godot/thirdparty/zstd/compress/zstd_compress.c
2018-01-13 13:50:59 +01:00

3121 lines
134 KiB
C

/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/*-*************************************
* Tuning parameters
***************************************/
#ifndef ZSTD_CLEVEL_DEFAULT
# define ZSTD_CLEVEL_DEFAULT 3
#endif
/*-*************************************
* Dependencies
***************************************/
#include <string.h> /* memset */
#include "mem.h"
#define FSE_STATIC_LINKING_ONLY /* FSE_encodeSymbol */
#include "fse.h"
#define HUF_STATIC_LINKING_ONLY
#include "huf.h"
#include "zstd_compress_internal.h"
#include "zstd_fast.h"
#include "zstd_double_fast.h"
#include "zstd_lazy.h"
#include "zstd_opt.h"
#include "zstd_ldm.h"
/*-*************************************
* Helper functions
***************************************/
size_t ZSTD_compressBound(size_t srcSize) {
return ZSTD_COMPRESSBOUND(srcSize);
}
/*-*************************************
* Context memory management
***************************************/
struct ZSTD_CDict_s {
void* dictBuffer;
const void* dictContent;
size_t dictContentSize;
ZSTD_CCtx* refContext;
}; /* typedef'd to ZSTD_CDict within "zstd.h" */
ZSTD_CCtx* ZSTD_createCCtx(void)
{
return ZSTD_createCCtx_advanced(ZSTD_defaultCMem);
}
ZSTD_CCtx* ZSTD_createCCtx_advanced(ZSTD_customMem customMem)
{
ZSTD_CCtx* cctx;
if (!customMem.customAlloc ^ !customMem.customFree) return NULL;
cctx = (ZSTD_CCtx*) ZSTD_calloc(sizeof(ZSTD_CCtx), customMem);
if (!cctx) return NULL;
cctx->customMem = customMem;
cctx->requestedParams.compressionLevel = ZSTD_CLEVEL_DEFAULT;
cctx->requestedParams.fParams.contentSizeFlag = 1;
ZSTD_STATIC_ASSERT(zcss_init==0);
ZSTD_STATIC_ASSERT(ZSTD_CONTENTSIZE_UNKNOWN==(0ULL - 1));
return cctx;
}
ZSTD_CCtx* ZSTD_initStaticCCtx(void *workspace, size_t workspaceSize)
{
ZSTD_CCtx* const cctx = (ZSTD_CCtx*) workspace;
if (workspaceSize <= sizeof(ZSTD_CCtx)) return NULL; /* minimum size */
if ((size_t)workspace & 7) return NULL; /* must be 8-aligned */
memset(workspace, 0, workspaceSize); /* may be a bit generous, could memset be smaller ? */
cctx->staticSize = workspaceSize;
cctx->workSpace = (void*)(cctx+1);
cctx->workSpaceSize = workspaceSize - sizeof(ZSTD_CCtx);
/* entropy space (never moves) */
if (cctx->workSpaceSize < sizeof(ZSTD_entropyCTables_t)) return NULL;
assert(((size_t)cctx->workSpace & (sizeof(void*)-1)) == 0); /* ensure correct alignment */
cctx->entropy = (ZSTD_entropyCTables_t*)cctx->workSpace;
return cctx;
}
size_t ZSTD_freeCCtx(ZSTD_CCtx* cctx)
{
if (cctx==NULL) return 0; /* support free on NULL */
if (cctx->staticSize) return ERROR(memory_allocation); /* not compatible with static CCtx */
ZSTD_free(cctx->workSpace, cctx->customMem);
cctx->workSpace = NULL;
ZSTD_freeCDict(cctx->cdictLocal);
cctx->cdictLocal = NULL;
#ifdef ZSTD_MULTITHREAD
ZSTDMT_freeCCtx(cctx->mtctx);
cctx->mtctx = NULL;
#endif
ZSTD_free(cctx, cctx->customMem);
return 0; /* reserved as a potential error code in the future */
}
static size_t ZSTD_sizeof_mtctx(const ZSTD_CCtx* cctx)
{
#ifdef ZSTD_MULTITHREAD
return ZSTDMT_sizeof_CCtx(cctx->mtctx);
#else
(void) cctx;
return 0;
#endif
}
size_t ZSTD_sizeof_CCtx(const ZSTD_CCtx* cctx)
{
if (cctx==NULL) return 0; /* support sizeof on NULL */
DEBUGLOG(3, "sizeof(*cctx) : %u", (U32)sizeof(*cctx));
DEBUGLOG(3, "workSpaceSize (including streaming buffers): %u", (U32)cctx->workSpaceSize);
DEBUGLOG(3, "inner cdict : %u", (U32)ZSTD_sizeof_CDict(cctx->cdictLocal));
DEBUGLOG(3, "inner MTCTX : %u", (U32)ZSTD_sizeof_mtctx(cctx));
return sizeof(*cctx) + cctx->workSpaceSize
+ ZSTD_sizeof_CDict(cctx->cdictLocal)
+ ZSTD_sizeof_mtctx(cctx);
}
size_t ZSTD_sizeof_CStream(const ZSTD_CStream* zcs)
{
return ZSTD_sizeof_CCtx(zcs); /* same object */
}
/* private API call, for dictBuilder only */
const seqStore_t* ZSTD_getSeqStore(const ZSTD_CCtx* ctx) { return &(ctx->seqStore); }
#define ZSTD_CLEVEL_CUSTOM 999
static ZSTD_compressionParameters ZSTD_getCParamsFromCCtxParams(
ZSTD_CCtx_params CCtxParams, U64 srcSizeHint, size_t dictSize)
{
DEBUGLOG(4, "ZSTD_getCParamsFromCCtxParams: srcSize = %u, dictSize = %u",
(U32)srcSizeHint, (U32)dictSize);
return (CCtxParams.compressionLevel == ZSTD_CLEVEL_CUSTOM) ?
CCtxParams.cParams :
ZSTD_getCParams(CCtxParams.compressionLevel, srcSizeHint, dictSize);
}
static void ZSTD_cLevelToCCtxParams_srcSize(ZSTD_CCtx_params* CCtxParams, U64 srcSize)
{
DEBUGLOG(4, "ZSTD_cLevelToCCtxParams_srcSize: srcSize = %u",
(U32)srcSize);
CCtxParams->cParams = ZSTD_getCParamsFromCCtxParams(*CCtxParams, srcSize, 0);
CCtxParams->compressionLevel = ZSTD_CLEVEL_CUSTOM;
}
static void ZSTD_cLevelToCParams(ZSTD_CCtx* cctx)
{
DEBUGLOG(4, "ZSTD_cLevelToCParams: level=%i", cctx->requestedParams.compressionLevel);
ZSTD_cLevelToCCtxParams_srcSize(
&cctx->requestedParams, cctx->pledgedSrcSizePlusOne-1);
}
static void ZSTD_cLevelToCCtxParams(ZSTD_CCtx_params* CCtxParams)
{
DEBUGLOG(4, "ZSTD_cLevelToCCtxParams");
ZSTD_cLevelToCCtxParams_srcSize(CCtxParams, ZSTD_CONTENTSIZE_UNKNOWN);
}
static ZSTD_CCtx_params ZSTD_makeCCtxParamsFromCParams(
ZSTD_compressionParameters cParams)
{
ZSTD_CCtx_params cctxParams;
memset(&cctxParams, 0, sizeof(cctxParams));
cctxParams.cParams = cParams;
cctxParams.compressionLevel = ZSTD_CLEVEL_CUSTOM;
return cctxParams;
}
static ZSTD_CCtx_params* ZSTD_createCCtxParams_advanced(
ZSTD_customMem customMem)
{
ZSTD_CCtx_params* params;
if (!customMem.customAlloc ^ !customMem.customFree) return NULL;
params = (ZSTD_CCtx_params*)ZSTD_calloc(
sizeof(ZSTD_CCtx_params), customMem);
if (!params) { return NULL; }
params->customMem = customMem;
params->compressionLevel = ZSTD_CLEVEL_DEFAULT;
return params;
}
ZSTD_CCtx_params* ZSTD_createCCtxParams(void)
{
return ZSTD_createCCtxParams_advanced(ZSTD_defaultCMem);
}
size_t ZSTD_freeCCtxParams(ZSTD_CCtx_params* params)
{
if (params == NULL) { return 0; }
ZSTD_free(params, params->customMem);
return 0;
}
size_t ZSTD_resetCCtxParams(ZSTD_CCtx_params* params)
{
return ZSTD_initCCtxParams(params, ZSTD_CLEVEL_DEFAULT);
}
size_t ZSTD_initCCtxParams(ZSTD_CCtx_params* cctxParams, int compressionLevel) {
if (!cctxParams) { return ERROR(GENERIC); }
memset(cctxParams, 0, sizeof(*cctxParams));
cctxParams->compressionLevel = compressionLevel;
return 0;
}
size_t ZSTD_initCCtxParams_advanced(ZSTD_CCtx_params* cctxParams, ZSTD_parameters params)
{
if (!cctxParams) { return ERROR(GENERIC); }
CHECK_F( ZSTD_checkCParams(params.cParams) );
memset(cctxParams, 0, sizeof(*cctxParams));
cctxParams->cParams = params.cParams;
cctxParams->fParams = params.fParams;
cctxParams->compressionLevel = ZSTD_CLEVEL_CUSTOM;
return 0;
}
static ZSTD_CCtx_params ZSTD_assignParamsToCCtxParams(
ZSTD_CCtx_params cctxParams, ZSTD_parameters params)
{
ZSTD_CCtx_params ret = cctxParams;
ret.cParams = params.cParams;
ret.fParams = params.fParams;
ret.compressionLevel = ZSTD_CLEVEL_CUSTOM;
return ret;
}
#define CLAMPCHECK(val,min,max) { \
if (((val)<(min)) | ((val)>(max))) { \
return ERROR(parameter_outOfBound); \
} }
size_t ZSTD_CCtx_setParameter(ZSTD_CCtx* cctx, ZSTD_cParameter param, unsigned value)
{
DEBUGLOG(4, "ZSTD_CCtx_setParameter (%u, %u)", (U32)param, value);
if (cctx->streamStage != zcss_init) return ERROR(stage_wrong);
switch(param)
{
case ZSTD_p_format :
return ZSTD_CCtxParam_setParameter(&cctx->requestedParams, param, value);
case ZSTD_p_compressionLevel:
if (cctx->cdict) return ERROR(stage_wrong);
return ZSTD_CCtxParam_setParameter(&cctx->requestedParams, param, value);
case ZSTD_p_windowLog:
case ZSTD_p_hashLog:
case ZSTD_p_chainLog:
case ZSTD_p_searchLog:
case ZSTD_p_minMatch:
case ZSTD_p_targetLength:
case ZSTD_p_compressionStrategy:
if (cctx->cdict) return ERROR(stage_wrong);
if (value>0) ZSTD_cLevelToCParams(cctx); /* Can optimize if srcSize is known */
return ZSTD_CCtxParam_setParameter(&cctx->requestedParams, param, value);
case ZSTD_p_contentSizeFlag:
case ZSTD_p_checksumFlag:
case ZSTD_p_dictIDFlag:
return ZSTD_CCtxParam_setParameter(&cctx->requestedParams, param, value);
case ZSTD_p_forceMaxWindow : /* Force back-references to remain < windowSize,
* even when referencing into Dictionary content.
