas, for now it wont, because
it's a waste of time. */
if (p_width == width && p_height == height)
return;
uint8_t pdata[16]; //largest is 16
uint32_t pixel_size = get_format_pixel_size(format);
Image dst(p_width, p_height, 0, format);
{
PoolVector<uint8_t>::Read r = data.read();
PoolVector<uint8_t>::Write w = dst.data.write();
for (int y = 0; y < p_height; y++) {
for (int x = 0; x < p_width; x++) {
if ((x >= width || y >= height)) {
for (uint32_t i = 0; i < pixel_size; i++)
pdata[i] = 0;
} else {
_get_pixelb(x, y, pixel_size, r.ptr(), pdata);
}
dst._put_pixelb(x, y, pixel_size, w.ptr(), pdata);
}
}
}
if (mipmaps > 0)
dst.generate_mipmaps();
*this = dst;
}
void Image::flip_y() {
if (!_can_modify(format)) {
ERR_EXPLAIN("Cannot flip_y in indexed, compressed or custom image formats.");
ERR_FAIL();
}
bool gm = mipmaps;
if (gm)
clear_mipmaps();
{
PoolVector<uint8_t>::Write w = data.write();
uint8_t up[16];
uint8_t down[16];
uint32_t pixel_size = get_format_pixel_size(format);
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
_get_pixelb(x, y, pixel_size, w.ptr(), up);
_get_pixelb(x, height - y - 1, pixel_size, w.ptr(), down);
_put_pixelb(x, height - y - 1, pixel_size, w.ptr(), up);
_put_pixelb(x, y, pixel_size, w.ptr(), down);
}
}
}
if (gm)
generate_mipmaps();
}
void Image::flip_x() {
if (!_can_modify(format)) {
ERR_EXPLAIN("Cannot flip_x in indexed, compressed or custom image formats.");
ERR_FAIL();
}
bool gm = mipmaps;
if (gm)
clear_mipmaps();
{
PoolVector<uint8_t>::Write w = data.write();
uint8_t up[16];
uint8_t down[16];
uint32_t pixel_size = get_format_pixel_size(format);
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
_get_pixelb(x, y, pixel_size, w.ptr(), up);
_get_pixelb(width - x - 1, y, pixel_size, w.ptr(), down);
_put_pixelb(width - x - 1, y, pixel_size, w.ptr(), up);
_put_pixelb(x, y, pixel_size, w.ptr(), down);
}
}
}
if (gm)
generate_mipmaps();
}
int Image::_get_dst_image_size(int p_width, int p_height, Format p_format, int &r_mipmaps, int p_mipmaps) {
int size = 0;
int w = p_width;
int h = p_height;
int mm = 0;
int pixsize = get_format_pixel_size(p_format);
int pixshift = get_format_pixel_rshift(p_format);
int minw, minh;
get_format_min_pixel_size(p_format, minw, minh);
while (true) {
int s = w * h;
s *= pixsize;
s >>= pixshift;
size += s;
if (p_mipmaps >= 0 && mm == p_mipmaps)
break;
if (p_mipmaps >= 0) {
w = MAX(minw, w >> 1);
h = MAX(minh, h >> 1);
} else {
if (w == minw && h == minh)
break;
w = MAX(minw, w >> 1);
h = MAX(minh, h >> 1);
}
mm++;
};
r_mipmaps = mm;
return size;
}
bool Image::_can_modify(Format p_format) const {
return p_format < FORMAT_RGB565;
}
template <int CC>
static void _generate_po2_mipmap(const uint8_t *p_src, uint8_t *p_dst, uint32_t p_width, uint32_t p_height) {
//fast power of 2 mipmap generation
uint32_t dst_w = p_width >> 1;
uint32_t dst_h = p_height >> 1;
for (uint32_t i = 0; i < dst_h; i++) {
const uint8_t *rup_ptr = &p_src[i * 2 * p_width * CC];
const uint8_t *rdown_ptr = rup_ptr + p_width * CC;
uint8_t *dst_ptr = &p_dst[i * dst_w * CC];
uint32_t count = dst_w;
while (count--) {
for (int j = 0; j < CC; j++) {
uint16_t val = 0;
val += rup_ptr[j];
val += rup_ptr[j + CC];
val += rdown_ptr[j];
val += rdown_ptr[j + CC];
dst_ptr[j] = val >> 2;
}
dst_ptr += CC;
rup_ptr += CC * 2;
rdown_ptr += CC * 2;
}
}
}
void Image::expand_x2_hq2x() {
ERR_FAIL_COND(!_can_modify(format));
Format current = format;
bool mm = has_mipmaps();
if (mm) {
clear_mipmaps();
}
if (current != FORMAT_RGBA8)
convert(FORMAT_RGBA8);
PoolVector<uint8_t> dest;
dest.resize(width * 2 * height * 2 * 4);
{
PoolVector<uint8_t>::Read r = data.read();
PoolVector<uint8_t>::Write w = dest.write();
hq2x_resize((const uint32_t *)r.ptr(), width, height, (uint32_t *)w.ptr());
}
width *= 2;
height *= 2;
