godot/core/input/input.cpp

1538 lines
50 KiB
C++

/**************************************************************************/
/* input.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "input.h"
#include "core/config/project_settings.h"
#include "core/input/default_controller_mappings.h"
#include "core/input/input_map.h"
#include "core/os/os.h"
#ifdef DEV_ENABLED
#include "core/os/thread.h"
#endif
static const char *_joy_buttons[(size_t)JoyButton::SDL_MAX] = {
"a",
"b",
"x",
"y",
"back",
"guide",
"start",
"leftstick",
"rightstick",
"leftshoulder",
"rightshoulder",
"dpup",
"dpdown",
"dpleft",
"dpright",
"misc1",
"paddle1",
"paddle2",
"paddle3",
"paddle4",
"touchpad",
};
static const char *_joy_axes[(size_t)JoyAxis::SDL_MAX] = {
"leftx",
"lefty",
"rightx",
"righty",
"lefttrigger",
"righttrigger",
};
Input *Input::singleton = nullptr;
void (*Input::set_mouse_mode_func)(Input::MouseMode) = nullptr;
Input::MouseMode (*Input::get_mouse_mode_func)() = nullptr;
void (*Input::warp_mouse_func)(const Vector2 &p_position) = nullptr;
Input::CursorShape (*Input::get_current_cursor_shape_func)() = nullptr;
void (*Input::set_custom_mouse_cursor_func)(const Ref<Resource> &, Input::CursorShape, const Vector2 &) = nullptr;
Input *Input::get_singleton() {
return singleton;
}
void Input::set_mouse_mode(MouseMode p_mode) {
ERR_FAIL_INDEX((int)p_mode, 5);
set_mouse_mode_func(p_mode);
}
Input::MouseMode Input::get_mouse_mode() const {
return get_mouse_mode_func();
}
void Input::_bind_methods() {
ClassDB::bind_method(D_METHOD("is_anything_pressed"), &Input::is_anything_pressed);
ClassDB::bind_method(D_METHOD("is_key_pressed", "keycode"), &Input::is_key_pressed);
ClassDB::bind_method(D_METHOD("is_physical_key_pressed", "keycode"), &Input::is_physical_key_pressed);
ClassDB::bind_method(D_METHOD("is_key_label_pressed", "keycode"), &Input::is_key_label_pressed);
ClassDB::bind_method(D_METHOD("is_mouse_button_pressed", "button"), &Input::is_mouse_button_pressed);
ClassDB::bind_method(D_METHOD("is_joy_button_pressed", "device", "button"), &Input::is_joy_button_pressed);
ClassDB::bind_method(D_METHOD("is_action_pressed", "action", "exact_match"), &Input::is_action_pressed, DEFVAL(false));
ClassDB::bind_method(D_METHOD("is_action_just_pressed", "action", "exact_match"), &Input::is_action_just_pressed, DEFVAL(false));
ClassDB::bind_method(D_METHOD("is_action_just_released", "action", "exact_match"), &Input::is_action_just_released, DEFVAL(false));
ClassDB::bind_method(D_METHOD("get_action_strength", "action", "exact_match"), &Input::get_action_strength, DEFVAL(false));
ClassDB::bind_method(D_METHOD("get_action_raw_strength", "action", "exact_match"), &Input::get_action_raw_strength, DEFVAL(false));
ClassDB::bind_method(D_METHOD("get_axis", "negative_action", "positive_action"), &Input::get_axis);
ClassDB::bind_method(D_METHOD("get_vector", "negative_x", "positive_x", "negative_y", "positive_y", "deadzone"), &Input::get_vector, DEFVAL(-1.0f));
ClassDB::bind_method(D_METHOD("add_joy_mapping", "mapping", "update_existing"), &Input::add_joy_mapping, DEFVAL(false));
ClassDB::bind_method(D_METHOD("remove_joy_mapping", "guid"), &Input::remove_joy_mapping);
ClassDB::bind_method(D_METHOD("is_joy_known", "device"), &Input::is_joy_known);
ClassDB::bind_method(D_METHOD("get_joy_axis", "device", "axis"), &Input::get_joy_axis);
ClassDB::bind_method(D_METHOD("get_joy_name", "device"), &Input::get_joy_name);
ClassDB::bind_method(D_METHOD("get_joy_guid", "device"), &Input::get_joy_guid);
ClassDB::bind_method(D_METHOD("get_connected_joypads"), &Input::get_connected_joypads);
ClassDB::bind_method(D_METHOD("get_joy_vibration_strength", "device"), &Input::get_joy_vibration_strength);
ClassDB::bind_method(D_METHOD("get_joy_vibration_duration", "device"), &Input::get_joy_vibration_duration);
ClassDB::bind_method(D_METHOD("start_joy_vibration", "device", "weak_magnitude", "strong_magnitude", "duration"), &Input::start_joy_vibration, DEFVAL(0));
ClassDB::bind_method(D_METHOD("stop_joy_vibration", "device"), &Input::stop_joy_vibration);
ClassDB::bind_method(D_METHOD("vibrate_handheld", "duration_ms"), &Input::vibrate_handheld, DEFVAL(500));
ClassDB::bind_method(D_METHOD("get_gravity"), &Input::get_gravity);
ClassDB::bind_method(D_METHOD("get_accelerometer"), &Input::get_accelerometer);
ClassDB::bind_method(D_METHOD("get_magnetometer"), &Input::get_magnetometer);
ClassDB::bind_method(D_METHOD("get_gyroscope"), &Input::get_gyroscope);
ClassDB::bind_method(D_METHOD("set_gravity", "value"), &Input::set_gravity);
ClassDB::bind_method(D_METHOD("set_accelerometer", "value"), &Input::set_accelerometer);
ClassDB::bind_method(D_METHOD("set_magnetometer", "value"), &Input::set_magnetometer);
ClassDB::bind_method(D_METHOD("set_gyroscope", "value"), &Input::set_gyroscope);
ClassDB::bind_method(D_METHOD("get_last_mouse_velocity"), &Input::get_last_mouse_velocity);
ClassDB::bind_method(D_METHOD("get_mouse_button_mask"), &Input::get_mouse_button_mask);
ClassDB::bind_method(D_METHOD("set_mouse_mode", "mode"), &Input::set_mouse_mode);
ClassDB::bind_method(D_METHOD("get_mouse_mode"), &Input::get_mouse_mode);
ClassDB::bind_method(D_METHOD("warp_mouse", "position"), &Input::warp_mouse);
ClassDB::bind_method(D_METHOD("action_press", "action", "strength"), &Input::action_press, DEFVAL(1.f));
ClassDB::bind_method(D_METHOD("action_release", "action"), &Input::action_release);
ClassDB::bind_method(D_METHOD("set_default_cursor_shape", "shape"), &Input::set_default_cursor_shape, DEFVAL(CURSOR_ARROW));
ClassDB::bind_method(D_METHOD("get_current_cursor_shape"), &Input::get_current_cursor_shape);