* default : 0 when using a CDict, 1 when using a Prefix */
return ZSTD_CCtxParam_setParameter(&cctx->requestedParams, param, value);
case ZSTD_p_nbThreads:
if ((value > 1) && cctx->staticSize) {
return ERROR(parameter_unsupported); /* MT not compatible with static alloc */
}
return ZSTD_CCtxParam_setParameter(&cctx->requestedParams, param, value);
case ZSTD_p_jobSize:
return ZSTD_CCtxParam_setParameter(&cctx->requestedParams, param, value);
case ZSTD_p_overlapSizeLog:
return ZSTD_CCtxParam_setParameter(&cctx->requestedParams, param, value);
case ZSTD_p_enableLongDistanceMatching:
if (cctx->cdict) return ERROR(stage_wrong);
if (value>0) ZSTD_cLevelToCParams(cctx);
return ZSTD_CCtxParam_setParameter(&cctx->requestedParams, param, value);
case ZSTD_p_ldmHashLog:
case ZSTD_p_ldmMinMatch:
case ZSTD_p_ldmBucketSizeLog:
case ZSTD_p_ldmHashEveryLog:
if (cctx->cdict) return ERROR(stage_wrong);
return ZSTD_CCtxParam_setParameter(&cctx->requestedParams, param, value);
default: return ERROR(parameter_unsupported);
}
}
size_t ZSTD_CCtxParam_setParameter(
ZSTD_CCtx_params* CCtxParams, ZSTD_cParameter param, unsigned value)
{
DEBUGLOG(4, "ZSTD_CCtxParam_setParameter (%u, %u)", (U32)param, value);
switch(param)
{
case ZSTD_p_format :
if (value > (unsigned)ZSTD_f_zstd1_magicless)
return ERROR(parameter_unsupported);
CCtxParams->format = (ZSTD_format_e)value;
return (size_t)CCtxParams->format;
case ZSTD_p_compressionLevel :
if ((int)value > ZSTD_maxCLevel()) value = ZSTD_maxCLevel();
if (value) /* 0 : does not change current level */
CCtxParams->compressionLevel = value;
return CCtxParams->compressionLevel;
case ZSTD_p_windowLog :
DEBUGLOG(4, "ZSTD_CCtxParam_setParameter: set windowLog=%u", value);
if (value) { /* 0 : does not change current windowLog */
CLAMPCHECK(value, ZSTD_WINDOWLOG_MIN, ZSTD_WINDOWLOG_MAX);
ZSTD_cLevelToCCtxParams(CCtxParams);
CCtxParams->cParams.windowLog = value;
}
return CCtxParams->cParams.windowLog;
case ZSTD_p_hashLog :
if (value) { /* 0 : does not change current hashLog */
CLAMPCHECK(value, ZSTD_HASHLOG_MIN, ZSTD_HASHLOG_MAX);
ZSTD_cLevelToCCtxParams(CCtxParams);
CCtxParams->cParams.hashLog = value;
}
return CCtxParams->cParams.hashLog;
case ZSTD_p_chainLog :
if (value) { /* 0 : does not change current chainLog */
CLAMPCHECK(value, ZSTD_CHAINLOG_MIN, ZSTD_CHAINLOG_MAX);
ZSTD_cLevelToCCtxParams(CCtxParams);
CCtxParams->cParams.chainLog = value;
}
return CCtxParams->cParams.chainLog;
case ZSTD_p_searchLog :
if (value) { /* 0 : does not change current searchLog */
CLAMPCHECK(value, ZSTD_SEARCHLOG_MIN, ZSTD_SEARCHLOG_MAX);
ZSTD_cLevelToCCtxParams(CCtxParams);
CCtxParams->cParams.searchLog = value;
}
return value;
case ZSTD_p_minMatch :
if (value) { /* 0 : does not change current minMatch length */
CLAMPCHECK(value, ZSTD_SEARCHLENGTH_MIN, ZSTD_SEARCHLENGTH_MAX);
ZSTD_cLevelToCCtxParams(CCtxParams);
CCtxParams->cParams.searchLength = value;
}
return CCtxParams->cParams.searchLength;
case ZSTD_p_targetLength :
if (value) { /* 0 : does not change current sufficient_len */
CLAMPCHECK(value, ZSTD_TARGETLENGTH_MIN, ZSTD_TARGETLENGTH_MAX);
ZSTD_cLevelToCCtxParams(CCtxParams);
CCtxParams->cParams.targetLength = value;
}
return CCtxParams->cParams.targetLength;
case ZSTD_p_compressionStrategy :
if (value) { /* 0 : does not change currentstrategy */
CLAMPCHECK(value, (unsigned)ZSTD_fast, (unsigned)ZSTD_btultra);
ZSTD_cLevelToCCtxParams(CCtxParams);
CCtxParams->cParams.strategy = (ZSTD_strategy)value;
}
return (size_t)CCtxParams->cParams.strategy;
case ZSTD_p_contentSizeFlag :
/* Content size written in frame header _when known_ (default:1) */
DEBUGLOG(4, "set content size flag = %u", (value>0));
CCtxParams->fParams.contentSizeFlag = value > 0;
return CCtxParams->fParams.contentSizeFlag;
case ZSTD_p_checksumFlag :
/* A 32-bits content checksum will be calculated and written at end of frame (default:0) */
CCtxParams->fParams.checksumFlag = value > 0;
return CCtxParams->fParams.checksumFlag;
case ZSTD_p_dictIDFlag : /* When applicable, dictionary's dictID is provided in frame header (default:1) */
DEBUGLOG(4, "set dictIDFlag = %u", (value>0));
CCtxParams->fParams.noDictIDFlag = (value == 0);
return !CCtxParams->fParams.noDictIDFlag;
case ZSTD_p_forceMaxWindow :
CCtxParams->forceWindow = (value > 0);
return CCtxParams->forceWindow;
case ZSTD_p_nbThreads :
if (value == 0) return CCtxParams->nbThreads;
#ifndef ZSTD_MULTITHREAD
if (value > 1) return ERROR(parameter_unsupported);
return 1;
#else
return ZSTDMT_CCtxParam_setNbThreads(CCtxParams, value);
#endif
case ZSTD_p_jobSize :
#ifndef ZSTD_MULTITHREAD
return ERROR(parameter_unsupported);
#else
if (CCtxParams->nbThreads <= 1) return ERROR(parameter_unsupported);
return ZSTDMT_CCtxParam_setMTCtxParameter(CCtxParams, ZSTDMT_p_jobSize, value);
#endif
case ZSTD_p_overlapSizeLog :
#ifndef ZSTD_MULTITHREAD
return ERROR(parameter_unsupported);
#else
if (CCtxParams->nbThreads <= 1) return ERROR(parameter_unsupported);
return ZSTDMT_CCtxParam_setMTCtxParameter(CCtxParams, ZSTDMT_p_overlapSectionLog, value);
#endif
case ZSTD_p_enableLongDistanceMatching :
if (value) {
ZSTD_cLevelToCCtxParams(CCtxParams);
CCtxParams->cParams.windowLog = ZSTD_LDM_DEFAULT_WINDOW_LOG;
}
return ZSTD_ldm_initializeParameters(&CCtxParams->ldmParams, value);
case ZSTD_p_ldmHashLog :
if (value) { /* 0 : does not change current ldmHashLog */
CLAMPCHECK(value, ZSTD_HASHLOG_MIN, ZSTD_HASHLOG_MAX);
CCtxParams->ldmParams.hashLog = value;
}
return CCtxParams->ldmParams.hashLog;
case ZSTD_p_ldmMinMatch :
if (value) { /* 0 : does not change current ldmMinMatch */
CLAMPCHECK(value, ZSTD_LDM_MINMATCH_MIN, ZSTD_LDM_MINMATCH_MAX);
CCtxParams->ldmParams.minMatchLength = value;
}
return CCtxParams->ldmParams.minMatchLength;
case ZSTD_p_ldmBucketSizeLog :
if (value > ZSTD_LDM_BUCKETSIZELOG_MAX) {
return ERROR(parameter_outOfBound);
}
CCtxParams->ldmParams.bucketSizeLog = value;
return value;
case ZSTD_p_ldmHashEveryLog :
if (value > ZSTD_WINDOWLOG_MAX - ZSTD_HASHLOG_MIN) {
return ERROR(parameter_outOfBound);
}
CCtxParams->ldmParams.hashEveryLog = value;
return value;
default: return ERROR(parameter_unsupported);
}
}
/** ZSTD_CCtx_setParametersUsingCCtxParams() :
* just applies `params` into `cctx`
* no action is performed, parameters are merely stored.
*/
size_t ZSTD_CCtx_setParametersUsingCCtxParams(
ZSTD_CCtx* cctx, const ZSTD_CCtx_params* params)
{
if (cctx->streamStage != zcss_init) return ERROR(stage_wrong);
if (cctx->cdict) return ERROR(stage_wrong);
cctx->requestedParams = *params;
return 0;
}
ZSTDLIB_API size_t ZSTD_CCtx_setPledgedSrcSize(ZSTD_CCtx* cctx, unsigned long long pledgedSrcSize)
{
DEBUGLOG(4, "ZSTD_CCtx_setPledgedSrcSize to %u bytes", (U32)pledgedSrcSize);
if (cctx->streamStage != zcss_init) return ERROR(stage_wrong);
cctx->pledgedSrcSizePlusOne = pledgedSrcSize+1;
return 0;
}
size_t ZSTD_CCtx_loadDictionary_advanced(
ZSTD_CCtx* cctx, const void* dict, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictMode_e dictMode)
{
if (cctx->streamStage != zcss_init) return ERROR(stage_wrong);
if (cctx->staticSize) return ERROR(memory_allocation); /* no malloc for static CCtx */
DEBUGLOG(4, "ZSTD_CCtx_loadDictionary_advanced (size: %u)", (U32)dictSize);
ZSTD_freeCDict(cctx->cdictLocal); /* in case one already exists */
if (dict==NULL || dictSize==0) { /* no dictionary mode */
cctx->cdictLocal = NULL;
cctx->cdict = NULL;
} else {
ZSTD_compressionParameters const cParams =
ZSTD_getCParamsFromCCtxParams(cctx->requestedParams, cctx->pledgedSrcSizePlusOne-1, dictSize);
cctx->cdictLocal = ZSTD_createCDict_advanced(
dict, dictSize,
dictLoadMethod, dictMode,
cParams, cctx->customMem);
cctx->cdict = cctx->cdictLocal;
if (cctx->cdictLocal == NULL)
return ERROR(memory_allocation);
}
return 0;
}
ZSTDLIB_API size_t ZSTD_CCtx_loadDictionary_byReference(
ZSTD_CCtx* cctx, const void* dict, size_t dictSize)
{
return ZSTD_CCtx_loadDictionary_advanced(
cctx, dict, dictSize, ZSTD_dlm_byRef, ZSTD_dm_auto);
}
ZSTDLIB_API size_t ZSTD_CCtx_loadDictionary(ZSTD_CCtx* cctx, const void* dict, size_t dictSize)
{
return ZSTD_CCtx_loadDictionary_advanced(
cctx, dict, dictSize, ZSTD_dlm_byCopy, ZSTD_dm_auto);
}
size_t ZSTD_CCtx_refCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict)
{
if (cctx->streamStage != zcss_init) return ERROR(stage_wrong);
cctx->cdict = cdict;
memset(&cctx->prefixDict, 0, sizeof(cctx->prefixDict)); /* exclusive */
return 0;
}
size_t ZSTD_CCtx_refPrefix(ZSTD_CCtx* cctx, const void* prefix, size_t prefixSize)
{
return ZSTD_CCtx_refPrefix_advanced(cctx, prefix, prefixSize, ZSTD_dm_rawContent);
}
size_t ZSTD_CCtx_refPrefix_advanced(
ZSTD_CCtx* cctx, const void* prefix, size_t prefixSize, ZSTD_dictMode_e dictMode)
{
if (cctx->streamStage != zcss_init) return ERROR(stage_wrong);
cctx->cdict = NULL; /* prefix discards any prior cdict */
cctx->prefixDict.dict = prefix;
cctx->prefixDict.dictSize = prefixSize;
cctx->prefixDict.dictMode = dictMode;
return 0;
}
static void ZSTD_startNewCompression(ZSTD_CCtx* cctx)
{
cctx->streamStage = zcss_init;
cctx->pledgedSrcSizePlusOne = 0;
}
/*! ZSTD_CCtx_reset() :
* Also dumps dictionary */
void ZSTD_CCtx_reset(ZSTD_CCtx* cctx)
{
ZSTD_startNewCompression(cctx);
cctx->cdict = NULL;
}
/** ZSTD_checkCParams() :
control CParam values remain within authorized range.
@return : 0, or an error code if one value is beyond authorized range */
size_t ZSTD_checkCParams(ZSTD_compressionParameters cParams)
{
CLAMPCHECK(cParams.windowLog, ZSTD_WINDOWLOG_MIN, ZSTD_WINDOWLOG_MAX);
CLAMPCHECK(cParams.chainLog, ZSTD_CHAINLOG_MIN, ZSTD_CHAINLOG_MAX);
CLAMPCHECK(cParams.hashLog, ZSTD_HASHLOG_MIN, ZSTD_HASHLOG_MAX);
CLAMPCHECK(cParams.searchLog, ZSTD_SEARCHLOG_MIN, ZSTD_SEARCHLOG_MAX);
CLAMPCHECK(cParams.searchLength, ZSTD_SEARCHLENGTH_MIN, ZSTD_SEARCHLENGTH_MAX);
CLAMPCHECK(cParams.targetLength, ZSTD_TARGETLENGTH_MIN, ZSTD_TARGETLENGTH_MAX);
if ((U32)(cParams.strategy) > (U32)ZSTD_btultra)
return ERROR(parameter_unsupported);
return 0;
}
/** ZSTD_clampCParams() :
* make CParam values within valid range.
* @return : valid CParams */
static ZSTD_compressionParameters ZSTD_clampCParams(ZSTD_compressionParameters cParams)
{
# define CLAMP(val,min,max) { \
if (val<min) val=min; \
else if (val>max) val=max; \
}
CLAMP(cParams.windowLog, ZSTD_WINDOWLOG_MIN, ZSTD_WINDOWLOG_MAX);
CLAMP(cParams.chainLog, ZSTD_CHAINLOG_MIN, ZSTD_CHAINLOG_MAX);
CLAMP(cParams.hashLog, ZSTD_HASHLOG_MIN, ZSTD_HASHLOG_MAX);
CLAMP(cParams.searchLog, ZSTD_SEARCHLOG_MIN, ZSTD_SEARCHLOG_MAX);
CLAMP(cParams.searchLength, ZSTD_SEARCHLENGTH_MIN, ZSTD_SEARCHLENGTH_MAX);
CLAMP(cParams.targetLength, ZSTD_TARGETLENGTH_MIN, ZSTD_TARGETLENGTH_MAX);
if ((U32)(cParams.strategy) > (U32)ZSTD_btultra) cParams.strategy = ZSTD_btultra;
return cParams;
}
/** ZSTD_cycleLog() :
* condition for correct operation : hashLog > 1 */
static U32 ZSTD_cycleLog(U32 hashLog, ZSTD_strategy strat)
{
U32 const btScale = ((U32)strat >= (U32)ZSTD_btlazy2);
return hashLog - btScale;
}
/** ZSTD_adjustCParams_internal() :
optimize `cPar` for a given input (`srcSize` and `dictSize`).
mostly downsizing to reduce memory consumption and initialization latency.
Both `srcSize` and `dictSize` are optional (use 0 if unknown).