data = dest;
if (current != FORMAT_RGBA8)
convert(current);
if (mipmaps) {
generate_mipmaps();
}
}
void Image::shrink_x2() {
ERR_FAIL_COND(data.size() == 0);
if (mipmaps) {
//just use the lower mipmap as base and copy all
PoolVector<uint8_t> new_img;
int ofs = get_mipmap_offset(1);
int new_size = data.size() - ofs;
new_img.resize(new_size);
{
PoolVector<uint8_t>::Write w = new_img.write();
PoolVector<uint8_t>::Read r = data.read();
copymem(w.ptr(), &r[ofs], new_size);
}
width /= 2;
height /= 2;
data = new_img;
} else {
PoolVector<uint8_t> new_img;
ERR_FAIL_COND(!_can_modify(format));
int ps = get_format_pixel_size(format);
new_img.resize((width / 2) * (height / 2) * ps);
{
PoolVector<uint8_t>::Write w = new_img.write();
PoolVector<uint8_t>::Read r = data.read();
switch (format) {
case FORMAT_L8:
case FORMAT_R8: _generate_po2_mipmap<1>(r.ptr(), w.ptr(), width, height); break;
case FORMAT_LA8: _generate_po2_mipmap<2>(r.ptr(), w.ptr(), width, height); break;
case FORMAT_RG8: _generate_po2_mipmap<2>(r.ptr(), w.ptr(), width, height); break;
case FORMAT_RGB8: _generate_po2_mipmap<3>(r.ptr(), w.ptr(), width, height); break;
case FORMAT_RGBA8: _generate_po2_mipmap<4>(r.ptr(), w.ptr(), width, height); break;
default: {}
}
}
width /= 2;
height /= 2;
data = new_img;
}
}
Error Image::generate_mipmaps() {
if (!_can_modify(format)) {
ERR_EXPLAIN("Cannot generate mipmaps in indexed, compressed or custom image formats.");
ERR_FAIL_V(ERR_UNAVAILABLE);
}
ERR_FAIL_COND_V(width == 0 || height == 0, ERR_UNCONFIGURED);
int mmcount;
int size = _get_dst_image_size(width, height, format, mmcount);
data.resize(size);
print_line("to gen mipmaps w " + itos(width) + " h " + itos(height) + " format " + get_format_name(format) + " mipmaps " + itos(mmcount) + " new size is: " + itos(size));
PoolVector<uint8_t>::Write wp = data.write();
if (nearest_power_of_2(width) == uint32_t(width) && nearest_power_of_2(height) == uint32_t(height)) {
//use fast code for powers of 2
int prev_ofs = 0;
int prev_h = height;
int prev_w = width;
for (int i = 1; i < mmcount; i++) {
int ofs, w, h;
_get_mipmap_offset_and_size(i, ofs, w, h);
switch (format) {
case FORMAT_L8:
case FORMAT_R8: _generate_po2_mipmap<1>(&wp[prev_ofs], &wp[ofs], prev_w, prev_h); break;
case FORMAT_LA8:
case FORMAT_RG8: _generate_po2_mipmap<2>(&wp[prev_ofs], &wp[ofs], prev_w, prev_h); break;
case FORMAT_RGB8: _generate_po2_mipmap<3>(&wp[prev_ofs], &wp[ofs], prev_w, prev_h); break;
case FORMAT_RGBA8: _generate_po2_mipmap<4>(&wp[prev_ofs], &wp[ofs], prev_w, prev_h); break;
default: {}
}
prev_ofs = ofs;
prev_w = w;
prev_h = h;
}
} else {
//use slow code..
//use bilinear filtered code for non powers of 2
int prev_ofs = 0;
int prev_h = height;
int prev_w = width;
for (int i = 1; i < mmcount; i++) {
int ofs, w, h;
_get_mipmap_offset_and_size(i, ofs, w, h);
switch (format) {
case FORMAT_L8:
case FORMAT_R8: _scale_bilinear<1>(&wp[prev_ofs], &wp[ofs], prev_w, prev_h, w, h); break;
case FORMAT_LA8:
case FORMAT_RG8: _scale_bilinear<2>(&wp[prev_ofs], &wp[ofs], prev_w, prev_h, w, h); break;
case FORMAT_RGB8: _scale_bilinear<3>(&wp[prev_ofs], &wp[ofs], prev_w, prev_h, w, h); break;
case FORMAT_RGBA8: _scale_bilinear<4>(&wp[prev_ofs], &wp[ofs], prev_w, prev_h, w, h); break;
default: {}
}
prev_ofs = ofs;
prev_w = w;
prev_h = h;
}
}
mipmaps = true;
return OK;
}
void Image::clear_mipmaps() {
if (!mipmaps)
return;
if (empty())
return;
int ofs, w, h;
_get_mipmap_offset_and_size(1, ofs, w, h);
data.resize(ofs);
mipmaps = false;
}
bool Image::empty() const {
return (data.size() == 0);
}
PoolVector<uint8_t> Image::get_data() const {
return data;
}
void Image::create(int p_width, int p_height, bool p_use_mipmaps, Format p_format) {
int mm = 0;
int size = _get_dst_image_size(p_width, p_height, p_format, mm, p_use_mipmaps ? -1 : 0);