ClassDB::bind_method(D_METHOD("set_custom_mouse_cursor", "image", "shape", "hotspot"), &Input::set_custom_mouse_cursor, DEFVAL(CURSOR_ARROW), DEFVAL(Vector2()));
ClassDB::bind_method(D_METHOD("parse_input_event", "event"), &Input::parse_input_event);
ClassDB::bind_method(D_METHOD("set_use_accumulated_input", "enable"), &Input::set_use_accumulated_input);
ClassDB::bind_method(D_METHOD("is_using_accumulated_input"), &Input::is_using_accumulated_input);
ClassDB::bind_method(D_METHOD("flush_buffered_events"), &Input::flush_buffered_events);
ADD_PROPERTY(PropertyInfo(Variant::INT, "mouse_mode"), "set_mouse_mode", "get_mouse_mode");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "use_accumulated_input"), "set_use_accumulated_input", "is_using_accumulated_input");
BIND_ENUM_CONSTANT(MOUSE_MODE_VISIBLE);
BIND_ENUM_CONSTANT(MOUSE_MODE_HIDDEN);
BIND_ENUM_CONSTANT(MOUSE_MODE_CAPTURED);
BIND_ENUM_CONSTANT(MOUSE_MODE_CONFINED);
BIND_ENUM_CONSTANT(MOUSE_MODE_CONFINED_HIDDEN);
BIND_ENUM_CONSTANT(CURSOR_ARROW);
BIND_ENUM_CONSTANT(CURSOR_IBEAM);
BIND_ENUM_CONSTANT(CURSOR_POINTING_HAND);
BIND_ENUM_CONSTANT(CURSOR_CROSS);
BIND_ENUM_CONSTANT(CURSOR_WAIT);
BIND_ENUM_CONSTANT(CURSOR_BUSY);
BIND_ENUM_CONSTANT(CURSOR_DRAG);
BIND_ENUM_CONSTANT(CURSOR_CAN_DROP);
BIND_ENUM_CONSTANT(CURSOR_FORBIDDEN);
BIND_ENUM_CONSTANT(CURSOR_VSIZE);
BIND_ENUM_CONSTANT(CURSOR_HSIZE);
BIND_ENUM_CONSTANT(CURSOR_BDIAGSIZE);
BIND_ENUM_CONSTANT(CURSOR_FDIAGSIZE);
BIND_ENUM_CONSTANT(CURSOR_MOVE);
BIND_ENUM_CONSTANT(CURSOR_VSPLIT);
BIND_ENUM_CONSTANT(CURSOR_HSPLIT);
BIND_ENUM_CONSTANT(CURSOR_HELP);
ADD_SIGNAL(MethodInfo("joy_connection_changed", PropertyInfo(Variant::INT, "device"), PropertyInfo(Variant::BOOL, "connected")));
}
void Input::get_argument_options(const StringName &p_function, int p_idx, List<String> *r_options) const {
String pf = p_function;
if ((p_idx == 0 && (pf == "is_action_pressed" || pf == "action_press" || pf == "action_release" || pf == "is_action_just_pressed" || pf == "is_action_just_released" || pf == "get_action_strength" || pf == "get_action_raw_strength")) ||
(p_idx < 2 && pf == "get_axis") ||
(p_idx < 4 && pf == "get_vector")) {
List<PropertyInfo> pinfo;
ProjectSettings::get_singleton()->get_property_list(&pinfo);
for (const PropertyInfo &pi : pinfo) {
if (!pi.name.begins_with("input/")) {
continue;
}
String name = pi.name.substr(pi.name.find("/") + 1, pi.name.length());
r_options->push_back(name.quote());
}
}
}
void Input::VelocityTrack::update(const Vector2 &p_delta_p) {
uint64_t tick = OS::get_singleton()->get_ticks_usec();
uint32_t tdiff = tick - last_tick;
float delta_t = tdiff / 1000000.0;
last_tick = tick;
if (delta_t > max_ref_frame) {
// First movement in a long time, reset and start again.
velocity = Vector2();
accum = p_delta_p;
accum_t = 0;
return;
}
accum += p_delta_p;
accum_t += delta_t;
if (accum_t < min_ref_frame) {
// Not enough time has passed to calculate speed precisely.
return;
}
velocity = accum / accum_t;
accum = Vector2();
accum_t = 0;
}
void Input::VelocityTrack::reset() {
last_tick = OS::get_singleton()->get_ticks_usec();
velocity = Vector2();
accum = Vector2();
accum_t = 0;
}
Input::VelocityTrack::VelocityTrack() {
min_ref_frame = 0.1;
max_ref_frame = 3.0;
reset();
}
bool Input::is_anything_pressed() const {
_THREAD_SAFE_METHOD_
if (!keys_pressed.is_empty() || !joy_buttons_pressed.is_empty() || !mouse_button_mask.is_empty()) {
return true;
}
for (const KeyValue<StringName, Input::Action> &E : action_state) {
if (E.value.pressed) {
return true;
}
}
return false;
}
bool Input::is_key_pressed(Key p_keycode) const {
_THREAD_SAFE_METHOD_
return keys_pressed.has(p_keycode);
}
bool Input::is_physical_key_pressed(Key p_keycode) const {
_THREAD_SAFE_METHOD_
return physical_keys_pressed.has(p_keycode);
}
bool Input::is_key_label_pressed(Key p_keycode) const {
_THREAD_SAFE_METHOD_
return key_label_pressed.has(p_keycode);
}
bool Input::is_mouse_button_pressed(MouseButton p_button) const {
_THREAD_SAFE_METHOD_
return mouse_button_mask.has_flag(mouse_button_to_mask(p_button));
}
static JoyAxis _combine_device(JoyAxis p_value, int p_device) {
return JoyAxis((int)p_value | (p_device << 20));
}
static JoyButton _combine_device(JoyButton p_value, int p_device) {
return JoyButton((int)p_value | (p_device << 20));
}
bool Input::is_joy_button_pressed(int p_device, JoyButton p_button) const {
_THREAD_SAFE_METHOD_
return joy_buttons_pressed.has(_combine_device(p_button, p_device));
}
bool Input::is_action_pressed(const StringName &p_action, bool p_exact) const {
ERR_FAIL_COND_V_MSG(!InputMap::get_singleton()->has_action(p_action), false, InputMap::get_singleton()->suggest_actions(p_action));
return action_state.has(p_action) && action_state[p_action].pressed && (p_exact ? action_state[p_action].exact : true);
}
bool Input::is_action_just_pressed(const StringName &p_action, bool p_exact) const {
ERR_FAIL_COND_V_MSG(!InputMap::get_singleton()->has_action(p_action), false, InputMap::get_singleton()->suggest_actions(p_action));
HashMap<StringName, Action>::ConstIterator E = action_state.find(p_action);
if (!E) {
return false;
}
if (p_exact && E->value.exact == false) {
return false;
}
if (Engine::get_singleton()->is_in_physics_frame()) {
return E->value.pressed && E->value.physics_frame == Engine::get_singleton()->get_physics_frames();
} else {
return E->value.pressed && E->value.process_frame == Engine::get_singleton()->get_process_frames();
}
}
bool Input::is_action_just_released(const StringName &p_action, bool p_exact) const {