Note : cPar is considered validated at this stage. Use ZSTD_checkCParams() to ensure that condition. */
ZSTD_compressionParameters ZSTD_adjustCParams_internal(ZSTD_compressionParameters cPar, unsigned long long srcSize, size_t dictSize)
{
static const U64 minSrcSize = 513; /* (1<<9) + 1 */
static const U64 maxWindowResize = 1ULL << (ZSTD_WINDOWLOG_MAX-1);
assert(ZSTD_checkCParams(cPar)==0);
if (dictSize && (srcSize+1<2) /* srcSize unknown */ )
srcSize = minSrcSize; /* presumed small when there is a dictionary */
else if (srcSize == 0)
srcSize = ZSTD_CONTENTSIZE_UNKNOWN; /* 0 == unknown : presumed large */
/* resize windowLog if input is small enough, to use less memory */
if ( (srcSize < maxWindowResize)
&& (dictSize < maxWindowResize) ) {
U32 const tSize = (U32)(srcSize + dictSize);
static U32 const hashSizeMin = 1 << ZSTD_HASHLOG_MIN;
U32 const srcLog = (tSize < hashSizeMin) ? ZSTD_HASHLOG_MIN :
ZSTD_highbit32(tSize-1) + 1;
if (cPar.windowLog > srcLog) cPar.windowLog = srcLog;
}
if (cPar.hashLog > cPar.windowLog) cPar.hashLog = cPar.windowLog;
{ U32 const cycleLog = ZSTD_cycleLog(cPar.chainLog, cPar.strategy);
if (cycleLog > cPar.windowLog)
cPar.chainLog -= (cycleLog - cPar.windowLog);
}
if (cPar.windowLog < ZSTD_WINDOWLOG_ABSOLUTEMIN)
cPar.windowLog = ZSTD_WINDOWLOG_ABSOLUTEMIN; /* required for frame header */
return cPar;
}
ZSTD_compressionParameters ZSTD_adjustCParams(ZSTD_compressionParameters cPar, unsigned long long srcSize, size_t dictSize)
{
cPar = ZSTD_clampCParams(cPar);
return ZSTD_adjustCParams_internal(cPar, srcSize, dictSize);
}
size_t ZSTD_estimateCCtxSize_usingCCtxParams(const ZSTD_CCtx_params* params)
{
/* Estimate CCtx size is supported for single-threaded compression only. */
if (params->nbThreads > 1) { return ERROR(GENERIC); }
{ ZSTD_compressionParameters const cParams =
ZSTD_getCParamsFromCCtxParams(*params, 0, 0);
size_t const blockSize = MIN(ZSTD_BLOCKSIZE_MAX, (size_t)1 << cParams.windowLog);
U32 const divider = (cParams.searchLength==3) ? 3 : 4;
size_t const maxNbSeq = blockSize / divider;
size_t const tokenSpace = blockSize + 11*maxNbSeq;
size_t const chainSize =
(cParams.strategy == ZSTD_fast) ? 0 : ((size_t)1 << cParams.chainLog);
size_t const hSize = ((size_t)1) << cParams.hashLog;
U32 const hashLog3 = (cParams.searchLength>3) ?
0 : MIN(ZSTD_HASHLOG3_MAX, cParams.windowLog);
size_t const h3Size = ((size_t)1) << hashLog3;
size_t const entropySpace = sizeof(ZSTD_entropyCTables_t);
size_t const tableSpace = (chainSize + hSize + h3Size) * sizeof(U32);
size_t const optBudget =
((MaxML+1) + (MaxLL+1) + (MaxOff+1) + (1<<Litbits))*sizeof(U32)
+ (ZSTD_OPT_NUM+1)*(sizeof(ZSTD_match_t) + sizeof(ZSTD_optimal_t));
size_t const optSpace = ((cParams.strategy == ZSTD_btopt) || (cParams.strategy == ZSTD_btultra)) ? optBudget : 0;
size_t const ldmSpace = params->ldmParams.enableLdm ?
ZSTD_ldm_getTableSize(params->ldmParams.hashLog,
params->ldmParams.bucketSizeLog) : 0;
size_t const neededSpace = entropySpace + tableSpace + tokenSpace +
optSpace + ldmSpace;
DEBUGLOG(5, "sizeof(ZSTD_CCtx) : %u", (U32)sizeof(ZSTD_CCtx));
DEBUGLOG(5, "estimate workSpace : %u", (U32)neededSpace);
return sizeof(ZSTD_CCtx) + neededSpace;
}
}
size_t ZSTD_estimateCCtxSize_usingCParams(ZSTD_compressionParameters cParams)
{
ZSTD_CCtx_params const params = ZSTD_makeCCtxParamsFromCParams(cParams);
return ZSTD_estimateCCtxSize_usingCCtxParams(&params);
}
size_t ZSTD_estimateCCtxSize(int compressionLevel)
{
ZSTD_compressionParameters const cParams = ZSTD_getCParams(compressionLevel, 0, 0);
return ZSTD_estimateCCtxSize_usingCParams(cParams);
}
size_t ZSTD_estimateCStreamSize_usingCCtxParams(const ZSTD_CCtx_params* params)
{
if (params->nbThreads > 1) { return ERROR(GENERIC); }
{ size_t const CCtxSize = ZSTD_estimateCCtxSize_usingCCtxParams(params);
size_t const blockSize = MIN(ZSTD_BLOCKSIZE_MAX, (size_t)1 << params->cParams.windowLog);
size_t const inBuffSize = ((size_t)1 << params->cParams.windowLog) + blockSize;
size_t const outBuffSize = ZSTD_compressBound(blockSize) + 1;
size_t const streamingSize = inBuffSize + outBuffSize;
return CCtxSize + streamingSize;
}
}
size_t ZSTD_estimateCStreamSize_usingCParams(ZSTD_compressionParameters cParams)
{
ZSTD_CCtx_params const params = ZSTD_makeCCtxParamsFromCParams(cParams);
return ZSTD_estimateCStreamSize_usingCCtxParams(&params);
}
size_t ZSTD_estimateCStreamSize(int compressionLevel) {
ZSTD_compressionParameters const cParams = ZSTD_getCParams(compressionLevel, 0, 0);
return ZSTD_estimateCStreamSize_usingCParams(cParams);
}
static U32 ZSTD_equivalentCParams(ZSTD_compressionParameters cParams1,
ZSTD_compressionParameters cParams2)
{
return (cParams1.hashLog == cParams2.hashLog)
& (cParams1.chainLog == cParams2.chainLog)
& (cParams1.strategy == cParams2.strategy) /* opt parser space */
& ((cParams1.searchLength==3) == (cParams2.searchLength==3)); /* hashlog3 space */
}
/** The parameters are equivalent if ldm is not enabled in both sets or
* all the parameters are equivalent. */
static U32 ZSTD_equivalentLdmParams(ldmParams_t ldmParams1,
ldmParams_t ldmParams2)
{
return (!ldmParams1.enableLdm && !ldmParams2.enableLdm) ||
(ldmParams1.enableLdm == ldmParams2.enableLdm &&
ldmParams1.hashLog == ldmParams2.hashLog &&
ldmParams1.bucketSizeLog == ldmParams2.bucketSizeLog &&
ldmParams1.minMatchLength == ldmParams2.minMatchLength &&
ldmParams1.hashEveryLog == ldmParams2.hashEveryLog);
}
typedef enum { ZSTDb_not_buffered, ZSTDb_buffered } ZSTD_buffered_policy_e;
/* ZSTD_sufficientBuff() :
* check internal buffers exist for streaming if buffPol == ZSTDb_buffered .
* Note : they are assumed to be correctly sized if ZSTD_equivalentCParams()==1 */
static U32 ZSTD_sufficientBuff(size_t bufferSize1, size_t blockSize1,
ZSTD_buffered_policy_e buffPol2,
ZSTD_compressionParameters cParams2,
U64 pledgedSrcSize)
{
size_t const windowSize2 = MAX(1, (size_t)MIN(((U64)1 << cParams2.windowLog), pledgedSrcSize));
size_t const blockSize2 = MIN(ZSTD_BLOCKSIZE_MAX, windowSize2);
size_t const neededBufferSize2 = (buffPol2==ZSTDb_buffered) ? windowSize2 + blockSize2 : 0;
DEBUGLOG(4, "ZSTD_sufficientBuff: windowSize2=%u from wlog=%u",
(U32)windowSize2, cParams2.windowLog);
DEBUGLOG(4, "ZSTD_sufficientBuff: blockSize2 %u <=? blockSize1 %u",
(U32)blockSize2, (U32)blockSize1);
return (blockSize2 <= blockSize1) /* seqStore space depends on blockSize */
& (neededBufferSize2 <= bufferSize1);
}
/** Equivalence for resetCCtx purposes */
static U32 ZSTD_equivalentParams(ZSTD_CCtx_params params1,
ZSTD_CCtx_params params2,
size_t buffSize1, size_t blockSize1,
ZSTD_buffered_policy_e buffPol2,
U64 pledgedSrcSize)
{
DEBUGLOG(4, "ZSTD_equivalentParams: pledgedSrcSize=%u", (U32)pledgedSrcSize);
return ZSTD_equivalentCParams(params1.cParams, params2.cParams) &&
ZSTD_equivalentLdmParams(params1.ldmParams, params2.ldmParams) &&
ZSTD_sufficientBuff(buffSize1, blockSize1, buffPol2, params2.cParams, pledgedSrcSize);
}
/*! ZSTD_continueCCtx() :
* reuse CCtx without reset (note : requires no dictionary) */
static size_t ZSTD_continueCCtx(ZSTD_CCtx* cctx, ZSTD_CCtx_params params, U64 pledgedSrcSize)
{
U32 const end = (U32)(cctx->nextSrc - cctx->base);
size_t const windowSize = MAX(1, (size_t)MIN(((U64)1 << params.cParams.windowLog), pledgedSrcSize));
size_t const blockSize = MIN(ZSTD_BLOCKSIZE_MAX, windowSize);
DEBUGLOG(4, "ZSTD_continueCCtx");
cctx->blockSize = blockSize; /* previous block size could be different even for same windowLog, due to pledgedSrcSize */
cctx->appliedParams = params;
cctx->pledgedSrcSizePlusOne = pledgedSrcSize+1;
cctx->consumedSrcSize = 0;
if (pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN)
cctx->appliedParams.fParams.contentSizeFlag = 0;
DEBUGLOG(4, "pledged content size : %u ; flag : %u",
(U32)pledgedSrcSize, cctx->appliedParams.fParams.contentSizeFlag);
cctx->lowLimit = end;
cctx->dictLimit = end;
cctx->nextToUpdate = end+1;
cctx->stage = ZSTDcs_init;
cctx->dictID = 0;
cctx->loadedDictEnd = 0;
{ int i; for (i=0; i<ZSTD_REP_NUM; i++) cctx->seqStore.rep[i] = repStartValue[i]; }
cctx->optState.litLengthSum = 0; /* force reset of btopt stats */
XXH64_reset(&cctx->xxhState, 0);
return 0;
}
typedef enum { ZSTDcrp_continue, ZSTDcrp_noMemset } ZSTD_compResetPolicy_e;
/*! ZSTD_resetCCtx_internal() :
note : `params` are assumed fully validated at this stage */
static size_t ZSTD_resetCCtx_internal(ZSTD_CCtx* zc,
ZSTD_CCtx_params params, U64 pledgedSrcSize,
ZSTD_compResetPolicy_e const crp,
ZSTD_buffered_policy_e const zbuff)
{
DEBUGLOG(4, "ZSTD_resetCCtx_internal: pledgedSrcSize=%u, wlog=%u",
(U32)pledgedSrcSize, params.cParams.windowLog);
assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams)));
if (crp == ZSTDcrp_continue) {
if (ZSTD_equivalentParams(zc->appliedParams, params,
zc->inBuffSize, zc->blockSize,
zbuff, pledgedSrcSize)) {
DEBUGLOG(4, "ZSTD_equivalentParams()==1 -> continue mode (wLog1=%u, blockSize1=%u)",
zc->appliedParams.cParams.windowLog, (U32)zc->blockSize);
assert(!(params.ldmParams.enableLdm &&
params.ldmParams.hashEveryLog == ZSTD_LDM_HASHEVERYLOG_NOTSET));
zc->entropy->hufCTable_repeatMode = HUF_repeat_none;
zc->entropy->offcode_repeatMode = FSE_repeat_none;
zc->entropy->matchlength_repeatMode = FSE_repeat_none;
zc->entropy->litlength_repeatMode = FSE_repeat_none;
return ZSTD_continueCCtx(zc, params, pledgedSrcSize);
} }
DEBUGLOG(4, "ZSTD_equivalentParams()==0 -> reset CCtx");
if (params.ldmParams.enableLdm) {
/* Adjust long distance matching parameters */
ZSTD_ldm_adjustParameters(&params.ldmParams, params.cParams.windowLog);
assert(params.ldmParams.hashLog >= params.ldmParams.bucketSizeLog);
assert(params.ldmParams.hashEveryLog < 32);
zc->ldmState.hashPower =
ZSTD_ldm_getHashPower(params.ldmParams.minMatchLength);
}
{ size_t const windowSize = MAX(1, (size_t)MIN(((U64)1 << params.cParams.windowLog), pledgedSrcSize));
size_t const blockSize = MIN(ZSTD_BLOCKSIZE_MAX, windowSize);
U32 const divider = (params.cParams.searchLength==3) ? 3 : 4;
size_t const maxNbSeq = blockSize / divider;
size_t const tokenSpace = blockSize + 11*maxNbSeq;
size_t const chainSize = (params.cParams.strategy == ZSTD_fast) ?
0 : ((size_t)1 << params.cParams.chainLog);
size_t const hSize = ((size_t)1) << params.cParams.hashLog;
U32 const hashLog3 = (params.cParams.searchLength>3) ?