data.resize(size);
{
PoolVector<uint8_t>::Write w = data.write();
zeromem(w.ptr(), size);
}
width = p_width;
height = p_height;
mipmaps = p_use_mipmaps;
format = p_format;
}
void Image::create(int p_width, int p_height, bool p_use_mipmaps, Format p_format, const PoolVector<uint8_t> &p_data) {
ERR_FAIL_INDEX(p_width - 1, MAX_WIDTH);
ERR_FAIL_INDEX(p_height - 1, MAX_HEIGHT);
int mm;
int size = _get_dst_image_size(p_width, p_height, p_format, mm, p_use_mipmaps ? -1 : 0);
if (size != p_data.size()) {
ERR_EXPLAIN("Expected data size of " + itos(size) + " in Image::create()");
ERR_FAIL_COND(p_data.size() != size);
}
height = p_height;
width = p_width;
format = p_format;
data = p_data;
mipmaps = p_use_mipmaps;
}
void Image::create(const char **p_xpm) {
int size_width, size_height;
int pixelchars = 0;
mipmaps = false;
bool has_alpha = false;
enum Status {
READING_HEADER,
READING_COLORS,
READING_PIXELS,
DONE
};
Status status = READING_HEADER;
int line = 0;
HashMap<String, Color> colormap;
int colormap_size;
uint32_t pixel_size;
PoolVector<uint8_t>::Write w;
while (status != DONE) {
const char *line_ptr = p_xpm[line];
switch (status) {
case READING_HEADER: {
String line_str = line_ptr;
line_str.replace("\t", " ");
size_width = line_str.get_slicec(' ', 0).to_int();
size_height = line_str.get_slicec(' ', 1).to_int();
colormap_size = line_str.get_slicec(' ', 2).to_int();
pixelchars = line_str.get_slicec(' ', 3).to_int();
ERR_FAIL_COND(colormap_size > 32766);
ERR_FAIL_COND(pixelchars > 5);
ERR_FAIL_COND(size_width > 32767);
ERR_FAIL_COND(size_height > 32767);
status = READING_COLORS;
} break;
case READING_COLORS: {
String colorstring;
for (int i = 0; i < pixelchars; i++) {
colorstring += *line_ptr;
line_ptr++;
}
//skip spaces
while (*line_ptr == ' ' || *line_ptr == '\t' || *line_ptr == 0) {
if (*line_ptr == 0)
break;
line_ptr++;
}
if (*line_ptr == 'c') {
line_ptr++;
while (*line_ptr == ' ' || *line_ptr == '\t' || *line_ptr == 0) {
if (*line_ptr == 0)
break;
line_ptr++;
}
if (*line_ptr == '#') {
line_ptr++;
uint8_t col_r;
uint8_t col_g;
uint8_t col_b;
//uint8_t col_a=255;
for (int i = 0; i < 6; i++) {
char v = line_ptr[i];
if (v >= '0' && v <= '9')
v -= '0';
else if (v >= 'A' && v <= 'F')
v = (v - 'A') + 10;
else if (v >= 'a' && v <= 'f')
v = (v - 'a') + 10;
else
break;
switch (i) {
case 0: col_r = v << 4; break;
case 1: col_r |= v; break;
case 2: col_g = v << 4; break;
case 3: col_g |= v; break;
case 4: col_b = v << 4; break;
case 5: col_b |= v; break;
};
}
// magenta mask
if (col_r == 255 && col_g == 0 && col_b == 255) {
colormap[colorstring] = Color(0, 0, 0, 0);
has_alpha = true;
} else {
colormap[colorstring] = Color(col_r / 255.0, col_g / 255.0, col_b / 255.0, 1.0);
}
}
}
if (line == colormap_size) {
status = READING_PIXELS;
create(size_width, size_height, 0, has_alpha ? FORMAT_RGBA8 : FORMAT_RGB8);
w = data.write();
pixel_size = has_alpha ? 4 : 3;
}
} break;
case READING_PIXELS: {
int y = line - colormap_size - 1;
for (int x = 0; x < size_width; x++) {
char pixelstr[6] = { 0, 0, 0, 0, 0, 0 };
for (int i = 0; i < pixelchars; i++)
pixelstr[i] = line_ptr[x * pixelchars + i];
Color *colorptr = colormap.getptr(pixelstr);
ERR_FAIL_COND(!colorptr);
uint8_t pixel[4];
for (uint32_t i = 0; i < pixel_size; i++) {
pixel[i] = CLAMP((*colorptr)[i] * 255, 0, 255);
}
_put_pixelb(x, y, pixel_size, w.ptr(), pixel);
}
if (y == (size_height - 1))
status = DONE;
} break;
default: {}
}
line++;
}
}
#define DETECT_ALPHA_MAX_TRESHOLD 254
#define DETECT_ALPHA_MIN_TRESHOLD 2
#define DETECT_ALPHA(m_value) \
{ \
uint8_t value = m_value; \
if (value < DETECT_ALPHA_MIN_TRESHOLD) \
bit = true; \
else if (value < DETECT_ALPHA_MAX_TRESHOLD) { \
\
detected = true; \
break; \
} \
}
#define DETECT_NON_ALPHA(m_value) \
{ \