ERR_FAIL_COND_V_MSG(!InputMap::get_singleton()->has_action(p_action), false, InputMap::get_singleton()->suggest_actions(p_action));
HashMap<StringName, Action>::ConstIterator E = action_state.find(p_action);
if (!E) {
return false;
}
if (p_exact && E->value.exact == false) {
return false;
}
if (Engine::get_singleton()->is_in_physics_frame()) {
return !E->value.pressed && E->value.physics_frame == Engine::get_singleton()->get_physics_frames();
} else {
return !E->value.pressed && E->value.process_frame == Engine::get_singleton()->get_process_frames();
}
}
float Input::get_action_strength(const StringName &p_action, bool p_exact) const {
ERR_FAIL_COND_V_MSG(!InputMap::get_singleton()->has_action(p_action), 0.0, InputMap::get_singleton()->suggest_actions(p_action));
HashMap<StringName, Action>::ConstIterator E = action_state.find(p_action);
if (!E) {
return 0.0f;
}
if (p_exact && E->value.exact == false) {
return 0.0f;
}
return E->value.strength;
}
float Input::get_action_raw_strength(const StringName &p_action, bool p_exact) const {
ERR_FAIL_COND_V_MSG(!InputMap::get_singleton()->has_action(p_action), 0.0, InputMap::get_singleton()->suggest_actions(p_action));
HashMap<StringName, Action>::ConstIterator E = action_state.find(p_action);
if (!E) {
return 0.0f;
}
if (p_exact && E->value.exact == false) {
return 0.0f;
}
return E->value.raw_strength;
}
float Input::get_axis(const StringName &p_negative_action, const StringName &p_positive_action) const {
return get_action_strength(p_positive_action) - get_action_strength(p_negative_action);
}
Vector2 Input::get_vector(const StringName &p_negative_x, const StringName &p_positive_x, const StringName &p_negative_y, const StringName &p_positive_y, float p_deadzone) const {
Vector2 vector = Vector2(
get_action_raw_strength(p_positive_x) - get_action_raw_strength(p_negative_x),
get_action_raw_strength(p_positive_y) - get_action_raw_strength(p_negative_y));
if (p_deadzone < 0.0f) {
// If the deadzone isn't specified, get it from the average of the actions.
p_deadzone = 0.25 *
(InputMap::get_singleton()->action_get_deadzone(p_positive_x) +
InputMap::get_singleton()->action_get_deadzone(p_negative_x) +
InputMap::get_singleton()->action_get_deadzone(p_positive_y) +
InputMap::get_singleton()->action_get_deadzone(p_negative_y));
}
// Circular length limiting and deadzone.
float length = vector.length();
if (length <= p_deadzone) {
return Vector2();
} else if (length > 1.0f) {
return vector / length;
} else {
// Inverse lerp length to map (p_deadzone, 1) to (0, 1).
return vector * (Math::inverse_lerp(p_deadzone, 1.0f, length) / length);
}
}
float Input::get_joy_axis(int p_device, JoyAxis p_axis) const {
_THREAD_SAFE_METHOD_
JoyAxis c = _combine_device(p_axis, p_device);
if (_joy_axis.has(c)) {
return _joy_axis[c];
} else {
return 0;
}
}
String Input::get_joy_name(int p_idx) {
_THREAD_SAFE_METHOD_
return joy_names[p_idx].name;
}
Vector2 Input::get_joy_vibration_strength(int p_device) {
if (joy_vibration.has(p_device)) {
return Vector2(joy_vibration[p_device].weak_magnitude, joy_vibration[p_device].strong_magnitude);
} else {
return Vector2(0, 0);
}
}
uint64_t Input::get_joy_vibration_timestamp(int p_device) {
if (joy_vibration.has(p_device)) {
return joy_vibration[p_device].timestamp;
} else {
return 0;
}
}
float Input::get_joy_vibration_duration(int p_device) {
if (joy_vibration.has(p_device)) {
return joy_vibration[p_device].duration;
} else {
return 0.f;
}
}
static String _hex_str(uint8_t p_byte) {
static const char *dict = "0123456789abcdef";
char ret[3];
ret[2] = 0;
ret[0] = dict[p_byte >> 4];
ret[1] = dict[p_byte & 0xf];
return ret;
}
void Input::joy_connection_changed(int p_idx, bool p_connected, String p_name, String p_guid) {
_THREAD_SAFE_METHOD_
Joypad js;
js.name = p_connected ? p_name : "";
js.uid = p_connected ? p_guid : "";
if (p_connected) {
String uidname = p_guid;
if (p_guid.is_empty()) {
int uidlen = MIN(p_name.length(), 16);
for (int i = 0; i < uidlen; i++) {
uidname = uidname + _hex_str(p_name[i]);
}
}
js.uid = uidname;
js.connected = true;
int mapping = fallback_mapping;
for (int i = 0; i < map_db.size(); i++) {
if (js.uid == map_db[i].uid) {
mapping = i;
js.name = map_db[i].name;
}
}
js.mapping = mapping;
} else {
js.connected = false;
for (int i = 0; i < (int)JoyButton::MAX; i++) {
JoyButton c = _combine_device((JoyButton)i, p_idx);
joy_buttons_pressed.erase(c);
}
for (int i = 0; i < (int)JoyAxis::MAX; i++) {
set_joy_axis(p_idx, (JoyAxis)i, 0.0f);
}
}
joy_names[p_idx] = js;
emit_signal(SNAME("joy_connection_changed"), p_idx, p_connected);
}
Vector3 Input::get_gravity() const {
_THREAD_SAFE_METHOD_
return gravity;
}
Vector3 Input::get_accelerometer() const {
_THREAD_SAFE_METHOD_
return accelerometer;
}
Vector3 Input::get_magnetometer() const {
_THREAD_SAFE_METHOD_
return magnetometer;
}
Vector3 Input::get_gyroscope() const {
_THREAD_SAFE_METHOD_
return gyroscope;
}
void Input::_parse_input_event_impl(const Ref<InputEvent> &p_event, bool p_is_emulated) {
// This function does the final delivery of the input event to user land.
// Regardless where the event came from originally, this has to happen on the main thread.
DEV_ASSERT(Thread::get_caller_id() == Thread::get_main_id());
// Notes on mouse-touch emulation:
// - Emulated mouse events are parsed, that is, re-routed to this method, so they make the same effects
// as true mouse events. The only difference is the situation is flagged as emulated so they are not
// emulated back to touch events in an endless loop.
// - Emulated touch events are handed right to the main loop (i.e., the SceneTree) because they don't
// require additional handling by this class.