0 : MIN(ZSTD_HASHLOG3_MAX, params.cParams.windowLog);
size_t const h3Size = ((size_t)1) << hashLog3;
size_t const tableSpace = (chainSize + hSize + h3Size) * sizeof(U32);
size_t const buffOutSize = (zbuff==ZSTDb_buffered) ? ZSTD_compressBound(blockSize)+1 : 0;
size_t const buffInSize = (zbuff==ZSTDb_buffered) ? windowSize + blockSize : 0;
void* ptr;
/* Check if workSpace is large enough, alloc a new one if needed */
{ size_t const entropySpace = sizeof(ZSTD_entropyCTables_t);
size_t const optPotentialSpace = ((MaxML+1) + (MaxLL+1) + (MaxOff+1) + (1<<Litbits)) * sizeof(U32)
+ (ZSTD_OPT_NUM+1) * (sizeof(ZSTD_match_t)+sizeof(ZSTD_optimal_t));
size_t const optSpace = ( (params.cParams.strategy == ZSTD_btopt)
|| (params.cParams.strategy == ZSTD_btultra)) ?
optPotentialSpace : 0;
size_t const bufferSpace = buffInSize + buffOutSize;
size_t const ldmSpace = params.ldmParams.enableLdm
? ZSTD_ldm_getTableSize(params.ldmParams.hashLog, params.ldmParams.bucketSizeLog)
: 0;
size_t const neededSpace = entropySpace + optSpace + ldmSpace +
tableSpace + tokenSpace + bufferSpace;
DEBUGLOG(4, "Need %uKB workspace, including %uKB for tables, and %uKB for buffers",
(U32)(neededSpace>>10), (U32)(tableSpace>>10), (U32)(bufferSpace>>10));
DEBUGLOG(4, "chainSize: %u - hSize: %u - h3Size: %u - windowSize: %u - blockSize: %u",
(U32)chainSize, (U32)hSize, (U32)h3Size, (U32)windowSize, (U32)blockSize);
if (zc->workSpaceSize < neededSpace) { /* too small : resize */
DEBUGLOG(4, "Need to update workSpaceSize from %uK to %uK",
(unsigned)(zc->workSpaceSize>>10),
(unsigned)(neededSpace>>10));
/* static cctx : no resize, error out */
if (zc->staticSize) return ERROR(memory_allocation);
zc->workSpaceSize = 0;
ZSTD_free(zc->workSpace, zc->customMem);
zc->workSpace = ZSTD_malloc(neededSpace, zc->customMem);
if (zc->workSpace == NULL) return ERROR(memory_allocation);
zc->workSpaceSize = neededSpace;
ptr = zc->workSpace;
/* entropy space */
assert(((size_t)zc->workSpace & 3) == 0); /* ensure correct alignment */
assert(zc->workSpaceSize >= sizeof(ZSTD_entropyCTables_t));
zc->entropy = (ZSTD_entropyCTables_t*)zc->workSpace;
} }
/* init params */
zc->appliedParams = params;
zc->pledgedSrcSizePlusOne = pledgedSrcSize+1;
zc->consumedSrcSize = 0;
if (pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN)
zc->appliedParams.fParams.contentSizeFlag = 0;
DEBUGLOG(4, "pledged content size : %u ; flag : %u",
(U32)pledgedSrcSize, zc->appliedParams.fParams.contentSizeFlag);
zc->blockSize = blockSize;
XXH64_reset(&zc->xxhState, 0);
zc->stage = ZSTDcs_init;
zc->dictID = 0;
zc->loadedDictEnd = 0;
zc->entropy->hufCTable_repeatMode = HUF_repeat_none;
zc->entropy->offcode_repeatMode = FSE_repeat_none;
zc->entropy->matchlength_repeatMode = FSE_repeat_none;
zc->entropy->litlength_repeatMode = FSE_repeat_none;
zc->nextToUpdate = 1;
zc->nextSrc = NULL;
zc->base = NULL;
zc->dictBase = NULL;
zc->dictLimit = 0;
zc->lowLimit = 0;
{ int i; for (i=0; i<ZSTD_REP_NUM; i++) zc->seqStore.rep[i] = repStartValue[i]; }
zc->hashLog3 = hashLog3;
zc->optState.litLengthSum = 0;
ptr = zc->entropy + 1;
/* opt parser space */
if ((params.cParams.strategy == ZSTD_btopt) || (params.cParams.strategy == ZSTD_btultra)) {
DEBUGLOG(4, "reserving optimal parser space");
assert(((size_t)ptr & 3) == 0); /* ensure ptr is properly aligned */
zc->optState.litFreq = (U32*)ptr;
zc->optState.litLengthFreq = zc->optState.litFreq + (1<<Litbits);
zc->optState.matchLengthFreq = zc->optState.litLengthFreq + (MaxLL+1);
zc->optState.offCodeFreq = zc->optState.matchLengthFreq + (MaxML+1);
ptr = zc->optState.offCodeFreq + (MaxOff+1);
zc->optState.matchTable = (ZSTD_match_t*)ptr;
ptr = zc->optState.matchTable + ZSTD_OPT_NUM+1;
zc->optState.priceTable = (ZSTD_optimal_t*)ptr;
ptr = zc->optState.priceTable + ZSTD_OPT_NUM+1;
}
/* ldm hash table */
/* initialize bucketOffsets table later for pointer alignment */
if (params.ldmParams.enableLdm) {
size_t const ldmHSize = ((size_t)1) << params.ldmParams.hashLog;
memset(ptr, 0, ldmHSize * sizeof(ldmEntry_t));
assert(((size_t)ptr & 3) == 0); /* ensure ptr is properly aligned */
zc->ldmState.hashTable = (ldmEntry_t*)ptr;
ptr = zc->ldmState.hashTable + ldmHSize;
}
/* table Space */
DEBUGLOG(4, "reset table : %u", crp!=ZSTDcrp_noMemset);
if (crp!=ZSTDcrp_noMemset) memset(ptr, 0, tableSpace); /* reset tables only */
assert(((size_t)ptr & 3) == 0); /* ensure ptr is properly aligned */
zc->hashTable = (U32*)(ptr);
zc->chainTable = zc->hashTable + hSize;
zc->hashTable3 = zc->chainTable + chainSize;
ptr = zc->hashTable3 + h3Size;
/* sequences storage */
zc->seqStore.sequencesStart = (seqDef*)ptr;
ptr = zc->seqStore.sequencesStart + maxNbSeq;
zc->seqStore.llCode = (BYTE*) ptr;
zc->seqStore.mlCode = zc->seqStore.llCode + maxNbSeq;
zc->seqStore.ofCode = zc->seqStore.mlCode + maxNbSeq;
zc->seqStore.litStart = zc->seqStore.ofCode + maxNbSeq;
ptr = zc->seqStore.litStart + blockSize;
/* ldm bucketOffsets table */
if (params.ldmParams.enableLdm) {
size_t const ldmBucketSize =
((size_t)1) << (params.ldmParams.hashLog -
params.ldmParams.bucketSizeLog);
memset(ptr, 0, ldmBucketSize);
zc->ldmState.bucketOffsets = (BYTE*)ptr;
ptr = zc->ldmState.bucketOffsets + ldmBucketSize;
}
/* buffers */
zc->inBuffSize = buffInSize;
zc->inBuff = (char*)ptr;
zc->outBuffSize = buffOutSize;
zc->outBuff = zc->inBuff + buffInSize;
return 0;
}
}
/* ZSTD_invalidateRepCodes() :
* ensures next compression will not use repcodes from previous block.
* Note : only works with regular variant;
* do not use with extDict variant ! */
void ZSTD_invalidateRepCodes(ZSTD_CCtx* cctx) {
int i;
for (i=0; i<ZSTD_REP_NUM; i++) cctx->seqStore.rep[i] = 0;
}
/*! ZSTD_copyCCtx_internal() :
* Duplicate an existing context `srcCCtx` into another one `dstCCtx`.
* Only works during stage ZSTDcs_init (i.e. after creation, but before first call to ZSTD_compressContinue()).
* The "context", in this case, refers to the hash and chain tables,
* entropy tables, and dictionary references.
* `windowLog` value is enforced if != 0, otherwise value is copied from srcCCtx.
* @return : 0, or an error code */
static size_t ZSTD_copyCCtx_internal(ZSTD_CCtx* dstCCtx,
const ZSTD_CCtx* srcCCtx,
unsigned windowLog,
ZSTD_frameParameters fParams,
U64 pledgedSrcSize,
ZSTD_buffered_policy_e zbuff)
{
DEBUGLOG(5, "ZSTD_copyCCtx_internal");
if (srcCCtx->stage!=ZSTDcs_init) return ERROR(stage_wrong);
memcpy(&dstCCtx->customMem, &srcCCtx->customMem, sizeof(ZSTD_customMem));
{ ZSTD_CCtx_params params = dstCCtx->requestedParams;
/* Copy only compression parameters related to tables. */
params.cParams = srcCCtx->appliedParams.cParams;
if (windowLog) params.cParams.windowLog = windowLog;
params.fParams = fParams;
ZSTD_resetCCtx_internal(dstCCtx, params, pledgedSrcSize,
ZSTDcrp_noMemset, zbuff);
}
/* copy tables */
{ size_t const chainSize = (srcCCtx->appliedParams.cParams.strategy == ZSTD_fast) ? 0 : ((size_t)1 << srcCCtx->appliedParams.cParams.chainLog);
size_t const hSize = (size_t)1 << srcCCtx->appliedParams.cParams.hashLog;
size_t const h3Size = (size_t)1 << srcCCtx->hashLog3;
size_t const tableSpace = (chainSize + hSize + h3Size) * sizeof(U32);
assert((U32*)dstCCtx->chainTable == (U32*)dstCCtx->hashTable + hSize); /* chainTable must follow hashTable */
assert((U32*)dstCCtx->hashTable3 == (U32*)dstCCtx->chainTable + chainSize);
memcpy(dstCCtx->hashTable, srcCCtx->hashTable, tableSpace); /* presumes all tables follow each other */
}
/* copy dictionary offsets */
dstCCtx->nextToUpdate = srcCCtx->nextToUpdate;
dstCCtx->nextToUpdate3= srcCCtx->nextToUpdate3;
dstCCtx->nextSrc = srcCCtx->nextSrc;
dstCCtx->base = srcCCtx->base;
dstCCtx->dictBase = srcCCtx->dictBase;
dstCCtx->dictLimit = srcCCtx->dictLimit;
dstCCtx->lowLimit = srcCCtx->lowLimit;
dstCCtx->loadedDictEnd= srcCCtx->loadedDictEnd;
dstCCtx->dictID = srcCCtx->dictID;
/* copy entropy tables */
memcpy(dstCCtx->entropy, srcCCtx->entropy, sizeof(ZSTD_entropyCTables_t));
/* copy repcodes */
{
int i;
for (i = 0; i < ZSTD_REP_NUM; ++i)
dstCCtx->seqStore.rep[i] = srcCCtx->seqStore.rep[i];
}
return 0;
}
/*! ZSTD_copyCCtx() :
* Duplicate an existing context `srcCCtx` into another one `dstCCtx`.
* Only works during stage ZSTDcs_init (i.e. after creation, but before first call to ZSTD_compressContinue()).
* pledgedSrcSize==0 means "unknown".