uint8_t value = m_value; \
if (value > 0) { \
\
detected = true; \
break; \
} \
}
bool Image::is_invisible() const {
if (format == FORMAT_L8 ||
format == FORMAT_RGB8 || format == FORMAT_RG8)
return false;
int len = data.size();
if (len == 0)
return true;
int w, h;
_get_mipmap_offset_and_size(1, len, w, h);
PoolVector<uint8_t>::Read r = data.read();
const unsigned char *data_ptr = r.ptr();
bool detected = false;
switch (format) {
case FORMAT_LA8: {
for (int i = 0; i < (len >> 1); i++) {
DETECT_NON_ALPHA(data_ptr[(i << 1) + 1]);
}
} break;
case FORMAT_RGBA8: {
for (int i = 0; i < (len >> 2); i++) {
DETECT_NON_ALPHA(data_ptr[(i << 2) + 3])
}
} break;
case FORMAT_PVRTC2A:
case FORMAT_PVRTC4A:
case FORMAT_DXT3:
case FORMAT_DXT5: {
detected = true;
} break;
default: {}
}
return !detected;
}
Image::AlphaMode Image::detect_alpha() const {
int len = data.size();
if (len == 0)
return ALPHA_NONE;
int w, h;
_get_mipmap_offset_and_size(1, len, w, h);
PoolVector<uint8_t>::Read r = data.read();
const unsigned char *data_ptr = r.ptr();
bool bit = false;
bool detected = false;
switch (format) {
case FORMAT_LA8: {
for (int i = 0; i < (len >> 1); i++) {
DETECT_ALPHA(data_ptr[(i << 1) + 1]);
}
} break;
case FORMAT_RGBA8: {
for (int i = 0; i < (len >> 2); i++) {
DETECT_ALPHA(data_ptr[(i << 2) + 3])
}
} break;
case FORMAT_PVRTC2A:
case FORMAT_PVRTC4A:
case FORMAT_DXT3:
case FORMAT_DXT5: {
detected = true;
} break;
default: {}
}
if (detected)
return ALPHA_BLEND;
else if (bit)
return ALPHA_BIT;
else
return ALPHA_NONE;
}
Error Image::load(const String &p_path) {
return ImageLoader::load_image(p_path, this);
}
Error Image::save_png(const String &p_path) {
if (save_png_func == NULL)
return ERR_UNAVAILABLE;
return save_png_func(p_path, *this);
}
bool Image::operator==(const Image &p_image) const {
if (data.size() == 0 && p_image.data.size() == 0)
return true;
PoolVector<uint8_t>::Read r = data.read();
PoolVector<uint8_t>::Read pr = p_image.data.read();
return r.ptr() == pr.ptr();
}
int Image::get_image_data_size(int p_width, int p_height, Format p_format, int p_mipmaps) {
int mm;
return _get_dst_image_size(p_width, p_height, p_format, mm, p_mipmaps);
}
int Image::get_image_required_mipmaps(int p_width, int p_height, Format p_format) {
int mm;
_get_dst_image_size(p_width, p_height, p_format, mm, -1);
return mm;
}
Error Image::_decompress_bc() {
int wd = width, ht = height;
if (wd % 4 != 0) {
wd += 4 - (wd % 4);
}
if (ht % 4 != 0) {
ht += 4 - (ht % 4);
}
int mm;
int size = _get_dst_image_size(wd, ht, FORMAT_RGBA8, mm);
PoolVector<uint8_t> newdata;
newdata.resize(size);
PoolVector<uint8_t>::Write w = newdata.write();
PoolVector<uint8_t>::Read r = data.read();
int rofs = 0;
int wofs = 0;
//print_line("width: "+itos(wd)+" height: "+itos(ht));
for (int i = 0; i <= mm; i++) {
switch (format) {
case FORMAT_DXT1: {
int len = (wd * ht) / 16;
uint8_t *dst = &w[wofs];
uint32_t ofs_table[16];
for (int x = 0; x < 4; x++) {
for (int y = 0; y < 4; y++) {
ofs_table[15 - (y * 4 + (3 - x))] = (x + y * wd) * 4;
}
}
for (int j = 0; j < len; j++) {
const uint8_t *src = &r[rofs + j * 8];
uint16_t col_a = src[1];
col_a <<= 8;
col_a |= src[0];
uint16_t col_b = src[3];
col_b <<= 8;
col_b |= src[2];
uint8_t table[4][4] = {
{ uint8_t((col_a >> 11) << 3), uint8_t(((col_a >> 5) & 0x3f) << 2), uint8_t(((col_a)&0x1f) << 3), 255 },
{ uint8_t((col_b >> 11) << 3), uint8_t(((col_b >> 5) & 0x3f) << 2), uint8_t(((col_b)&0x1f) << 3), 255 },
{ 0, 0, 0, 255 },
{ 0, 0, 0, 255 }
};
if (col_a < col_b) {
//punchrough
table[2][0] = (int(table[0][0]) + int(table[1][0])) >> 1;
table[2][1] = (int(table[0][1]) + int(table[1][1])) >> 1;
table[2][2] = (int(table[0][2]) + int(table[1][2])) >> 1;
table[3][3] = 0; //premul alpha black
} else {
//gradient
table[2][0] = (int(table[0][0]) * 2 + int(table[1][0])) / 3;