Ref<InputEventKey> k = p_event;
if (k.is_valid() && !k->is_echo() && k->get_keycode() != Key::NONE) {
if (k->is_pressed()) {
keys_pressed.insert(k->get_keycode());
} else {
keys_pressed.erase(k->get_keycode());
}
}
if (k.is_valid() && !k->is_echo() && k->get_physical_keycode() != Key::NONE) {
if (k->is_pressed()) {
physical_keys_pressed.insert(k->get_physical_keycode());
} else {
physical_keys_pressed.erase(k->get_physical_keycode());
}
}
if (k.is_valid() && !k->is_echo() && k->get_key_label() != Key::NONE) {
if (k->is_pressed()) {
key_label_pressed.insert(k->get_key_label());
} else {
key_label_pressed.erase(k->get_key_label());
}
}
Ref<InputEventMouseButton> mb = p_event;
if (mb.is_valid()) {
if (mb->is_pressed()) {
mouse_button_mask.set_flag(mouse_button_to_mask(mb->get_button_index()));
} else {
mouse_button_mask.clear_flag(mouse_button_to_mask(mb->get_button_index()));
}
Point2 pos = mb->get_global_position();
if (mouse_pos != pos) {
set_mouse_position(pos);
}
if (event_dispatch_function && emulate_touch_from_mouse && !p_is_emulated && mb->get_button_index() == MouseButton::LEFT) {
Ref<InputEventScreenTouch> touch_event;
touch_event.instantiate();
touch_event->set_pressed(mb->is_pressed());
touch_event->set_position(mb->get_position());
touch_event->set_double_tap(mb->is_double_click());
touch_event->set_device(InputEvent::DEVICE_ID_EMULATION);
_THREAD_SAFE_UNLOCK_
event_dispatch_function(touch_event);
_THREAD_SAFE_LOCK_
}
}
Ref<InputEventMouseMotion> mm = p_event;
if (mm.is_valid()) {
Point2 position = mm->get_global_position();
if (mouse_pos != position) {
set_mouse_position(position);
}
Vector2 relative = mm->get_relative();
mouse_velocity_track.update(relative);
if (event_dispatch_function && emulate_touch_from_mouse && !p_is_emulated && mm->get_button_mask().has_flag(MouseButtonMask::LEFT)) {
Ref<InputEventScreenDrag> drag_event;
drag_event.instantiate();
drag_event->set_position(position);
drag_event->set_relative(relative);
drag_event->set_tilt(mm->get_tilt());
drag_event->set_pen_inverted(mm->get_pen_inverted());
drag_event->set_pressure(mm->get_pressure());
drag_event->set_velocity(get_last_mouse_velocity());
drag_event->set_device(InputEvent::DEVICE_ID_EMULATION);
_THREAD_SAFE_UNLOCK_
event_dispatch_function(drag_event);
_THREAD_SAFE_LOCK_
}
}
Ref<InputEventScreenTouch> st = p_event;
if (st.is_valid()) {
if (st->is_pressed()) {
VelocityTrack &track = touch_velocity_track[st->get_index()];
track.reset();
} else {
// Since a pointer index may not occur again (OSs may or may not reuse them),
// imperatively remove it from the map to keep no fossil entries in it
touch_velocity_track.erase(st->get_index());
}
if (emulate_mouse_from_touch) {
bool translate = false;
if (st->is_pressed()) {
if (mouse_from_touch_index == -1) {
translate = true;
mouse_from_touch_index = st->get_index();
}
} else {
if (st->get_index() == mouse_from_touch_index) {
translate = true;
mouse_from_touch_index = -1;
}
}
if (translate) {
Ref<InputEventMouseButton> button_event;
button_event.instantiate();
button_event->set_device(InputEvent::DEVICE_ID_EMULATION);
button_event->set_position(st->get_position());
button_event->set_global_position(st->get_position());
button_event->set_pressed(st->is_pressed());
button_event->set_button_index(MouseButton::LEFT);
button_event->set_double_click(st->is_double_tap());
BitField<MouseButtonMask> ev_bm = mouse_button_mask;
if (st->is_pressed()) {
ev_bm.set_flag(MouseButtonMask::LEFT);
} else {
ev_bm.clear_flag(MouseButtonMask::LEFT);
}
button_event->set_button_mask(ev_bm);
_parse_input_event_impl(button_event, true);
}
}
}
Ref<InputEventScreenDrag> sd = p_event;
if (sd.is_valid()) {
VelocityTrack &track = touch_velocity_track[sd->get_index()];
track.update(sd->get_relative());
sd->set_velocity(track.velocity);
if (emulate_mouse_from_touch && sd->get_index() == mouse_from_touch_index) {
Ref<InputEventMouseMotion> motion_event;
motion_event.instantiate();
motion_event->set_device(InputEvent::DEVICE_ID_EMULATION);
motion_event->set_tilt(sd->get_tilt());
motion_event->set_pen_inverted(sd->get_pen_inverted());
motion_event->set_pressure(sd->get_pressure());
motion_event->set_position(sd->get_position());
motion_event->set_global_position(sd->get_position());
motion_event->set_relative(sd->get_relative());
motion_event->set_velocity(sd->get_velocity());
motion_event->set_button_mask(mouse_button_mask);
_parse_input_event_impl(motion_event, true);
}
}
Ref<InputEventJoypadButton> jb = p_event;
if (jb.is_valid()) {
JoyButton c = _combine_device(jb->get_button_index(), jb->get_device());
if (jb->is_pressed()) {
joy_buttons_pressed.insert(c);
} else {
joy_buttons_pressed.erase(c);
}
}
Ref<InputEventJoypadMotion> jm = p_event;
if (jm.is_valid()) {
set_joy_axis(jm->get_device(), jm->get_axis(), jm->get_axis_value());
}
Ref<InputEventGesture> ge = p_event;
if (ge.is_valid()) {
if (event_dispatch_function) {
_THREAD_SAFE_UNLOCK_
event_dispatch_function(ge);
_THREAD_SAFE_LOCK_
}
}
for (const KeyValue<StringName, InputMap::Action> &E : InputMap::get_singleton()->get_action_map()) {
if (InputMap::get_singleton()->event_is_action(p_event, E.key)) {
// If not echo and action pressed state has changed
if (!p_event->is_echo() && is_action_pressed(E.key, false) != p_event->is_action_pressed(E.key)) {
Action action;
action.physics_frame = Engine::get_singleton()->get_physics_frames();
action.process_frame = Engine::get_singleton()->get_process_frames();
action.pressed = p_event->is_action_pressed(E.key);
action.strength = 0.0f;
action.raw_strength = 0.0f;
action.exact = InputMap::get_singleton()->event_is_action(p_event, E.key, true);
action_state[E.key] = action;
}
action_state[E.key].strength = p_event->get_action_strength(E.key);
action_state[E.key].raw_strength = p_event->get_action_raw_strength(E.key);
}
}
if (event_dispatch_function) {