* @return : 0, or an error code */
size_t ZSTD_copyCCtx(ZSTD_CCtx* dstCCtx, const ZSTD_CCtx* srcCCtx, unsigned long long pledgedSrcSize)
{
ZSTD_frameParameters fParams = { 1 /*content*/, 0 /*checksum*/, 0 /*noDictID*/ };
ZSTD_buffered_policy_e const zbuff = (ZSTD_buffered_policy_e)(srcCCtx->inBuffSize>0);
ZSTD_STATIC_ASSERT((U32)ZSTDb_buffered==1);
if (pledgedSrcSize==0) pledgedSrcSize = ZSTD_CONTENTSIZE_UNKNOWN;
fParams.contentSizeFlag = (pledgedSrcSize != ZSTD_CONTENTSIZE_UNKNOWN);
return ZSTD_copyCCtx_internal(dstCCtx, srcCCtx,
0 /*windowLog from srcCCtx*/, fParams, pledgedSrcSize,
zbuff);
}
/*! ZSTD_reduceTable() :
* reduce table indexes by `reducerValue` */
static void ZSTD_reduceTable (U32* const table, U32 const size, U32 const reducerValue)
{
U32 u;
for (u=0 ; u < size ; u++) {
if (table[u] < reducerValue) table[u] = 0;
else table[u] -= reducerValue;
}
}
/*! ZSTD_ldm_reduceTable() :
* reduce table indexes by `reducerValue` */
static void ZSTD_ldm_reduceTable(ldmEntry_t* const table, U32 const size,
U32 const reducerValue)
{
U32 u;
for (u = 0; u < size; u++) {
if (table[u].offset < reducerValue) table[u].offset = 0;
else table[u].offset -= reducerValue;
}
}
/*! ZSTD_reduceIndex() :
* rescale all indexes to avoid future overflow (indexes are U32) */
static void ZSTD_reduceIndex (ZSTD_CCtx* zc, const U32 reducerValue)
{
{ U32 const hSize = (U32)1 << zc->appliedParams.cParams.hashLog;
ZSTD_reduceTable(zc->hashTable, hSize, reducerValue); }
{ U32 const chainSize = (zc->appliedParams.cParams.strategy == ZSTD_fast) ? 0 : ((U32)1 << zc->appliedParams.cParams.chainLog);
ZSTD_reduceTable(zc->chainTable, chainSize, reducerValue); }
{ U32 const h3Size = (zc->hashLog3) ? (U32)1 << zc->hashLog3 : 0;
ZSTD_reduceTable(zc->hashTable3, h3Size, reducerValue); }
{ if (zc->appliedParams.ldmParams.enableLdm) {
U32 const ldmHSize = (U32)1 << zc->appliedParams.ldmParams.hashLog;
ZSTD_ldm_reduceTable(zc->ldmState.hashTable, ldmHSize, reducerValue);
}
}
}
/*-*******************************************************
* Block entropic compression
*********************************************************/
/* See doc/zstd_compression_format.md for detailed format description */
size_t ZSTD_noCompressBlock (void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
if (srcSize + ZSTD_blockHeaderSize > dstCapacity) return ERROR(dstSize_tooSmall);
memcpy((BYTE*)dst + ZSTD_blockHeaderSize, src, srcSize);
MEM_writeLE24(dst, (U32)(srcSize << 2) + (U32)bt_raw);
return ZSTD_blockHeaderSize+srcSize;
}
static size_t ZSTD_noCompressLiterals (void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
BYTE* const ostart = (BYTE* const)dst;
U32 const flSize = 1 + (srcSize>31) + (srcSize>4095);
if (srcSize + flSize > dstCapacity) return ERROR(dstSize_tooSmall);
switch(flSize)
{
case 1: /* 2 - 1 - 5 */
ostart[0] = (BYTE)((U32)set_basic + (srcSize<<3));
break;
case 2: /* 2 - 2 - 12 */
MEM_writeLE16(ostart, (U16)((U32)set_basic + (1<<2) + (srcSize<<4)));
break;
case 3: /* 2 - 2 - 20 */
MEM_writeLE32(ostart, (U32)((U32)set_basic + (3<<2) + (srcSize<<4)));
break;
default: /* not necessary : flSize is {1,2,3} */
assert(0);
}
memcpy(ostart + flSize, src, srcSize);
return srcSize + flSize;
}
static size_t ZSTD_compressRleLiteralsBlock (void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
BYTE* const ostart = (BYTE* const)dst;
U32 const flSize = 1 + (srcSize>31) + (srcSize>4095);
(void)dstCapacity; /* dstCapacity already guaranteed to be >=4, hence large enough */
switch(flSize)
{
case 1: /* 2 - 1 - 5 */
ostart[0] = (BYTE)((U32)set_rle + (srcSize<<3));
break;
case 2: /* 2 - 2 - 12 */
MEM_writeLE16(ostart, (U16)((U32)set_rle + (1<<2) + (srcSize<<4)));
break;
case 3: /* 2 - 2 - 20 */
MEM_writeLE32(ostart, (U32)((U32)set_rle + (3<<2) + (srcSize<<4)));
break;
default: /* not necessary : flSize is {1,2,3} */
assert(0);
}
ostart[flSize] = *(const BYTE*)src;
return flSize+1;
}
static size_t ZSTD_minGain(size_t srcSize) { return (srcSize >> 6) + 2; }
static size_t ZSTD_compressLiterals (ZSTD_entropyCTables_t * entropy,
ZSTD_strategy strategy,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize)
{
size_t const minGain = ZSTD_minGain(srcSize);
size_t const lhSize = 3 + (srcSize >= 1 KB) + (srcSize >= 16 KB);
BYTE* const ostart = (BYTE*)dst;
U32 singleStream = srcSize < 256;
symbolEncodingType_e hType = set_compressed;
size_t cLitSize;
/* small ? don't even attempt compression (speed opt) */
# define LITERAL_NOENTROPY 63
{ size_t const minLitSize = entropy->hufCTable_repeatMode == HUF_repeat_valid ? 6 : LITERAL_NOENTROPY;
if (srcSize <= minLitSize) return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize);
}
if (dstCapacity < lhSize+1) return ERROR(dstSize_tooSmall); /* not enough space for compression */
{ HUF_repeat repeat = entropy->hufCTable_repeatMode;
int const preferRepeat = strategy < ZSTD_lazy ? srcSize <= 1024 : 0;
if (repeat == HUF_repeat_valid && lhSize == 3) singleStream = 1;
cLitSize = singleStream ? HUF_compress1X_repeat(ostart+lhSize, dstCapacity-lhSize, src, srcSize, 255, 11,
entropy->workspace, sizeof(entropy->workspace), (HUF_CElt*)entropy->hufCTable, &repeat, preferRepeat)
: HUF_compress4X_repeat(ostart+lhSize, dstCapacity-lhSize, src, srcSize, 255, 11,
entropy->workspace, sizeof(entropy->workspace), (HUF_CElt*)entropy->hufCTable, &repeat, preferRepeat);
if (repeat != HUF_repeat_none) { hType = set_repeat; } /* reused the existing table */
else { entropy->hufCTable_repeatMode = HUF_repeat_check; } /* now have a table to reuse */
}
if ((cLitSize==0) | (cLitSize >= srcSize - minGain) | ERR_isError(cLitSize)) {
entropy->hufCTable_repeatMode = HUF_repeat_none;
return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize);
}
if (cLitSize==1) {
entropy->hufCTable_repeatMode = HUF_repeat_none;
return ZSTD_compressRleLiteralsBlock(dst, dstCapacity, src, srcSize);
}
/* Build header */
switch(lhSize)
{
case 3: /* 2 - 2 - 10 - 10 */
{ U32 const lhc = hType + ((!singleStream) << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<14);
MEM_writeLE24(ostart, lhc);
break;
}
case 4: /* 2 - 2 - 14 - 14 */
{ U32 const lhc = hType + (2 << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<18);
MEM_writeLE32(ostart, lhc);
break;
}
case 5: /* 2 - 2 - 18 - 18 */
{ U32 const lhc = hType + (3 << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<22);
MEM_writeLE32(ostart, lhc);
ostart[4] = (BYTE)(cLitSize >> 10);
break;
}
default: /* not possible : lhSize is {3,4,5} */
assert(0);
}
return lhSize+cLitSize;
}
void ZSTD_seqToCodes(const seqStore_t* seqStorePtr)
{
const seqDef* const sequences = seqStorePtr->sequencesStart;
BYTE* const llCodeTable = seqStorePtr->llCode;
BYTE* const ofCodeTable = seqStorePtr->ofCode;
BYTE* const mlCodeTable = seqStorePtr->mlCode;
U32 const nbSeq = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
U32 u;
for (u=0; u<nbSeq; u++) {
U32 const llv = sequences[u].litLength;
U32 const mlv = sequences[u].matchLength;
llCodeTable[u] = (BYTE)ZSTD_LLcode(llv);
ofCodeTable[u] = (BYTE)ZSTD_highbit32(sequences[u].offset);
mlCodeTable[u] = (BYTE)ZSTD_MLcode(mlv);
}
if (seqStorePtr->longLengthID==1)
llCodeTable[seqStorePtr->longLengthPos] = MaxLL;
if (seqStorePtr->longLengthID==2)
mlCodeTable[seqStorePtr->longLengthPos] = MaxML;
}
typedef enum {
ZSTD_defaultDisallowed = 0,
ZSTD_defaultAllowed = 1
} ZSTD_defaultPolicy_e;
MEM_STATIC
symbolEncodingType_e ZSTD_selectEncodingType(
FSE_repeat* repeatMode, size_t const mostFrequent, size_t nbSeq,
U32 defaultNormLog, ZSTD_defaultPolicy_e const isDefaultAllowed)
{
#define MIN_SEQ_FOR_DYNAMIC_FSE 64
#define MAX_SEQ_FOR_STATIC_FSE 1000
ZSTD_STATIC_ASSERT(ZSTD_defaultDisallowed == 0 && ZSTD_defaultAllowed != 0);
if ((mostFrequent == nbSeq) && (!isDefaultAllowed || nbSeq > 2)) {
DEBUGLOG(5, "Selected set_rle");
/* Prefer set_basic over set_rle when there are 2 or less symbols,
* since RLE uses 1 byte, but set_basic uses 5-6 bits per symbol.
* If basic encoding isn't possible, always choose RLE.
*/
*repeatMode = FSE_repeat_check;
return set_rle;
}
if ( isDefaultAllowed
&& (*repeatMode == FSE_repeat_valid) && (nbSeq < MAX_SEQ_FOR_STATIC_FSE)) {
DEBUGLOG(5, "Selected set_repeat");
return set_repeat;
}
if ( isDefaultAllowed
&& ((nbSeq < MIN_SEQ_FOR_DYNAMIC_FSE) || (mostFrequent < (nbSeq >> (defaultNormLog-1)))) ) {
DEBUGLOG(5, "Selected set_basic");
/* The format allows default tables to be repeated, but it isn't useful.
* When using simple heuristics to select encoding type, we don't want
* to confuse these tables with dictionaries. When running more careful
* analysis, we don't need to waste time checking both repeating tables
* and default tables.
*/
*repeatMode = FSE_repeat_none;
return set_basic;
}
DEBUGLOG(5, "Selected set_compressed");
*repeatMode = FSE_repeat_check;
return set_compressed;
}
MEM_STATIC
size_t ZSTD_buildCTable(void* dst, size_t dstCapacity,
FSE_CTable* CTable, U32 FSELog, symbolEncodingType_e type,
U32* count, U32 max,
BYTE const* codeTable, size_t nbSeq,
S16 const* defaultNorm, U32 defaultNormLog, U32 defaultMax,
void* workspace, size_t workspaceSize)
{
BYTE* op = (BYTE*)dst;
BYTE const* const oend = op + dstCapacity;
switch (type) {
case set_rle:
*op = codeTable[0];
CHECK_F(FSE_buildCTable_rle(CTable, (BYTE)max));
return 1;
case set_repeat:
return 0;
case set_basic:
CHECK_F(FSE_buildCTable_wksp(CTable, defaultNorm, defaultMax, defaultNormLog, workspace, workspaceSize)); /* note : could be pre-calculated */
return 0;
case set_compressed: {
S16 norm[MaxSeq + 1];
size_t nbSeq_1 = nbSeq;
const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max);
if (count[codeTable[nbSeq-1]] > 1) {
count[codeTable[nbSeq-1]]--;
nbSeq_1--;
}
assert(nbSeq_1 > 1);
CHECK_F(FSE_normalizeCount(norm, tableLog, count, nbSeq_1, max));
{ size_t const NCountSize = FSE_writeNCount(op, oend - op, norm, max, tableLog); /* overflow protected */
if (FSE_isError(NCountSize)) return NCountSize;
CHECK_F(FSE_buildCTable_wksp(CTable, norm, max, tableLog, workspace, workspaceSize));
return NCountSize;
}
}
default: return assert(0), ERROR(GENERIC);
}
}
MEM_STATIC
size_t ZSTD_encodeSequences(
void* dst, size_t dstCapacity,
FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
seqDef const* sequences, size_t nbSeq, int longOffsets)
{
BIT_CStream_t blockStream;
FSE_CState_t stateMatchLength;
FSE_CState_t stateOffsetBits;
FSE_CState_t stateLitLength;
CHECK_E(BIT_initCStream(&blockStream, dst, dstCapacity), dstSize_tooSmall); /* not enough space remaining */
/* first symbols */
FSE_initCState2(&stateMatchLength, CTable_MatchLength, mlCodeTable[nbSeq-1]);
FSE_initCState2(&stateOffsetBits, CTable_OffsetBits, ofCodeTable[nbSeq-1]);
FSE_initCState2(&stateLitLength, CTable_LitLength, llCodeTable[nbSeq-1]);
BIT_addBits(&blockStream, sequences[nbSeq-1].litLength, LL_bits[llCodeTable[nbSeq-1]]);
if (MEM_32bits()) BIT_flushBits(&blockStream);
BIT_addBits(&blockStream, sequences[nbSeq-1].matchLength, ML_bits[mlCodeTable[nbSeq-1]]);
if (MEM_32bits()) BIT_flushBits(&blockStream);
if (longOffsets) {
U32 const ofBits = ofCodeTable[nbSeq-1];
int const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
if (extraBits) {
BIT_addBits(&blockStream, sequences[nbSeq-1].offset, extraBits);
BIT_flushBits(&blockStream);
}
BIT_addBits(&blockStream, sequences[nbSeq-1].offset >> extraBits,
ofBits - extraBits);
} else {
BIT_addBits(&blockStream, sequences[nbSeq-1].offset, ofCodeTable[nbSeq-1]);
}
BIT_flushBits(&blockStream);
{ size_t n;
for (n=nbSeq-2 ; n<nbSeq ; n--) { /* intentional underflow */
BYTE const llCode = llCodeTable[n];
BYTE const ofCode = ofCodeTable[n];
BYTE const mlCode = mlCodeTable[n];
U32 const llBits = LL_bits[llCode];
U32 const ofBits = ofCode;
U32 const mlBits = ML_bits[mlCode];
DEBUGLOG(6, "encoding: litlen:%2u - matchlen:%2u - offCode:%7u",
sequences[n].litLength,
sequences[n].matchLength + MINMATCH,
sequences[n].offset); /* 32b*/ /* 64b*/
/* (7)*/ /* (7)*/