table[2][1] = (int(table[0][1]) * 2 + int(table[1][1])) / 3;
table[2][2] = (int(table[0][2]) * 2 + int(table[1][2])) / 3;
table[3][0] = (int(table[0][0]) + int(table[1][0]) * 2) / 3;
table[3][1] = (int(table[0][1]) + int(table[1][1]) * 2) / 3;
table[3][2] = (int(table[0][2]) + int(table[1][2]) * 2) / 3;
}
uint32_t block = src[4];
block <<= 8;
block |= src[5];
block <<= 8;
block |= src[6];
block <<= 8;
block |= src[7];
int y = (j / (wd / 4)) * 4;
int x = (j % (wd / 4)) * 4;
int pixofs = (y * wd + x) * 4;
for (int k = 0; k < 16; k++) {
int idx = pixofs + ofs_table[k];
dst[idx + 0] = table[block & 0x3][0];
dst[idx + 1] = table[block & 0x3][1];
dst[idx + 2] = table[block & 0x3][2];
dst[idx + 3] = table[block & 0x3][3];
block >>= 2;
}
}
rofs += len * 8;
wofs += wd * ht * 4;
wd /= 2;
ht /= 2;
} break;
case FORMAT_DXT3: {
int len = (wd * ht) / 16;
uint8_t *dst = &w[wofs];
uint32_t ofs_table[16];
for (int x = 0; x < 4; x++) {
for (int y = 0; y < 4; y++) {
ofs_table[15 - (y * 4 + (3 - x))] = (x + y * wd) * 4;
}
}
for (int j = 0; j < len; j++) {
const uint8_t *src = &r[rofs + j * 16];
uint64_t ablock = src[1];
ablock <<= 8;
ablock |= src[0];
ablock <<= 8;
ablock |= src[3];
ablock <<= 8;
ablock |= src[2];
ablock <<= 8;
ablock |= src[5];
ablock <<= 8;
ablock |= src[4];
ablock <<= 8;
ablock |= src[7];
ablock <<= 8;
ablock |= src[6];
uint16_t col_a = src[8 + 1];
col_a <<= 8;
col_a |= src[8 + 0];
uint16_t col_b = src[8 + 3];
col_b <<= 8;
col_b |= src[8 + 2];
uint8_t table[4][4] = {
{ uint8_t((col_a >> 11) << 3), uint8_t(((col_a >> 5) & 0x3f) << 2), uint8_t(((col_a)&0x1f) << 3), 255 },
{ uint8_t((col_b >> 11) << 3), uint8_t(((col_b >> 5) & 0x3f) << 2), uint8_t(((col_b)&0x1f) << 3), 255 },
{ 0, 0, 0, 255 },
{ 0, 0, 0, 255 }
};
//always gradient
table[2][0] = (int(table[0][0]) * 2 + int(table[1][0])) / 3;
table[2][1] = (int(table[0][1]) * 2 + int(table[1][1])) / 3;
table[2][2] = (int(table[0][2]) * 2 + int(table[1][2])) / 3;
table[3][0] = (int(table[0][0]) + int(table[1][0]) * 2) / 3;
table[3][1] = (int(table[0][1]) + int(table[1][1]) * 2) / 3;
table[3][2] = (int(table[0][2]) + int(table[1][2]) * 2) / 3;
uint32_t block = src[4 + 8];
block <<= 8;
block |= src[5 + 8];
block <<= 8;
block |= src[6 + 8];
block <<= 8;
block |= src[7 + 8];
int y = (j / (wd / 4)) * 4;
int x = (j % (wd / 4)) * 4;
int pixofs = (y * wd + x) * 4;
for (int k = 0; k < 16; k++) {
uint8_t alpha = ablock & 0xf;
alpha = int(alpha) * 255 / 15; //right way for alpha
int idx = pixofs + ofs_table[k];
dst[idx + 0] = table[block & 0x3][0];
dst[idx + 1] = table[block & 0x3][1];
dst[idx + 2] = table[block & 0x3][2];
dst[idx + 3] = alpha;
block >>= 2;
ablock >>= 4;
}
}
rofs += len * 16;
wofs += wd * ht * 4;
wd /= 2;
ht /= 2;
} break;
case FORMAT_DXT5: {
int len = (wd * ht) / 16;
uint8_t *dst = &w[wofs];
uint32_t ofs_table[16];
for (int x = 0; x < 4; x++) {
for (int y = 0; y < 4; y++) {
ofs_table[15 - (y * 4 + (3 - x))] = (x + y * wd) * 4;
}
}
for (int j = 0; j < len; j++) {
const uint8_t *src = &r[rofs + j * 16];
uint8_t a_start = src[1];
uint8_t a_end = src[0];
uint64_t ablock = src[3];
ablock <<= 8;
ablock |= src[2];
ablock <<= 8;
ablock |= src[5];
ablock <<= 8;
ablock |= src[4];
ablock <<= 8;
ablock |= src[7];
ablock <<= 8;
ablock |= src[6];
uint8_t atable[8];
if (a_start > a_end) {
atable[0] = (int(a_start) * 7 + int(a_end) * 0) / 7;
atable[1] = (int(a_start) * 6 + int(a_end) * 1) / 7;
atable[2] = (int(a_start) * 5 + int(a_end) * 2) / 7;
atable[3] = (int(a_start) * 4 + int(a_end) * 3) / 7;
atable[4] = (int(a_start) * 3 + int(a_end) * 4) / 7;
atable[5] = (int(a_start) * 2 + int(a_end) * 5) / 7;
atable[6] = (int(a_start) * 1 + int(a_end) * 6) / 7;
atable[7] = (int(a_start) * 0 + int(a_end) * 7) / 7;
} else {
atable[0] = (int(a_start) * 5 + int(a_end) * 0) / 5;