_THREAD_SAFE_UNLOCK_
event_dispatch_function(p_event);
_THREAD_SAFE_LOCK_
}
}
void Input::set_joy_axis(int p_device, JoyAxis p_axis, float p_value) {
_THREAD_SAFE_METHOD_
JoyAxis c = _combine_device(p_axis, p_device);
_joy_axis[c] = p_value;
}
void Input::start_joy_vibration(int p_device, float p_weak_magnitude, float p_strong_magnitude, float p_duration) {
_THREAD_SAFE_METHOD_
if (p_weak_magnitude < 0.f || p_weak_magnitude > 1.f || p_strong_magnitude < 0.f || p_strong_magnitude > 1.f) {
return;
}
VibrationInfo vibration;
vibration.weak_magnitude = p_weak_magnitude;
vibration.strong_magnitude = p_strong_magnitude;
vibration.duration = p_duration;
vibration.timestamp = OS::get_singleton()->get_ticks_usec();
joy_vibration[p_device] = vibration;
}
void Input::stop_joy_vibration(int p_device) {
_THREAD_SAFE_METHOD_
VibrationInfo vibration;
vibration.weak_magnitude = 0;
vibration.strong_magnitude = 0;
vibration.duration = 0;
vibration.timestamp = OS::get_singleton()->get_ticks_usec();
joy_vibration[p_device] = vibration;
}
void Input::vibrate_handheld(int p_duration_ms) {
OS::get_singleton()->vibrate_handheld(p_duration_ms);
}
void Input::set_gravity(const Vector3 &p_gravity) {
_THREAD_SAFE_METHOD_
gravity = p_gravity;
}
void Input::set_accelerometer(const Vector3 &p_accel) {
_THREAD_SAFE_METHOD_
accelerometer = p_accel;
}
void Input::set_magnetometer(const Vector3 &p_magnetometer) {
_THREAD_SAFE_METHOD_
magnetometer = p_magnetometer;
}
void Input::set_gyroscope(const Vector3 &p_gyroscope) {
_THREAD_SAFE_METHOD_
gyroscope = p_gyroscope;
}
void Input::set_mouse_position(const Point2 &p_posf) {
mouse_pos = p_posf;
}
Point2 Input::get_mouse_position() const {
return mouse_pos;
}
Point2 Input::get_last_mouse_velocity() {
mouse_velocity_track.update(Vector2());
return mouse_velocity_track.velocity;
}
BitField<MouseButtonMask> Input::get_mouse_button_mask() const {
return mouse_button_mask; // do not trust OS implementation, should remove it - OS::get_singleton()->get_mouse_button_state();
}
void Input::warp_mouse(const Vector2 &p_position) {
warp_mouse_func(p_position);
}
Point2i Input::warp_mouse_motion(const Ref<InputEventMouseMotion> &p_motion, const Rect2 &p_rect) {
// The relative distance reported for the next event after a warp is in the boundaries of the
// size of the rect on that axis, but it may be greater, in which case there's no problem as fmod()
// will warp it, but if the pointer has moved in the opposite direction between the pointer relocation
// and the subsequent event, the reported relative distance will be less than the size of the rect
// and thus fmod() will be disabled for handling the situation.
// And due to this mouse warping mechanism being stateless, we need to apply some heuristics to
// detect the warp: if the relative distance is greater than the half of the size of the relevant rect
// (checked per each axis), it will be considered as the consequence of a former pointer warp.
const Point2i rel_sign(p_motion->get_relative().x >= 0.0f ? 1 : -1, p_motion->get_relative().y >= 0.0 ? 1 : -1);
const Size2i warp_margin = p_rect.size * 0.5f;
const Point2i rel_warped(
Math::fmod(p_motion->get_relative().x + rel_sign.x * warp_margin.x, p_rect.size.x) - rel_sign.x * warp_margin.x,
Math::fmod(p_motion->get_relative().y + rel_sign.y * warp_margin.y, p_rect.size.y) - rel_sign.y * warp_margin.y);
const Point2i pos_local = p_motion->get_global_position() - p_rect.position;
const Point2i pos_warped(Math::fposmod(pos_local.x, p_rect.size.x), Math::fposmod(pos_local.y, p_rect.size.y));
if (pos_warped != pos_local) {
warp_mouse(pos_warped + p_rect.position);
}
return rel_warped;
}
void Input::action_press(const StringName &p_action, float p_strength) {
Action action;
action.physics_frame = Engine::get_singleton()->get_physics_frames();
action.process_frame = Engine::get_singleton()->get_process_frames();
action.pressed = true;
action.strength = p_strength;
action.raw_strength = p_strength;
action.exact = true;
action_state[p_action] = action;
}
void Input::action_release(const StringName &p_action) {
Action action;
action.physics_frame = Engine::get_singleton()->get_physics_frames();
action.process_frame = Engine::get_singleton()->get_process_frames();
action.pressed = false;
action.strength = 0.f;
action.raw_strength = 0.f;
action.exact = true;
action_state[p_action] = action;
}
void Input::set_emulate_touch_from_mouse(bool p_emulate) {
emulate_touch_from_mouse = p_emulate;
}
bool Input::is_emulating_touch_from_mouse() const {
return emulate_touch_from_mouse;
}
// Calling this whenever the game window is focused helps unsticking the "touch mouse"
// if the OS or its abstraction class hasn't properly reported that touch pointers raised
void Input::ensure_touch_mouse_raised() {
if (mouse_from_touch_index != -1) {
mouse_from_touch_index = -1;
Ref<InputEventMouseButton> button_event;
button_event.instantiate();
button_event->set_device(InputEvent::DEVICE_ID_EMULATION);
button_event->set_position(mouse_pos);
button_event->set_global_position(mouse_pos);
button_event->set_pressed(false);
button_event->set_button_index(MouseButton::LEFT);
BitField<MouseButtonMask> ev_bm = mouse_button_mask;
ev_bm.clear_flag(MouseButtonMask::LEFT);
button_event->set_button_mask(ev_bm);
_parse_input_event_impl(button_event, true);
}
}
void Input::set_emulate_mouse_from_touch(bool p_emulate) {
emulate_mouse_from_touch = p_emulate;
}
bool Input::is_emulating_mouse_from_touch() const {
return emulate_mouse_from_touch;
}
Input::CursorShape Input::get_default_cursor_shape() const {
return default_shape;
}
void Input::set_default_cursor_shape(CursorShape p_shape) {
if (default_shape == p_shape) {
return;
}
default_shape = p_shape;
// The default shape is set in Viewport::_gui_input_event. To instantly
// see the shape in the viewport we need to trigger a mouse motion event.