FSE_encodeSymbol(&blockStream, &stateOffsetBits, ofCode); /* 15 */ /* 15 */
FSE_encodeSymbol(&blockStream, &stateMatchLength, mlCode); /* 24 */ /* 24 */
if (MEM_32bits()) BIT_flushBits(&blockStream); /* (7)*/
FSE_encodeSymbol(&blockStream, &stateLitLength, llCode); /* 16 */ /* 33 */
if (MEM_32bits() || (ofBits+mlBits+llBits >= 64-7-(LLFSELog+MLFSELog+OffFSELog)))
BIT_flushBits(&blockStream); /* (7)*/
BIT_addBits(&blockStream, sequences[n].litLength, llBits);
if (MEM_32bits() && ((llBits+mlBits)>24)) BIT_flushBits(&blockStream);
BIT_addBits(&blockStream, sequences[n].matchLength, mlBits);
if (MEM_32bits() || (ofBits+mlBits+llBits > 56)) BIT_flushBits(&blockStream);
if (longOffsets) {
int const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
if (extraBits) {
BIT_addBits(&blockStream, sequences[n].offset, extraBits);
BIT_flushBits(&blockStream); /* (7)*/
}
BIT_addBits(&blockStream, sequences[n].offset >> extraBits,
ofBits - extraBits); /* 31 */
} else {
BIT_addBits(&blockStream, sequences[n].offset, ofBits); /* 31 */
}
BIT_flushBits(&blockStream); /* (7)*/
} }
FSE_flushCState(&blockStream, &stateMatchLength);
FSE_flushCState(&blockStream, &stateOffsetBits);
FSE_flushCState(&blockStream, &stateLitLength);
{ size_t const streamSize = BIT_closeCStream(&blockStream);
if (streamSize==0) return ERROR(dstSize_tooSmall); /* not enough space */
return streamSize;
}
}
MEM_STATIC size_t ZSTD_compressSequences_internal(seqStore_t* seqStorePtr,
ZSTD_entropyCTables_t* entropy,
ZSTD_compressionParameters const* cParams,
void* dst, size_t dstCapacity)
{
const int longOffsets = cParams->windowLog > STREAM_ACCUMULATOR_MIN;
U32 count[MaxSeq+1];
FSE_CTable* CTable_LitLength = entropy->litlengthCTable;
FSE_CTable* CTable_OffsetBits = entropy->offcodeCTable;
FSE_CTable* CTable_MatchLength = entropy->matchlengthCTable;
U32 LLtype, Offtype, MLtype; /* compressed, raw or rle */
const seqDef* const sequences = seqStorePtr->sequencesStart;
const BYTE* const ofCodeTable = seqStorePtr->ofCode;
const BYTE* const llCodeTable = seqStorePtr->llCode;
const BYTE* const mlCodeTable = seqStorePtr->mlCode;
BYTE* const ostart = (BYTE*)dst;
BYTE* const oend = ostart + dstCapacity;
BYTE* op = ostart;
size_t const nbSeq = seqStorePtr->sequences - seqStorePtr->sequencesStart;
BYTE* seqHead;
ZSTD_STATIC_ASSERT(sizeof(entropy->workspace) >= (1<<MAX(MLFSELog,LLFSELog)));
/* Compress literals */
{ const BYTE* const literals = seqStorePtr->litStart;
size_t const litSize = seqStorePtr->lit - literals;
size_t const cSize = ZSTD_compressLiterals(
entropy, cParams->strategy, op, dstCapacity, literals, litSize);
if (ZSTD_isError(cSize))
return cSize;
assert(cSize <= dstCapacity);
op += cSize;
}
/* Sequences Header */
if ((oend-op) < 3 /*max nbSeq Size*/ + 1 /*seqHead*/) return ERROR(dstSize_tooSmall);
if (nbSeq < 0x7F)
*op++ = (BYTE)nbSeq;
else if (nbSeq < LONGNBSEQ)
op[0] = (BYTE)((nbSeq>>8) + 0x80), op[1] = (BYTE)nbSeq, op+=2;
else
op[0]=0xFF, MEM_writeLE16(op+1, (U16)(nbSeq - LONGNBSEQ)), op+=3;
if (nbSeq==0) return op - ostart;
/* seqHead : flags for FSE encoding type */
seqHead = op++;
/* convert length/distances into codes */
ZSTD_seqToCodes(seqStorePtr);
/* build CTable for Literal Lengths */
{ U32 max = MaxLL;
size_t const mostFrequent = FSE_countFast_wksp(count, &max, llCodeTable, nbSeq, entropy->workspace);
DEBUGLOG(5, "Building LL table");
LLtype = ZSTD_selectEncodingType(&entropy->litlength_repeatMode, mostFrequent, nbSeq, LL_defaultNormLog, ZSTD_defaultAllowed);
{ size_t const countSize = ZSTD_buildCTable(op, oend - op, CTable_LitLength, LLFSELog, (symbolEncodingType_e)LLtype,
count, max, llCodeTable, nbSeq, LL_defaultNorm, LL_defaultNormLog, MaxLL,
entropy->workspace, sizeof(entropy->workspace));
if (ZSTD_isError(countSize)) return countSize;
op += countSize;
} }
/* build CTable for Offsets */
{ U32 max = MaxOff;
size_t const mostFrequent = FSE_countFast_wksp(count, &max, ofCodeTable, nbSeq, entropy->workspace);
/* We can only use the basic table if max <= DefaultMaxOff, otherwise the offsets are too large */
ZSTD_defaultPolicy_e const defaultPolicy = (max <= DefaultMaxOff) ? ZSTD_defaultAllowed : ZSTD_defaultDisallowed;
DEBUGLOG(5, "Building OF table");
Offtype = ZSTD_selectEncodingType(&entropy->offcode_repeatMode, mostFrequent, nbSeq, OF_defaultNormLog, defaultPolicy);
{ size_t const countSize = ZSTD_buildCTable(op, oend - op, CTable_OffsetBits, OffFSELog, (symbolEncodingType_e)Offtype,
count, max, ofCodeTable, nbSeq, OF_defaultNorm, OF_defaultNormLog, DefaultMaxOff,
entropy->workspace, sizeof(entropy->workspace));
if (ZSTD_isError(countSize)) return countSize;
op += countSize;
} }
/* build CTable for MatchLengths */
{ U32 max = MaxML;
size_t const mostFrequent = FSE_countFast_wksp(count, &max, mlCodeTable, nbSeq, entropy->workspace);
DEBUGLOG(5, "Building ML table");
MLtype = ZSTD_selectEncodingType(&entropy->matchlength_repeatMode, mostFrequent, nbSeq, ML_defaultNormLog, ZSTD_defaultAllowed);
{ size_t const countSize = ZSTD_buildCTable(op, oend - op, CTable_MatchLength, MLFSELog, (symbolEncodingType_e)MLtype,
count, max, mlCodeTable, nbSeq, ML_defaultNorm, ML_defaultNormLog, MaxML,
entropy->workspace, sizeof(entropy->workspace));
if (ZSTD_isError(countSize)) return countSize;
op += countSize;
} }
*seqHead = (BYTE)((LLtype<<6) + (Offtype<<4) + (MLtype<<2));
{ size_t const bitstreamSize = ZSTD_encodeSequences(
op, oend - op,
CTable_MatchLength, mlCodeTable,
CTable_OffsetBits, ofCodeTable,
CTable_LitLength, llCodeTable,
sequences, nbSeq,
longOffsets);
if (ZSTD_isError(bitstreamSize)) return bitstreamSize;
op += bitstreamSize;
}
return op - ostart;
}
MEM_STATIC size_t ZSTD_compressSequences(seqStore_t* seqStorePtr,
ZSTD_entropyCTables_t* entropy,
ZSTD_compressionParameters const* cParams,
void* dst, size_t dstCapacity,
size_t srcSize)
{
size_t const cSize = ZSTD_compressSequences_internal(seqStorePtr, entropy, cParams,
dst, dstCapacity);
/* If the srcSize <= dstCapacity, then there is enough space to write a
* raw uncompressed block. Since we ran out of space, the block must not
* be compressible, so fall back to a raw uncompressed block.
*/
int const uncompressibleError = (cSize == ERROR(dstSize_tooSmall)) && (srcSize <= dstCapacity);
if (ZSTD_isError(cSize) && !uncompressibleError)
return cSize;
/* We check that dictionaries have offset codes available for the first
* block. After the first block, the offcode table might not have large
* enough codes to represent the offsets in the data.
*/
if (entropy->offcode_repeatMode == FSE_repeat_valid)
entropy->offcode_repeatMode = FSE_repeat_check;
/* Check compressibility */
{ size_t const minGain = ZSTD_minGain(srcSize); /* note : fixed formula, maybe should depend on compression level, or strategy */
size_t const maxCSize = srcSize - minGain;
if (cSize >= maxCSize || uncompressibleError) {
entropy->hufCTable_repeatMode = HUF_repeat_none;
entropy->offcode_repeatMode = FSE_repeat_none;
entropy->matchlength_repeatMode = FSE_repeat_none;
entropy->litlength_repeatMode = FSE_repeat_none;
return 0; /* block not compressed */
} }
assert(!ZSTD_isError(cSize));
/* block is compressed => confirm repcodes in history */
{ int i; for (i=0; i<ZSTD_REP_NUM; i++) seqStorePtr->rep[i] = seqStorePtr->repToConfirm[i]; }
return cSize;
}
/* ZSTD_selectBlockCompressor() :
* Not static, but internal use only (used by long distance matcher)
* assumption : strat is a valid strategy */
typedef size_t (*ZSTD_blockCompressor) (ZSTD_CCtx* ctx, const void* src, size_t srcSize);
ZSTD_blockCompressor ZSTD_selectBlockCompressor(ZSTD_strategy strat, int extDict)
{
static const ZSTD_blockCompressor blockCompressor[2][(unsigned)ZSTD_btultra+1] = {
{ ZSTD_compressBlock_fast /* default for 0 */,
ZSTD_compressBlock_fast, ZSTD_compressBlock_doubleFast, ZSTD_compressBlock_greedy,
ZSTD_compressBlock_lazy, ZSTD_compressBlock_lazy2, ZSTD_compressBlock_btlazy2,
ZSTD_compressBlock_btopt, ZSTD_compressBlock_btultra },
{ ZSTD_compressBlock_fast_extDict /* default for 0 */,
ZSTD_compressBlock_fast_extDict, ZSTD_compressBlock_doubleFast_extDict, ZSTD_compressBlock_greedy_extDict,
ZSTD_compressBlock_lazy_extDict,ZSTD_compressBlock_lazy2_extDict, ZSTD_compressBlock_btlazy2_extDict,
ZSTD_compressBlock_btopt_extDict, ZSTD_compressBlock_btultra_extDict }
};
ZSTD_STATIC_ASSERT((unsigned)ZSTD_fast == 1);
assert((U32)strat >= (U32)ZSTD_fast);
assert((U32)strat <= (U32)ZSTD_btultra);
return blockCompressor[extDict!=0][(U32)strat];
}
static void ZSTD_storeLastLiterals(seqStore_t* seqStorePtr,
const BYTE* anchor, size_t lastLLSize)
{
memcpy(seqStorePtr->lit, anchor, lastLLSize);
seqStorePtr->lit += lastLLSize;
}
static void ZSTD_resetSeqStore(seqStore_t* ssPtr)
{
ssPtr->lit = ssPtr->litStart;
ssPtr->sequences = ssPtr->sequencesStart;
ssPtr->longLengthID = 0;
}
static size_t ZSTD_compressBlock_internal(ZSTD_CCtx* zc, void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
DEBUGLOG(5, "ZSTD_compressBlock_internal : dstCapacity = %u", (U32)dstCapacity);
if (srcSize < MIN_CBLOCK_SIZE+ZSTD_blockHeaderSize+1)
return 0; /* don't even attempt compression below a certain srcSize */
ZSTD_resetSeqStore(&(zc->seqStore));
/* limited update after a very long match */
{ const BYTE* const base = zc->base;
const BYTE* const istart = (const BYTE*)src;
const U32 current = (U32)(istart-base);
if (current > zc->nextToUpdate + 384)
zc->nextToUpdate = current - MIN(192, (U32)(current - zc->nextToUpdate - 384));
}
/* find and store sequences */
{ U32 const extDict = zc->lowLimit < zc->dictLimit;
const ZSTD_blockCompressor blockCompressor =
zc->appliedParams.ldmParams.enableLdm
? (extDict ? ZSTD_compressBlock_ldm_extDict : ZSTD_compressBlock_ldm)
: ZSTD_selectBlockCompressor(zc->appliedParams.cParams.strategy, extDict);
size_t const lastLLSize = blockCompressor(zc, src, srcSize);
const BYTE* const anchor = (const BYTE*)src + srcSize - lastLLSize;
ZSTD_storeLastLiterals(&zc->seqStore, anchor, lastLLSize);
}
/* encode */
return ZSTD_compressSequences(&zc->seqStore, zc->entropy, &zc->appliedParams.cParams, dst, dstCapacity, srcSize);
}
/*! ZSTD_compress_frameChunk() :
* Compress a chunk of data into one or multiple blocks.
* All blocks will be terminated, all input will be consumed.
* Function will issue an error if there is not enough `dstCapacity` to hold the compressed content.
* Frame is supposed already started (header already produced)
* @return : compressed size, or an error code
*/
static size_t ZSTD_compress_frameChunk (ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
U32 lastFrameChunk)
{
size_t blockSize = cctx->blockSize;
size_t remaining = srcSize;
const BYTE* ip = (const BYTE*)src;
BYTE* const ostart = (BYTE*)dst;
BYTE* op = ostart;
U32 const maxDist = (U32)1 << cctx->appliedParams.cParams.windowLog;
assert(cctx->appliedParams.cParams.windowLog <= 31);
DEBUGLOG(5, "ZSTD_compress_frameChunk (blockSize=%u)", (U32)blockSize);
if (cctx->appliedParams.fParams.checksumFlag && srcSize)
XXH64_update(&cctx->xxhState, src, srcSize);
while (remaining) {
U32 const lastBlock = lastFrameChunk & (blockSize >= remaining);
if (dstCapacity < ZSTD_blockHeaderSize + MIN_CBLOCK_SIZE)
return ERROR(dstSize_tooSmall); /* not enough space to store compressed block */
if (remaining < blockSize) blockSize = remaining;
/* preemptive overflow correction:
* 1. correction is large enough:
* lowLimit > (3<<29) ==> current > 3<<29 + 1<<windowLog - blockSize
* 1<<windowLog <= newCurrent < 1<<chainLog + 1<<windowLog
*
* current - newCurrent
* > (3<<29 + 1<<windowLog - blockSize) - (1<<windowLog + 1<<chainLog)
* > (3<<29 - blockSize) - (1<<chainLog)
* > (3<<29 - blockSize) - (1<<30) (NOTE: chainLog <= 30)
* > 1<<29 - 1<<17
*
* 2. (ip+blockSize - cctx->base) doesn't overflow:
* In 32 bit mode we limit windowLog to 30 so we don't get
* differences larger than 1<<31-1.
* 3. cctx->lowLimit < 1<<32:
* windowLog <= 31 ==> 3<<29 + 1<<windowLog < 7<<29 < 1<<32.