atable[1] = (int(a_start) * 4 + int(a_end) * 1) / 5;
atable[2] = (int(a_start) * 3 + int(a_end) * 2) / 5;
atable[3] = (int(a_start) * 2 + int(a_end) * 3) / 5;
atable[4] = (int(a_start) * 1 + int(a_end) * 4) / 5;
atable[5] = (int(a_start) * 0 + int(a_end) * 5) / 5;
atable[6] = 0;
atable[7] = 255;
}
uint16_t col_a = src[8 + 1];
col_a <<= 8;
col_a |= src[8 + 0];
uint16_t col_b = src[8 + 3];
col_b <<= 8;
col_b |= src[8 + 2];
uint8_t table[4][4] = {
{ uint8_t((col_a >> 11) << 3), uint8_t(((col_a >> 5) & 0x3f) << 2), uint8_t(((col_a)&0x1f) << 3), 255 },
{ uint8_t((col_b >> 11) << 3), uint8_t(((col_b >> 5) & 0x3f) << 2), uint8_t(((col_b)&0x1f) << 3), 255 },
{ 0, 0, 0, 255 },
{ 0, 0, 0, 255 }
};
//always gradient
table[2][0] = (int(table[0][0]) * 2 + int(table[1][0])) / 3;
table[2][1] = (int(table[0][1]) * 2 + int(table[1][1])) / 3;
table[2][2] = (int(table[0][2]) * 2 + int(table[1][2])) / 3;
table[3][0] = (int(table[0][0]) + int(table[1][0]) * 2) / 3;
table[3][1] = (int(table[0][1]) + int(table[1][1]) * 2) / 3;
table[3][2] = (int(table[0][2]) + int(table[1][2]) * 2) / 3;
uint32_t block = src[4 + 8];
block <<= 8;
block |= src[5 + 8];
block <<= 8;
block |= src[6 + 8];
block <<= 8;
block |= src[7 + 8];
int y = (j / (wd / 4)) * 4;
int x = (j % (wd / 4)) * 4;
int pixofs = (y * wd + x) * 4;
for (int k = 0; k < 16; k++) {
uint8_t alpha = ablock & 0x7;
int idx = pixofs + ofs_table[k];
dst[idx + 0] = table[block & 0x3][0];
dst[idx + 1] = table[block & 0x3][1];
dst[idx + 2] = table[block & 0x3][2];
dst[idx + 3] = atable[alpha];
block >>= 2;
ablock >>= 3;
}
}
rofs += len * 16;
wofs += wd * ht * 4;
wd /= 2;
ht /= 2;
} break;
default: {}
}
}
w = PoolVector<uint8_t>::Write();
r = PoolVector<uint8_t>::Read();
data = newdata;
format = FORMAT_RGBA8;
if (wd != width || ht != height) {
SWAP(width, wd);
SWAP(height, ht);
crop(wd, ht);
}
return OK;
}
bool Image::is_compressed() const {
return format >= FORMAT_RGB565;
}
Image Image::decompressed() const {
Image img = *this;
img.decompress();
return img;
}
Error Image::decompress() {
if (format >= FORMAT_DXT1 && format <= FORMAT_ATI2)
_decompress_bc(); //_image_decompress_bc(this);
else if (format >= FORMAT_PVRTC2 && format <= FORMAT_PVRTC4A && _image_decompress_pvrtc)
_image_decompress_pvrtc(this);
else if (format == FORMAT_ETC && _image_decompress_etc)
_image_decompress_etc(this);
else if (format >= FORMAT_ETC2_R11 && format <= FORMAT_ETC2_RGB8A1 && _image_decompress_etc)
_image_decompress_etc2(this);
else
return ERR_UNAVAILABLE;
return OK;
}
Error Image::compress(CompressMode p_mode) {
switch (p_mode) {
case COMPRESS_16BIT: {
//ERR_FAIL_COND_V(!_image_compress_bc_func, ERR_UNAVAILABLE);
//_image_compress_bc_func(this);
} break;
case COMPRESS_S3TC: {
ERR_FAIL_COND_V(!_image_compress_bc_func, ERR_UNAVAILABLE);
_image_compress_bc_func(this);
} break;
case COMPRESS_PVRTC2: {
ERR_FAIL_COND_V(!_image_compress_pvrtc2_func, ERR_UNAVAILABLE);
_image_compress_pvrtc2_func(this);
} break;
case COMPRESS_PVRTC4: {
ERR_FAIL_COND_V(!_image_compress_pvrtc4_func, ERR_UNAVAILABLE);
_image_compress_pvrtc4_func(this);
} break;
case COMPRESS_ETC: {
ERR_FAIL_COND_V(!_image_compress_etc_func, ERR_UNAVAILABLE);
_image_compress_etc_func(this);
} break;
case COMPRESS_ETC2: {
ERR_FAIL_COND_V(!_image_compress_etc_func, ERR_UNAVAILABLE);
_image_compress_etc_func(this);
} break;
}
return OK;
}
Image Image::compressed(int p_mode) {
Image ret = *this;
ret.compress((Image::CompressMode)p_mode);
return ret;
}
Image::Image(const char **p_xpm) {
width = 0;
height = 0;
mipmaps = false;
format = FORMAT_L8;
create(p_xpm);
}
Image::Image(int p_width, int p_height, bool p_use_mipmaps, Format p_format) {
width = 0;
height = 0;
mipmaps = p_use_mipmaps;
format = FORMAT_L8;
create(p_width, p_height, p_use_mipmaps, p_format);