Ref<InputEventMouseMotion> mm;
mm.instantiate();
mm->set_position(mouse_pos);
mm->set_global_position(mouse_pos);
mm->set_device(InputEvent::DEVICE_ID_INTERNAL);
parse_input_event(mm);
}
Input::CursorShape Input::get_current_cursor_shape() const {
return get_current_cursor_shape_func();
}
void Input::set_custom_mouse_cursor(const Ref<Resource> &p_cursor, CursorShape p_shape, const Vector2 &p_hotspot) {
if (Engine::get_singleton()->is_editor_hint()) {
return;
}
ERR_FAIL_INDEX(p_shape, CursorShape::CURSOR_MAX);
set_custom_mouse_cursor_func(p_cursor, p_shape, p_hotspot);
}
void Input::parse_input_event(const Ref<InputEvent> &p_event) {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND(p_event.is_null());
#ifdef DEBUG_ENABLED
uint64_t curr_frame = Engine::get_singleton()->get_process_frames();
if (curr_frame != last_parsed_frame) {
frame_parsed_events.clear();
last_parsed_frame = curr_frame;
frame_parsed_events.insert(p_event);
} else if (frame_parsed_events.has(p_event)) {
// It would be technically safe to send the same event in cases such as:
// - After an explicit flush.
// - In platforms using buffering when agile flushing is enabled, after one of the mid-frame flushes.
// - If platform doesn't use buffering and event accumulation is disabled.
// - If platform doesn't use buffering and the event type is not accumulable.
// However, it wouldn't be reasonable to ask users to remember the full ruleset and be aware at all times
// of the possibilities of the target platform, project settings and engine internals, which may change
// without prior notice.
// Therefore, the guideline is, "don't send the same event object more than once per frame".
WARN_PRINT_ONCE(
"An input event object is being parsed more than once in the same frame, which is unsafe.\n"
"If you are generating events in a script, you have to instantiate a new event instead of sending the same one more than once, unless the original one was sent on an earlier frame.\n"
"You can call duplicate() on the event to get a new instance with identical values.");
} else {
frame_parsed_events.insert(p_event);
}
#endif
if (use_accumulated_input) {
if (buffered_events.is_empty() || !buffered_events.back()->get()->accumulate(p_event)) {
buffered_events.push_back(p_event);
}
} else if (use_input_buffering) {
buffered_events.push_back(p_event);
} else {
_parse_input_event_impl(p_event, false);
}
}
void Input::flush_buffered_events() {
_THREAD_SAFE_METHOD_
while (buffered_events.front()) {
// The final delivery of the input event involves releasing the lock.
// While the lock is released, another thread may lock it and add new events to the back.
// Therefore, we get each event and pop it while we still have the lock,
// to ensure the list is in a consistent state.
List<Ref<InputEvent>>::Element *E = buffered_events.front();
Ref<InputEvent> e = E->get();
buffered_events.pop_front();
_parse_input_event_impl(e, false);
}
}
bool Input::is_using_input_buffering() {
return use_input_buffering;
}
void Input::set_use_input_buffering(bool p_enable) {
use_input_buffering = p_enable;
}
void Input::set_use_accumulated_input(bool p_enable) {
use_accumulated_input = p_enable;
}
bool Input::is_using_accumulated_input() {
return use_accumulated_input;
}
void Input::release_pressed_events() {
flush_buffered_events(); // this is needed to release actions strengths
keys_pressed.clear();
physical_keys_pressed.clear();
key_label_pressed.clear();
joy_buttons_pressed.clear();
_joy_axis.clear();
for (const KeyValue<StringName, Input::Action> &E : action_state) {
if (E.value.pressed) {
action_release(E.key);
}
}
}
void Input::set_event_dispatch_function(EventDispatchFunc p_function) {
event_dispatch_function = p_function;
}
void Input::joy_button(int p_device, JoyButton p_button, bool p_pressed) {
_THREAD_SAFE_METHOD_;
Joypad &joy = joy_names[p_device];
ERR_FAIL_INDEX((int)p_button, (int)JoyButton::MAX);
if (joy.last_buttons[(size_t)p_button] == p_pressed) {
return;
}
joy.last_buttons[(size_t)p_button] = p_pressed;
if (joy.mapping == -1) {
_button_event(p_device, p_button, p_pressed);
return;
}
JoyEvent map = _get_mapped_button_event(map_db[joy.mapping], p_button);
if (map.type == TYPE_BUTTON) {
_button_event(p_device, (JoyButton)map.index, p_pressed);
return;
}
if (map.type == TYPE_AXIS) {
_axis_event(p_device, (JoyAxis)map.index, p_pressed ? map.value : 0.0);
}
// no event?
}
void Input::joy_axis(int p_device, JoyAxis p_axis, float p_value) {
_THREAD_SAFE_METHOD_;
ERR_FAIL_INDEX((int)p_axis, (int)JoyAxis::MAX);
Joypad &joy = joy_names[p_device];
if (joy.last_axis[(size_t)p_axis] == p_value) {
return;
}
joy.last_axis[(size_t)p_axis] = p_value;
if (joy.mapping == -1) {
_axis_event(p_device, p_axis, p_value);
return;
}
JoyEvent map = _get_mapped_axis_event(map_db[joy.mapping], p_axis, p_value);
if (map.type == TYPE_BUTTON) {
bool pressed = map.value > 0.5;
if (pressed != joy_buttons_pressed.has(_combine_device((JoyButton)map.index, p_device))) {
_button_event(p_device, (JoyButton)map.index, pressed);
}
// Ensure opposite D-Pad button is also released.
switch ((JoyButton)map.index) {
case JoyButton::DPAD_UP:
if (joy_buttons_pressed.has(_combine_device(JoyButton::DPAD_DOWN, p_device))) {
_button_event(p_device, JoyButton::DPAD_DOWN, false);
}
break;
case JoyButton::DPAD_DOWN:
if (joy_buttons_pressed.has(_combine_device(JoyButton::DPAD_UP, p_device))) {
_button_event(p_device, JoyButton::DPAD_UP, false);
}
break;
case JoyButton::DPAD_LEFT:
if (joy_buttons_pressed.has(_combine_device(JoyButton::DPAD_RIGHT, p_device))) {
_button_event(p_device, JoyButton::DPAD_RIGHT, false);
}
break;
case JoyButton::DPAD_RIGHT:
if (joy_buttons_pressed.has(_combine_device(JoyButton::DPAD_LEFT, p_device))) {
_button_event(p_device, JoyButton::DPAD_LEFT, false);
}
break;
default:
// Nothing to do.
break;
}
return;
}
if (map.type == TYPE_AXIS) {
JoyAxis axis = JoyAxis(map.index);
float value = map.value;
if (axis == JoyAxis::TRIGGER_LEFT || axis == JoyAxis::TRIGGER_RIGHT) {
// Convert to a value between 0.0f and 1.0f.