*/
if (cctx->lowLimit > (3U<<29)) {
U32 const cycleMask = ((U32)1 << ZSTD_cycleLog(cctx->appliedParams.cParams.chainLog, cctx->appliedParams.cParams.strategy)) - 1;
U32 const current = (U32)(ip - cctx->base);
U32 const newCurrent = (current & cycleMask) + ((U32)1 << cctx->appliedParams.cParams.windowLog);
U32 const correction = current - newCurrent;
ZSTD_STATIC_ASSERT(ZSTD_CHAINLOG_MAX <= 30);
ZSTD_STATIC_ASSERT(ZSTD_WINDOWLOG_MAX_32 <= 30);
ZSTD_STATIC_ASSERT(ZSTD_WINDOWLOG_MAX <= 31);
assert(current > newCurrent);
assert(correction > 1<<28); /* Loose bound, should be about 1<<29 */
ZSTD_reduceIndex(cctx, correction);
cctx->base += correction;
cctx->dictBase += correction;
cctx->lowLimit -= correction;
cctx->dictLimit -= correction;
if (cctx->nextToUpdate < correction) cctx->nextToUpdate = 0;
else cctx->nextToUpdate -= correction;
DEBUGLOG(4, "Correction of 0x%x bytes to lowLimit=0x%x\n", correction, cctx->lowLimit);
}
/* enforce maxDist */
if ((U32)(ip+blockSize - cctx->base) > cctx->loadedDictEnd + maxDist) {
U32 const newLowLimit = (U32)(ip+blockSize - cctx->base) - maxDist;
if (cctx->lowLimit < newLowLimit) cctx->lowLimit = newLowLimit;
if (cctx->dictLimit < cctx->lowLimit) cctx->dictLimit = cctx->lowLimit;
}
{ size_t cSize = ZSTD_compressBlock_internal(cctx,
op+ZSTD_blockHeaderSize, dstCapacity-ZSTD_blockHeaderSize,
ip, blockSize);
if (ZSTD_isError(cSize)) return cSize;
if (cSize == 0) { /* block is not compressible */
U32 const cBlockHeader24 = lastBlock + (((U32)bt_raw)<<1) + (U32)(blockSize << 3);
if (blockSize + ZSTD_blockHeaderSize > dstCapacity) return ERROR(dstSize_tooSmall);
MEM_writeLE32(op, cBlockHeader24); /* 4th byte will be overwritten */
memcpy(op + ZSTD_blockHeaderSize, ip, blockSize);
cSize = ZSTD_blockHeaderSize + blockSize;
} else {
U32 const cBlockHeader24 = lastBlock + (((U32)bt_compressed)<<1) + (U32)(cSize << 3);
MEM_writeLE24(op, cBlockHeader24);
cSize += ZSTD_blockHeaderSize;
}
ip += blockSize;
assert(remaining >= blockSize);
remaining -= blockSize;
op += cSize;
assert(dstCapacity >= cSize);
dstCapacity -= cSize;
DEBUGLOG(5, "ZSTD_compress_frameChunk: adding a block of size %u",
(U32)cSize);
} }
if (lastFrameChunk && (op>ostart)) cctx->stage = ZSTDcs_ending;
return op-ostart;
}
static size_t ZSTD_writeFrameHeader(void* dst, size_t dstCapacity,
ZSTD_CCtx_params params, U64 pledgedSrcSize, U32 dictID)
{ BYTE* const op = (BYTE*)dst;
U32 const dictIDSizeCodeLength = (dictID>0) + (dictID>=256) + (dictID>=65536); /* 0-3 */
U32 const dictIDSizeCode = params.fParams.noDictIDFlag ? 0 : dictIDSizeCodeLength; /* 0-3 */
U32 const checksumFlag = params.fParams.checksumFlag>0;
U32 const windowSize = (U32)1 << params.cParams.windowLog;
U32 const singleSegment = params.fParams.contentSizeFlag && (windowSize >= pledgedSrcSize);
BYTE const windowLogByte = (BYTE)((params.cParams.windowLog - ZSTD_WINDOWLOG_ABSOLUTEMIN) << 3);
U32 const fcsCode = params.fParams.contentSizeFlag ?
(pledgedSrcSize>=256) + (pledgedSrcSize>=65536+256) + (pledgedSrcSize>=0xFFFFFFFFU) : 0; /* 0-3 */
BYTE const frameHeaderDecriptionByte = (BYTE)(dictIDSizeCode + (checksumFlag<<2) + (singleSegment<<5) + (fcsCode<<6) );
size_t pos=0;
if (dstCapacity < ZSTD_frameHeaderSize_max) return ERROR(dstSize_tooSmall);
DEBUGLOG(4, "ZSTD_writeFrameHeader : dictIDFlag : %u ; dictID : %u ; dictIDSizeCode : %u",
!params.fParams.noDictIDFlag, dictID, dictIDSizeCode);
if (params.format == ZSTD_f_zstd1) {
MEM_writeLE32(dst, ZSTD_MAGICNUMBER);
pos = 4;
}
op[pos++] = frameHeaderDecriptionByte;
if (!singleSegment) op[pos++] = windowLogByte;
switch(dictIDSizeCode)
{
default: assert(0); /* impossible */
case 0 : break;
case 1 : op[pos] = (BYTE)(dictID); pos++; break;
case 2 : MEM_writeLE16(op+pos, (U16)dictID); pos+=2; break;
case 3 : MEM_writeLE32(op+pos, dictID); pos+=4; break;
}
switch(fcsCode)
{
default: assert(0); /* impossible */
case 0 : if (singleSegment) op[pos++] = (BYTE)(pledgedSrcSize); break;
case 1 : MEM_writeLE16(op+pos, (U16)(pledgedSrcSize-256)); pos+=2; break;
case 2 : MEM_writeLE32(op+pos, (U32)(pledgedSrcSize)); pos+=4; break;
case 3 : MEM_writeLE64(op+pos, (U64)(pledgedSrcSize)); pos+=8; break;
}
return pos;
}
static size_t ZSTD_compressContinue_internal (ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
U32 frame, U32 lastFrameChunk)
{
const BYTE* const ip = (const BYTE*) src;
size_t fhSize = 0;
DEBUGLOG(5, "ZSTD_compressContinue_internal, stage: %u", cctx->stage);
if (cctx->stage==ZSTDcs_created) return ERROR(stage_wrong); /* missing init (ZSTD_compressBegin) */
if (frame && (cctx->stage==ZSTDcs_init)) {
fhSize = ZSTD_writeFrameHeader(dst, dstCapacity, cctx->appliedParams,
cctx->pledgedSrcSizePlusOne-1, cctx->dictID);
if (ZSTD_isError(fhSize)) return fhSize;
dstCapacity -= fhSize;
dst = (char*)dst + fhSize;
cctx->stage = ZSTDcs_ongoing;
}
if (!srcSize) return fhSize; /* do not generate an empty block if no input */
/* Check if blocks follow each other */
if (src != cctx->nextSrc) {
/* not contiguous */
size_t const distanceFromBase = (size_t)(cctx->nextSrc - cctx->base);
cctx->lowLimit = cctx->dictLimit;
assert(distanceFromBase == (size_t)(U32)distanceFromBase); /* should never overflow */
cctx->dictLimit = (U32)distanceFromBase;
cctx->dictBase = cctx->base;
cctx->base = ip - distanceFromBase;
cctx->nextToUpdate = cctx->dictLimit;
if (cctx->dictLimit - cctx->lowLimit < HASH_READ_SIZE) cctx->lowLimit = cctx->dictLimit; /* too small extDict */
}
cctx->nextSrc = ip + srcSize;
/* if input and dictionary overlap : reduce dictionary (area presumed modified by input) */
if ((ip+srcSize > cctx->dictBase + cctx->lowLimit) & (ip < cctx->dictBase + cctx->dictLimit)) {
ptrdiff_t const highInputIdx = (ip + srcSize) - cctx->dictBase;
U32 const lowLimitMax = (highInputIdx > (ptrdiff_t)cctx->dictLimit) ? cctx->dictLimit : (U32)highInputIdx;
cctx->lowLimit = lowLimitMax;
}
DEBUGLOG(5, "ZSTD_compressContinue_internal (blockSize=%u)", (U32)cctx->blockSize);
{ size_t const cSize = frame ?
ZSTD_compress_frameChunk (cctx, dst, dstCapacity, src, srcSize, lastFrameChunk) :
ZSTD_compressBlock_internal (cctx, dst, dstCapacity, src, srcSize);
if (ZSTD_isError(cSize)) return cSize;
cctx->consumedSrcSize += srcSize;
return cSize + fhSize;
}
}
size_t ZSTD_compressContinue (ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize)
{
return ZSTD_compressContinue_internal(cctx, dst, dstCapacity, src, srcSize, 1 /* frame mode */, 0 /* last chunk */);
}
size_t ZSTD_getBlockSize(const ZSTD_CCtx* cctx)
{
ZSTD_compressionParameters const cParams =
ZSTD_getCParamsFromCCtxParams(cctx->appliedParams, 0, 0);
return MIN (ZSTD_BLOCKSIZE_MAX, (U32)1 << cParams.windowLog);
}
size_t ZSTD_compressBlock(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
size_t const blockSizeMax = ZSTD_getBlockSize(cctx);
if (srcSize > blockSizeMax) return ERROR(srcSize_wrong);
return ZSTD_compressContinue_internal(cctx, dst, dstCapacity, src, srcSize, 0 /* frame mode */, 0 /* last chunk */);
}
/*! ZSTD_loadDictionaryContent() :
* @return : 0, or an error code
*/
static size_t ZSTD_loadDictionaryContent(ZSTD_CCtx* zc, const void* src, size_t srcSize)
{
const BYTE* const ip = (const BYTE*) src;
const BYTE* const iend = ip + srcSize;
/* input becomes current prefix */
zc->lowLimit = zc->dictLimit;
zc->dictLimit = (U32)(zc->nextSrc - zc->base);
zc->dictBase = zc->base;
zc->base = ip - zc->dictLimit;
zc->nextToUpdate = zc->dictLimit;
zc->loadedDictEnd = zc->appliedParams.forceWindow ? 0 : (U32)(iend - zc->base);
zc->nextSrc = iend;
if (srcSize <= HASH_READ_SIZE) return 0;
switch(zc->appliedParams.cParams.strategy)
{
case ZSTD_fast:
ZSTD_fillHashTable (zc, iend, zc->appliedParams.cParams.searchLength);
break;
case ZSTD_dfast:
ZSTD_fillDoubleHashTable (zc, iend, zc->appliedParams.cParams.searchLength);
break;
case ZSTD_greedy:
case ZSTD_lazy:
case ZSTD_lazy2:
if (srcSize >= HASH_READ_SIZE)
ZSTD_insertAndFindFirstIndex(zc, iend-HASH_READ_SIZE, zc->appliedParams.cParams.searchLength);
break;
case ZSTD_btlazy2:
case ZSTD_btopt:
case ZSTD_btultra:
if (srcSize >= HASH_READ_SIZE)
ZSTD_updateTree(zc, iend-HASH_READ_SIZE, iend, (U32)1 << zc->appliedParams.cParams.searchLog, zc->appliedParams.cParams.searchLength);
break;
default:
assert(0); /* not possible : not a valid strategy id */
}
zc->nextToUpdate = (U32)(iend - zc->base);
return 0;
}
/* Dictionaries that assign zero probability to symbols that show up causes problems
when FSE encoding. Refuse dictionaries that assign zero probability to symbols
that we may encounter during compression.