}
Image::Image(int p_width, int p_height, bool p_mipmaps, Format p_format, const PoolVector<uint8_t> &p_data) {
width = 0;
height = 0;
mipmaps = p_mipmaps;
format = FORMAT_L8;
create(p_width, p_height, p_mipmaps, p_format, p_data);
}
Rect2 Image::get_used_rect() const {
if (format != FORMAT_LA8 && format != FORMAT_RGBA8)
return Rect2(Point2(), Size2(width, height));
int len = data.size();
if (len == 0)
return Rect2();
//int data_size = len;
PoolVector<uint8_t>::Read r = data.read();
const unsigned char *rptr = r.ptr();
int ps = format == FORMAT_LA8 ? 2 : 4;
int minx = 0xFFFFFF, miny = 0xFFFFFFF;
int maxx = -1, maxy = -1;
for (int j = 0; j < height; j++) {
for (int i = 0; i < width; i++) {
bool opaque = rptr[(j * width + i) * ps + (ps - 1)] > 2;
if (!opaque)
continue;
if (i > maxx)
maxx = i;
if (j > maxy)
maxy = j;
if (i < minx)
minx = i;
if (j < miny)
miny = j;
}
}
if (maxx == -1)
return Rect2();
else
return Rect2(minx, miny, maxx - minx + 1, maxy - miny + 1);
}
Image Image::get_rect(const Rect2 &p_area) const {
Image img(p_area.size.x, p_area.size.y, mipmaps, format);
img.blit_rect(*this, p_area, Point2(0, 0));
return img;
}
void Image::blit_rect(const Image &p_src, const Rect2 &p_src_rect, const Point2 &p_dest) {
int dsize = data.size();
int srcdsize = p_src.data.size();
ERR_FAIL_COND(dsize == 0);
ERR_FAIL_COND(srcdsize == 0);
ERR_FAIL_COND(format != p_src.format);
Rect2i local_src_rect = Rect2i(0, 0, width, height).clip(Rect2i(p_dest + p_src_rect.pos, p_src_rect.size));
if (local_src_rect.size.x <= 0 || local_src_rect.size.y <= 0)
return;
Rect2i src_rect(p_src_rect.pos + (local_src_rect.pos - p_dest), local_src_rect.size);
PoolVector<uint8_t>::Write wp = data.write();
uint8_t *dst_data_ptr = wp.ptr();
PoolVector<uint8_t>::Read rp = p_src.data.read();
const uint8_t *src_data_ptr = rp.ptr();
int pixel_size = get_format_pixel_size(format);
for (int i = 0; i < src_rect.size.y; i++) {
for (int j = 0; j < src_rect.size.x; j++) {
int src_x = src_rect.pos.x + j;
int src_y = src_rect.pos.y + i;
int dst_x = local_src_rect.pos.x + j;
int dst_y = local_src_rect.pos.y + i;
const uint8_t *src = &src_data_ptr[(src_y * p_src.width + src_x) * pixel_size];
uint8_t *dst = &dst_data_ptr[(dst_y * width + dst_x) * pixel_size];
for (int k = 0; k < pixel_size; k++) {
dst[k] = src[k];
}
}
}
}
Image (*Image::_png_mem_loader_func)(const uint8_t *, int) = NULL;
Image (*Image::_jpg_mem_loader_func)(const uint8_t *, int) = NULL;
void (*Image::_image_compress_bc_func)(Image *) = NULL;
void (*Image::_image_compress_pvrtc2_func)(Image *) = NULL;
void (*Image::_image_compress_pvrtc4_func)(Image *) = NULL;
void (*Image::_image_compress_etc_func)(Image *) = NULL;
void (*Image::_image_compress_etc2_func)(Image *) = NULL;
void (*Image::_image_decompress_pvrtc)(Image *) = NULL;
void (*Image::_image_decompress_bc)(Image *) = NULL;
void (*Image::_image_decompress_etc)(Image *) = NULL;
void (*Image::_image_decompress_etc2)(Image *) = NULL;
PoolVector<uint8_t> (*Image::lossy_packer)(const Image &, float) = NULL;
Image (*Image::lossy_unpacker)(const PoolVector<uint8_t> &) = NULL;
PoolVector<uint8_t> (*Image::lossless_packer)(const Image &) = NULL;
Image (*Image::lossless_unpacker)(const PoolVector<uint8_t> &) = NULL;
void Image::set_compress_bc_func(void (*p_compress_func)(Image *)) {
_image_compress_bc_func = p_compress_func;
}
void Image::normalmap_to_xy() {
convert(Image::FORMAT_RGBA8);
{
int len = data.size() / 4;
PoolVector<uint8_t>::Write wp = data.write();
unsigned char *data_ptr = wp.ptr();
for (int i = 0; i < len; i++) {
data_ptr[(i << 2) + 3] = data_ptr[(i << 2) + 0]; //x to w
data_ptr[(i << 2) + 0] = data_ptr[(i << 2) + 1]; //y to xz
data_ptr[(i << 2) + 2] = data_ptr[(i << 2) + 1];
}
}
convert(Image::FORMAT_LA8);
}