value = 0.5f + value / 2.0f;
}
_axis_event(p_device, axis, value);
return;
}
}
void Input::joy_hat(int p_device, BitField<HatMask> p_val) {
_THREAD_SAFE_METHOD_;
const Joypad &joy = joy_names[p_device];
JoyEvent map[(size_t)HatDir::MAX];
map[(size_t)HatDir::UP].type = TYPE_BUTTON;
map[(size_t)HatDir::UP].index = (int)JoyButton::DPAD_UP;
map[(size_t)HatDir::UP].value = 0;
map[(size_t)HatDir::RIGHT].type = TYPE_BUTTON;
map[(size_t)HatDir::RIGHT].index = (int)JoyButton::DPAD_RIGHT;
map[(size_t)HatDir::RIGHT].value = 0;
map[(size_t)HatDir::DOWN].type = TYPE_BUTTON;
map[(size_t)HatDir::DOWN].index = (int)JoyButton::DPAD_DOWN;
map[(size_t)HatDir::DOWN].value = 0;
map[(size_t)HatDir::LEFT].type = TYPE_BUTTON;
map[(size_t)HatDir::LEFT].index = (int)JoyButton::DPAD_LEFT;
map[(size_t)HatDir::LEFT].value = 0;
if (joy.mapping != -1) {
_get_mapped_hat_events(map_db[joy.mapping], (HatDir)0, map);
}
int cur_val = joy_names[p_device].hat_current;
for (int hat_direction = 0, hat_mask = 1; hat_direction < (int)HatDir::MAX; hat_direction++, hat_mask <<= 1) {
if (((int)p_val & hat_mask) != (cur_val & hat_mask)) {
if (map[hat_direction].type == TYPE_BUTTON) {
_button_event(p_device, (JoyButton)map[hat_direction].index, (int)p_val & hat_mask);
}
if (map[hat_direction].type == TYPE_AXIS) {
_axis_event(p_device, (JoyAxis)map[hat_direction].index, ((int)p_val & hat_mask) ? map[hat_direction].value : 0.0);
}
}
}
joy_names[p_device].hat_current = (int)p_val;
}
void Input::_button_event(int p_device, JoyButton p_index, bool p_pressed) {
Ref<InputEventJoypadButton> ievent;
ievent.instantiate();
ievent->set_device(p_device);
ievent->set_button_index(p_index);
ievent->set_pressed(p_pressed);
parse_input_event(ievent);
}
void Input::_axis_event(int p_device, JoyAxis p_axis, float p_value) {
Ref<InputEventJoypadMotion> ievent;
ievent.instantiate();
ievent->set_device(p_device);
ievent->set_axis(p_axis);
ievent->set_axis_value(p_value);
parse_input_event(ievent);
}
Input::JoyEvent Input::_get_mapped_button_event(const JoyDeviceMapping &mapping, JoyButton p_button) {
JoyEvent event;
for (int i = 0; i < mapping.bindings.size(); i++) {
const JoyBinding binding = mapping.bindings[i];
if (binding.inputType == TYPE_BUTTON && binding.input.button == p_button) {
event.type = binding.outputType;
switch (binding.outputType) {
case TYPE_BUTTON:
event.index = (int)binding.output.button;
return event;
case TYPE_AXIS:
event.index = (int)binding.output.axis.axis;
switch (binding.output.axis.range) {
case POSITIVE_HALF_AXIS:
event.value = 1;
break;
case NEGATIVE_HALF_AXIS:
event.value = -1;
break;
case FULL_AXIS:
// It doesn't make sense for a button to map to a full axis,
// but keeping as a default for a trigger with a positive half-axis.
event.value = 1;
break;
}
return event;
default:
ERR_PRINT_ONCE("Joypad button mapping error.");
}
}
}
return event;
}
Input::JoyEvent Input::_get_mapped_axis_event(const JoyDeviceMapping &mapping, JoyAxis p_axis, float p_value) {
JoyEvent event;
for (int i = 0; i < mapping.bindings.size(); i++) {
const JoyBinding binding = mapping.bindings[i];
if (binding.inputType == TYPE_AXIS && binding.input.axis.axis == p_axis) {
float value = p_value;
if (binding.input.axis.invert) {
value = -value;
}
if (binding.input.axis.range == FULL_AXIS ||
(binding.input.axis.range == POSITIVE_HALF_AXIS && value >= 0) ||
(binding.input.axis.range == NEGATIVE_HALF_AXIS && value < 0)) {
event.type = binding.outputType;
float shifted_positive_value = 0;
switch (binding.input.axis.range) {
case POSITIVE_HALF_AXIS:
shifted_positive_value = value;
break;
case NEGATIVE_HALF_AXIS:
shifted_positive_value = value + 1;
break;
case FULL_AXIS:
shifted_positive_value = (value + 1) / 2;
break;
}
switch (binding.outputType) {
case TYPE_BUTTON:
event.index = (int)binding.output.button;
switch (binding.input.axis.range) {
case POSITIVE_HALF_AXIS:
event.value = shifted_positive_value;
break;
case NEGATIVE_HALF_AXIS:
event.value = 1 - shifted_positive_value;
break;
case FULL_AXIS:
// It doesn't make sense for a full axis to map to a button,
// but keeping as a default for a trigger with a positive half-axis.
event.value = (shifted_positive_value * 2) - 1;
break;
}
return event;
case TYPE_AXIS:
event.index = (int)binding.output.axis.axis;
event.value = value;
if (binding.output.axis.range != binding.input.axis.range) {
switch (binding.output.axis.range) {
case POSITIVE_HALF_AXIS:
event.value = shifted_positive_value;
break;
case NEGATIVE_HALF_AXIS:
event.value = shifted_positive_value - 1;
break;
case FULL_AXIS:
event.value = (shifted_positive_value * 2) - 1;
break;
}
}
return event;
default:
ERR_PRINT_ONCE("Joypad axis mapping error.");
}
}
}
}
return event;
}
void Input::_get_mapped_hat_events(const JoyDeviceMapping &mapping, HatDir p_hat, JoyEvent r_events[(size_t)HatDir::MAX]) {
for (int i = 0; i < mapping.bindings.size(); i++) {
const JoyBinding binding = mapping.bindings[i];
if (binding.inputType == TYPE_HAT && binding.input.hat.hat == p_hat) {
HatDir hat_direction;
switch (binding.input.hat.hat_mask) {
case HatMask::UP:
hat_direction = HatDir::UP;
break;
case HatMask::RIGHT:
hat_direction = HatDir::RIGHT;
break;
case HatMask::DOWN:
hat_direction = HatDir::DOWN;
break;
case HatMask::LEFT:
hat_direction = HatDir::LEFT;
break;
default:
ERR_PRINT_ONCE("Joypad button mapping error.");
continue;
}
r_events[(size_t)hat_direction].type = binding.outputType;
switch (binding.outputType) {
case TYPE_BUTTON:
r_events[(size_t)hat_direction].index = (int)binding.output.button;
break;
case TYPE_AXIS:
r_events[(size_t)hat_direction].index = (int)binding.output.axis.axis;
switch (binding.output.axis.range) {
case POSITIVE_HALF_AXIS:
r_events[(size_t)hat_direction].value = 1;
break;
case NEGATIVE_HALF_AXIS:
r_events[(size_t)hat_direction].value = -1;
break;
case FULL_AXIS:
// It doesn't make sense for a hat direction to map to a full axis,
// but keeping as a default for a trigger with a positive half-axis.
r_events[(size_t)hat_direction].value = 1;
break;
}
break;
default:
ERR_PRINT_ONCE("Joypad button mapping error.");
}
}
}
}
JoyButton Input::_get_output_button(String output) {
for (int i = 0; i < (int)JoyButton::SDL_MAX; i++) {
if (output == _joy_buttons[i]) {
return JoyButton(i);
}
}
return JoyButton::INVALID;
}
JoyAxis Input::_get_output_axis(String output) {
for (int i = 0; i < (int)JoyAxis::SDL_MAX; i++) {
if (output == _joy_axes[i]) {
return JoyAxis(i);
}
}
return JoyAxis::INVALID;
}
void Input::parse_mapping(String p_mapping) {
_THREAD_SAFE_METHOD_;
JoyDeviceMapping mapping;
Vector<String> entry = p_mapping.split(",");
if (entry.size() < 2) {
return;
}
CharString uid;
uid.resize(17);
mapping.uid = entry[0];
mapping.name = entry[1];
int idx = 1;
while (++idx < entry.size()) {
if (entry[idx].is_empty()) {
continue;
}
String output = entry[idx].get_slice(":", 0).replace(" ", "");
String input = entry[idx].get_slice(":", 1).replace(" ", "");
ERR_CONTINUE_MSG(output.length() < 1 || input.length() < 2,
vformat("Invalid device mapping entry \"%s\" in mapping:\n%s", entry[idx], p_mapping));
if (output == "platform" || output == "hint") {
continue;
}
JoyAxisRange output_range = FULL_AXIS;
if (output[0] == '+' || output[0] == '-') {
ERR_CONTINUE_MSG(output.length() < 2,
vformat("Invalid output entry \"%s\" in mapping:\n%s", entry[idx], p_mapping));
if (output[0] == '+') {
output_range = POSITIVE_HALF_AXIS;
} else if (output[0] == '-') {
output_range = NEGATIVE_HALF_AXIS;
}
output = output.substr(1);
}
JoyAxisRange input_range = FULL_AXIS;
if (input[0] == '+') {
input_range = POSITIVE_HALF_AXIS;
input = input.substr(1);
} else if (input[0] == '-') {
input_range = NEGATIVE_HALF_AXIS;
input = input.substr(1);
}
bool invert_axis = false;
if (input[input.length() - 1] == '~') {
invert_axis = true;
input = input.left(input.length() - 1);
}
JoyButton output_button = _get_output_button(output);
JoyAxis output_axis = _get_output_axis(output);
if (output_button == JoyButton::INVALID && output_axis == JoyAxis::INVALID) {
print_verbose(vformat("Unrecognized output string \"%s\" in mapping:\n%s", output, p_mapping));
}
ERR_CONTINUE_MSG(output_button != JoyButton::INVALID && output_axis != JoyAxis::INVALID,
vformat("Output string \"%s\" matched both button and axis in mapping:\n%s", output, p_mapping));
JoyBinding binding;
if (output_button != JoyButton::INVALID) {
binding.outputType = TYPE_BUTTON;
binding.output.button = output_button;
} else if (output_axis != JoyAxis::INVALID) {
binding.outputType = TYPE_AXIS;
binding.output.axis.axis = output_axis;
binding.output.axis.range = output_range;
}
switch (input[0]) {
case 'b':
binding.inputType = TYPE_BUTTON;
binding.input.button = (JoyButton)input.substr(1).to_int();
break;
case 'a':
binding.inputType = TYPE_AXIS;
binding.input.axis.axis = (JoyAxis)input.substr(1).to_int();
binding.input.axis.range = input_range;
binding.input.axis.invert = invert_axis;
break;
case 'h':
ERR_CONTINUE_MSG(input.length() != 4 || input[2] != '.',
vformat("Invalid had input \"%s\" in mapping:\n%s", input, p_mapping));
binding.inputType = TYPE_HAT;
binding.input.hat.hat = (HatDir)input.substr(1, 1).to_int();
binding.input.hat.hat_mask = static_cast<HatMask>(input.substr(3).to_int());
break;
default:
ERR_CONTINUE_MSG(true, vformat("Unrecognized input string \"%s\" in mapping:\n%s", input, p_mapping));
}
mapping.bindings.push_back(binding);
}
map_db.push_back(mapping);
}
void Input::add_joy_mapping(String p_mapping, bool p_update_existing) {
parse_mapping(p_mapping);
if (p_update_existing) {
Vector<String> entry = p_mapping.split(",");
String uid = entry[0];
for (KeyValue<int, Joypad> &E : joy_names) {
Joypad &joy = E.value;
if (joy.uid == uid) {
joy.mapping = map_db.size() - 1;
}
}
}
}
void Input::remove_joy_mapping(String p_guid) {
for (int i = map_db.size() - 1; i >= 0; i--) {
if (p_guid == map_db[i].uid) {
map_db.remove_at(i);
}
}
for (KeyValue<int, Joypad> &E : joy_names) {
Joypad &joy = E.value;
if (joy.uid == p_guid) {
joy.mapping = -1;
}
}
}
void Input::set_fallback_mapping(String p_guid) {
for (int i = 0; i < map_db.size(); i++) {
if (map_db[i].uid == p_guid) {
fallback_mapping = i;
return;
}
}
}
//platforms that use the remapping system can override and call to these ones
bool Input::is_joy_known(int p_device) {
if (joy_names.has(p_device)) {
int mapping = joy_names[p_device].mapping;
if (mapping != -1 && mapping != fallback_mapping) {
return true;
}
}
return false;
}
String Input::get_joy_guid(int p_device) const {
ERR_FAIL_COND_V(!joy_names.has(p_device), "");
return joy_names[p_device].uid;
}
TypedArray<int> Input::get_connected_joypads() {
TypedArray<int> ret;
HashMap<int, Joypad>::Iterator elem = joy_names.begin();
while (elem) {
if (elem->value.connected) {
ret.push_back(elem->key);
}
++elem;
}
return ret;
}
int Input::get_unused_joy_id() {
for (int i = 0; i < JOYPADS_MAX; i++) {
if (!joy_names.has(i) || !joy_names[i].connected) {
return i;
}
}
return -1;
}
Input::Input() {
singleton = this;
// Parse default mappings.
{
int i = 0;
while (DefaultControllerMappings::mappings[i]) {
parse_mapping(DefaultControllerMappings::mappings[i++]);
}
}
// If defined, parse SDL_GAMECONTROLLERCONFIG for possible new mappings/overrides.
String env_mapping = OS::get_singleton()->get_environment("SDL_GAMECONTROLLERCONFIG");
if (!env_mapping.is_empty()) {
Vector<String> entries = env_mapping.split("\n");
for (int i = 0; i < entries.size(); i++) {
if (entries[i].is_empty()) {
continue;
}
parse_mapping(entries[i]);
}
}
}
Input::~Input() {
singleton = nullptr;
}
//////////////////////////////////////////////////////////