void Image::srgb_to_linear() {
if (data.size() == 0)
return;
static const uint8_t srgb2lin[256] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 22, 22, 23, 23, 24, 24, 25, 26, 26, 27, 27, 28, 29, 29, 30, 31, 31, 32, 33, 33, 34, 35, 36, 36, 37, 38, 38, 39, 40, 41, 42, 42, 43, 44, 45, 46, 47, 47, 48, 49, 50, 51, 52, 53, 54, 55, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 109, 110, 112, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 139, 140, 142, 144, 145, 147, 148, 150, 152, 153, 155, 157, 159, 160, 162, 164, 166, 167, 169, 171, 173, 175, 176, 178, 180, 182, 184, 186, 188, 190, 192, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 218, 220, 222, 224, 226, 228, 230, 232, 235, 237, 239, 241, 243, 245, 248, 250, 252 };
ERR_FAIL_COND(format != FORMAT_RGB8 && format != FORMAT_RGBA8);
if (format == FORMAT_RGBA8) {
int len = data.size() / 4;
PoolVector<uint8_t>::Write wp = data.write();
unsigned char *data_ptr = wp.ptr();
for (int i = 0; i < len; i++) {
data_ptr[(i << 2) + 0] = srgb2lin[data_ptr[(i << 2) + 0]];
data_ptr[(i << 2) + 1] = srgb2lin[data_ptr[(i << 2) + 1]];
data_ptr[(i << 2) + 2] = srgb2lin[data_ptr[(i << 2) + 2]];
}
} else if (format == FORMAT_RGB8) {
int len = data.size() / 3;
PoolVector<uint8_t>::Write wp = data.write();
unsigned char *data_ptr = wp.ptr();
for (int i = 0; i < len; i++) {
data_ptr[(i * 3) + 0] = srgb2lin[data_ptr[(i * 3) + 0]];
data_ptr[(i * 3) + 1] = srgb2lin[data_ptr[(i * 3) + 1]];
data_ptr[(i * 3) + 2] = srgb2lin[data_ptr[(i * 3) + 2]];
}
}
}
void Image::premultiply_alpha() {
if (data.size() == 0)
return;
if (format != FORMAT_RGBA8)
return; //not needed
PoolVector<uint8_t>::Write wp = data.write();
unsigned char *data_ptr = wp.ptr();
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
uint8_t *ptr = &data_ptr[(i * width + j) * 4];
ptr[0] = (uint16_t(ptr[0]) * uint16_t(ptr[3])) >> 8;
ptr[1] = (uint16_t(ptr[1]) * uint16_t(ptr[3])) >> 8;
ptr[2] = (uint16_t(ptr[2]) * uint16_t(ptr[3])) >> 8;
}
}
}
void Image::fix_alpha_edges() {
if (data.size() == 0)
return;
if (format != FORMAT_RGBA8)
return; //not needed
PoolVector<uint8_t> dcopy = data;
PoolVector<uint8_t>::Read rp = dcopy.read();
const uint8_t *srcptr = rp.ptr();
PoolVector<uint8_t>::Write wp = data.write();
unsigned char *data_ptr = wp.ptr();
const int max_radius = 4;
const int alpha_treshold = 20;
const int max_dist = 0x7FFFFFFF;
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
const uint8_t *rptr = &srcptr[(i * width + j) * 4];
uint8_t *wptr = &data_ptr[(i * width + j) * 4];
if (rptr[3] >= alpha_treshold)
continue;
int closest_dist = max_dist;
uint8_t closest_color[3];
int from_x = MAX(0, j - max_radius);
int to_x = MIN(width - 1, j + max_radius);
int from_y = MAX(0, i - max_radius);
int to_y = MIN(height - 1, i + max_radius);
for (int k = from_y; k <= to_y; k++) {
for (int l = from_x; l <= to_x; l++) {
int dy = i - k;
int dx = j - l;
int dist = dy * dy + dx * dx;
if (dist >= closest_dist)
continue;
const uint8_t *rp = &srcptr[(k * width + l) << 2];
if (rp[3] < alpha_treshold)
continue;
closest_color[0] = rp[0];
closest_color[1] = rp[1];
closest_color[2] = rp[2];
}
}
if (closest_dist != max_dist) {
wptr[0] = closest_color[0];
wptr[1] = closest_color[1];
wptr[2] = closest_color[2];
}
}
}
}
String Image::get_format_name(Format p_format) {
ERR_FAIL_INDEX_V(p_format, FORMAT_MAX, String());
return format_names[p_format];
}
Image::Image(const uint8_t *p_mem_png_jpg, int p_len) {
width = 0;
height = 0;
mipmaps = false;
format = FORMAT_L8;
if (_png_mem_loader_func) {
*this = _png_mem_loader_func(p_mem_png_jpg, p_len);
}
if (empty() && _jpg_mem_loader_func) {
*this = _jpg_mem_loader_func(p_mem_png_jpg, p_len);
}
}
Image::Image() {
width = 0;
height = 0;
mipmaps = false;
format = FORMAT_L8;
}
Image::~Image() {
}