NOTE: This behavior is not standard and could be improved in the future. */
static size_t ZSTD_checkDictNCount(short* normalizedCounter, unsigned dictMaxSymbolValue, unsigned maxSymbolValue) {
U32 s;
if (dictMaxSymbolValue < maxSymbolValue) return ERROR(dictionary_corrupted);
for (s = 0; s <= maxSymbolValue; ++s) {
if (normalizedCounter[s] == 0) return ERROR(dictionary_corrupted);
}
return 0;
}
/* Dictionary format :
* See :
* https://github.com/facebook/zstd/blob/master/doc/zstd_compression_format.md#dictionary-format
*/
/*! ZSTD_loadZstdDictionary() :
* @return : 0, or an error code
* assumptions : magic number supposed already checked
* dictSize supposed > 8
*/
static size_t ZSTD_loadZstdDictionary(ZSTD_CCtx* cctx, const void* dict, size_t dictSize)
{
const BYTE* dictPtr = (const BYTE*)dict;
const BYTE* const dictEnd = dictPtr + dictSize;
short offcodeNCount[MaxOff+1];
unsigned offcodeMaxValue = MaxOff;
ZSTD_STATIC_ASSERT(sizeof(cctx->entropy->workspace) >= (1<<MAX(MLFSELog,LLFSELog)));
dictPtr += 4; /* skip magic number */
cctx->dictID = cctx->appliedParams.fParams.noDictIDFlag ? 0 : MEM_readLE32(dictPtr);
dictPtr += 4;
{ unsigned maxSymbolValue = 255;
size_t const hufHeaderSize = HUF_readCTable((HUF_CElt*)cctx->entropy->hufCTable, &maxSymbolValue, dictPtr, dictEnd-dictPtr);
if (HUF_isError(hufHeaderSize)) return ERROR(dictionary_corrupted);
if (maxSymbolValue < 255) return ERROR(dictionary_corrupted);
dictPtr += hufHeaderSize;
}
{ unsigned offcodeLog;
size_t const offcodeHeaderSize = FSE_readNCount(offcodeNCount, &offcodeMaxValue, &offcodeLog, dictPtr, dictEnd-dictPtr);
if (FSE_isError(offcodeHeaderSize)) return ERROR(dictionary_corrupted);
if (offcodeLog > OffFSELog) return ERROR(dictionary_corrupted);
/* Defer checking offcodeMaxValue because we need to know the size of the dictionary content */
CHECK_E( FSE_buildCTable_wksp(cctx->entropy->offcodeCTable, offcodeNCount, offcodeMaxValue, offcodeLog, cctx->entropy->workspace, sizeof(cctx->entropy->workspace)),
dictionary_corrupted);
dictPtr += offcodeHeaderSize;
}
{ short matchlengthNCount[MaxML+1];
unsigned matchlengthMaxValue = MaxML, matchlengthLog;
size_t const matchlengthHeaderSize = FSE_readNCount(matchlengthNCount, &matchlengthMaxValue, &matchlengthLog, dictPtr, dictEnd-dictPtr);
if (FSE_isError(matchlengthHeaderSize)) return ERROR(dictionary_corrupted);
if (matchlengthLog > MLFSELog) return ERROR(dictionary_corrupted);
/* Every match length code must have non-zero probability */
CHECK_F( ZSTD_checkDictNCount(matchlengthNCount, matchlengthMaxValue, MaxML));
CHECK_E( FSE_buildCTable_wksp(cctx->entropy->matchlengthCTable, matchlengthNCount, matchlengthMaxValue, matchlengthLog, cctx->entropy->workspace, sizeof(cctx->entropy->workspace)),
dictionary_corrupted);
dictPtr += matchlengthHeaderSize;
}
{ short litlengthNCount[MaxLL+1];
unsigned litlengthMaxValue = MaxLL, litlengthLog;
size_t const litlengthHeaderSize = FSE_readNCount(litlengthNCount, &litlengthMaxValue, &litlengthLog, dictPtr, dictEnd-dictPtr);
if (FSE_isError(litlengthHeaderSize)) return ERROR(dictionary_corrupted);
if (litlengthLog > LLFSELog) return ERROR(dictionary_corrupted);
/* Every literal length code must have non-zero probability */
CHECK_F( ZSTD_checkDictNCount(litlengthNCount, litlengthMaxValue, MaxLL));
CHECK_E( FSE_buildCTable_wksp(cctx->entropy->litlengthCTable, litlengthNCount, litlengthMaxValue, litlengthLog, cctx->entropy->workspace, sizeof(cctx->entropy->workspace)),
dictionary_corrupted);
dictPtr += litlengthHeaderSize;
}
if (dictPtr+12 > dictEnd) return ERROR(dictionary_corrupted);
cctx->seqStore.rep[0] = MEM_readLE32(dictPtr+0);
cctx->seqStore.rep[1] = MEM_readLE32(dictPtr+4);
cctx->seqStore.rep[2] = MEM_readLE32(dictPtr+8);
dictPtr += 12;
{ size_t const dictContentSize = (size_t)(dictEnd - dictPtr);
U32 offcodeMax = MaxOff;
if (dictContentSize <= ((U32)-1) - 128 KB) {
U32 const maxOffset = (U32)dictContentSize + 128 KB; /* The maximum offset that must be supported */
offcodeMax = ZSTD_highbit32(maxOffset); /* Calculate minimum offset code required to represent maxOffset */
}
/* All offset values <= dictContentSize + 128 KB must be representable */
CHECK_F (ZSTD_checkDictNCount(offcodeNCount, offcodeMaxValue, MIN(offcodeMax, MaxOff)));
/* All repCodes must be <= dictContentSize and != 0*/
{ U32 u;
for (u=0; u<3; u++) {
if (cctx->seqStore.rep[u] == 0) return ERROR(dictionary_corrupted);
if (cctx->seqStore.rep[u] > dictContentSize) return ERROR(dictionary_corrupted);
} }
cctx->entropy->hufCTable_repeatMode = HUF_repeat_valid;
cctx->entropy->offcode_repeatMode = FSE_repeat_valid;
cctx->entropy->matchlength_repeatMode = FSE_repeat_valid;
cctx->entropy->litlength_repeatMode = FSE_repeat_valid;
return ZSTD_loadDictionaryContent(cctx, dictPtr, dictContentSize);
}
}
/** ZSTD_compress_insertDictionary() :
* @return : 0, or an error code */
static size_t ZSTD_compress_insertDictionary(ZSTD_CCtx* cctx,
const void* dict, size_t dictSize,
ZSTD_dictMode_e dictMode)
{
DEBUGLOG(4, "ZSTD_compress_insertDictionary (dictSize=%u)", (U32)dictSize);
if ((dict==NULL) || (dictSize<=8)) return 0;
/* dict restricted modes */
if (dictMode==ZSTD_dm_rawContent)
return ZSTD_loadDictionaryContent(cctx, dict, dictSize);
if (MEM_readLE32(dict) != ZSTD_MAGIC_DICTIONARY) {
if (dictMode == ZSTD_dm_auto) {
DEBUGLOG(4, "raw content dictionary detected");
return ZSTD_loadDictionaryContent(cctx, dict, dictSize);
}
if (dictMode == ZSTD_dm_fullDict)
return ERROR(dictionary_wrong);
assert(0); /* impossible */
}
/* dict as full zstd dictionary */
return ZSTD_loadZstdDictionary(cctx, dict, dictSize);
}
/*! ZSTD_compressBegin_internal() :
* @return : 0, or an error code */
size_t ZSTD_compressBegin_internal(ZSTD_CCtx* cctx,
const void* dict, size_t dictSize,
ZSTD_dictMode_e dictMode,
const ZSTD_CDict* cdict,
ZSTD_CCtx_params params, U64 pledgedSrcSize,
ZSTD_buffered_policy_e zbuff)
{
DEBUGLOG(4, "ZSTD_compressBegin_internal: wlog=%u", params.cParams.windowLog);
/* params are supposed to be fully validated at this point */
assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams)));
assert(!((dict) && (cdict))); /* either dict or cdict, not both */
if (cdict && cdict->dictContentSize>0) {
cctx->requestedParams = params;
return ZSTD_copyCCtx_internal(cctx, cdict->refContext,
params.cParams.windowLog, params.fParams, pledgedSrcSize,
zbuff);
}
CHECK_F( ZSTD_resetCCtx_internal(cctx, params, pledgedSrcSize,
ZSTDcrp_continue, zbuff) );
return ZSTD_compress_insertDictionary(cctx, dict, dictSize, dictMode);
}
size_t ZSTD_compressBegin_advanced_internal(ZSTD_CCtx* cctx,
const void* dict, size_t dictSize,
ZSTD_dictMode_e dictMode,
const ZSTD_CDict* cdict,
ZSTD_CCtx_params params,
unsigned long long pledgedSrcSize)
{
DEBUGLOG(4, "ZSTD_compressBegin_advanced_internal: wlog=%u", params.cParams.windowLog);
/* compression parameters verification and optimization */
CHECK_F( ZSTD_checkCParams(params.cParams) );
return ZSTD_compressBegin_internal(cctx,
dict, dictSize, dictMode,
cdict,
params, pledgedSrcSize,
ZSTDb_not_buffered);
}
/*! ZSTD_compressBegin_advanced() :
* @return : 0, or an error code */
size_t ZSTD_compressBegin_advanced(ZSTD_CCtx* cctx,
const void* dict, size_t dictSize,
ZSTD_parameters params, unsigned long long pledgedSrcSize)
{
ZSTD_CCtx_params const cctxParams =
ZSTD_assignParamsToCCtxParams(cctx->requestedParams, params);
return ZSTD_compressBegin_advanced_internal(cctx,
dict, dictSize, ZSTD_dm_auto,
NULL /*cdict*/,
cctxParams, pledgedSrcSize);
}
size_t ZSTD_compressBegin_usingDict(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, int compressionLevel)
{
ZSTD_parameters const params = ZSTD_getParams(compressionLevel, 0, dictSize);
ZSTD_CCtx_params const cctxParams =
ZSTD_assignParamsToCCtxParams(cctx->requestedParams, params);
DEBUGLOG(4, "ZSTD_compressBegin_usingDict");
return ZSTD_compressBegin_internal(cctx, dict, dictSize, ZSTD_dm_auto, NULL,
cctxParams, ZSTD_CONTENTSIZE_UNKNOWN, ZSTDb_not_buffered);
}
size_t ZSTD_compressBegin(ZSTD_CCtx* cctx, int compressionLevel)
{
return ZSTD_compressBegin_usingDict(cctx, NULL, 0, compressionLevel);
}
/*! ZSTD_writeEpilogue() :
* Ends a frame.
* @return : nb of bytes written into dst (or an error code) */
static size_t ZSTD_writeEpilogue(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity)
{
BYTE* const ostart = (BYTE*)dst;
BYTE* op = ostart;
size_t fhSize = 0;
DEBUGLOG(5, "ZSTD_writeEpilogue");
if (cctx->stage == ZSTDcs_created) return ERROR(stage_wrong); /* init missing */
/* special case : empty frame */
if (cctx->stage == ZSTDcs_init) {
fhSize = ZSTD_writeFrameHeader(dst, dstCapacity, cctx->appliedParams, 0, 0);
if (ZSTD_isError(fhSize)) return fhSize;
dstCapacity -= fhSize;
op += fhSize;
cctx->stage = ZSTDcs_ongoing;
}
if (cctx->stage != ZSTDcs_ending) {
/* write one last empty block, make it the "last" block */
U32 const cBlockHeader24 = 1 /* last block */ + (((U32)bt_raw)<<1) + 0;
if (dstCapacity<4) return ERROR(dstSize_tooSmall);
MEM_writeLE32(op, cBlockHeader24);
op += ZSTD_blockHeaderSize;
dstCapacity -= ZSTD_blockHeaderSize;
}
if (cctx->appliedParams.fParams.checksumFlag) {
U32 const checksum = (U32) XXH64_digest(&cctx->xxhState);
if (dstCapacity<4) return ERROR(dstSize_tooSmall);
MEM_writeLE32(op, checksum);
op += 4;
}
cctx->stage = ZSTDcs_created; /* return to "created but no init" status */
return op-ostart;
}
size_t ZSTD_compressEnd (ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize)
{
size_t endResult;
size_t const cSize = ZSTD_compressContinue_internal(cctx,
dst, dstCapacity, src, srcSize,
1 /* frame mode */, 1 /* last chunk */);
if (ZSTD_isError(cSize)) return cSize;
endResult = ZSTD_writeEpilogue(cctx, (char*)dst + cSize, dstCapacity-cSize);
if (ZSTD_isError(endResult)) return endResult;
if (cctx->appliedParams.fParams.contentSizeFlag) { /* control src size */
DEBUGLOG(4, "end of frame : controlling src size");
if (cctx->pledgedSrcSizePlusOne != cctx->consumedSrcSize+1) {
DEBUGLOG(4, "error : pledgedSrcSize = %u, while realSrcSize = %u",
(U32)cctx->pledgedSrcSizePlusOne-1, (U32)cctx->consumedSrcSize);
return ERROR(srcSize_wrong);
} }
return cSize + endResult;
}
static size_t ZSTD_compress_internal (ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const void* dict,size_t dictSize,
ZSTD_parameters params)
{
ZSTD_CCtx_params const cctxParams =
ZSTD_assignParamsToCCtxParams(cctx->requestedParams, params);
DEBUGLOG(4, "ZSTD_compress_internal");
return ZSTD_compress_advanced_internal(cctx,
dst, dstCapacity,
src, srcSize,
dict, dictSize,
cctxParams);
}
size_t ZSTD_compress_advanced (ZSTD_CCtx* ctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const void* dict,size_t dictSize,
ZSTD_parameters params)
{
DEBUGLOG(4, "ZSTD_compress_advanced");
CHECK_F(ZSTD_checkCParams(params.cParams));
return ZSTD_compress_internal(ctx, dst, dstCapacity, src, srcSize, dict, dictSize, params);
}
/* Internal */
size_t ZSTD_compress_advanced_internal(
ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const void* dict,size_t dictSize,
ZSTD_CCtx_params params)
{
DEBUGLOG(4, "ZSTD_compress_advanced_internal");
CHECK_F( ZSTD_compressBegin_internal(cctx, dict, dictSize, ZSTD_dm_auto, NULL,
params, srcSize, ZSTDb_not_buffered) );
return ZSTD_compressEnd(cctx, dst, dstCapacity, src, srcSize);
}
size_t ZSTD_compress_usingDict(ZSTD_CCtx* ctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize,
const void* dict, size_t dictSize, int compressionLevel)
{
ZSTD_parameters params = ZSTD_getParams(compressionLevel, srcSize ? srcSize : 1, dict ? dictSize : 0);
params.fParams.contentSizeFlag = 1;
DEBUGLOG(4, "ZSTD_compress_usingDict (level=%i, srcSize=%u, dictSize=%u)",
compressionLevel, (U32)srcSize, (U32)dictSize);
return ZSTD_compress_internal(ctx, dst, dstCapacity, src, srcSize, dict, dictSize, params);
}
size_t ZSTD_compressCCtx (ZSTD_CCtx* ctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, int compressionLevel)
{
return ZSTD_compress_usingDict(ctx, dst, dstCapacity, src, srcSize, NULL, 0, compressionLevel);
}
size_t ZSTD_compress(void* dst, size_t dstCapacity, const void* src, size_t srcSize, int compressionLevel)
{
size_t result;
ZSTD_CCtx ctxBody;
memset(&ctxBody, 0, sizeof(ctxBody));
ctxBody.customMem = ZSTD_defaultCMem;
result = ZSTD_compressCCtx(&ctxBody, dst, dstCapacity, src, srcSize, compressionLevel);
ZSTD_free(ctxBody.workSpace, ZSTD_defaultCMem); /* can't free ctxBody itself, as it's on stack; free only heap content */
return result;
}
/* ===== Dictionary API ===== */
/*! ZSTD_estimateCDictSize_advanced() :
* Estimate amount of memory that will be needed to create a dictionary with following arguments */
size_t ZSTD_estimateCDictSize_advanced(
size_t dictSize, ZSTD_compressionParameters cParams,
ZSTD_dictLoadMethod_e dictLoadMethod)
{
DEBUGLOG(5, "sizeof(ZSTD_CDict) : %u", (U32)sizeof(ZSTD_CDict));
DEBUGLOG(5, "CCtx estimate : %u",
(U32)ZSTD_estimateCCtxSize_usingCParams(cParams));
return sizeof(ZSTD_CDict) + ZSTD_estimateCCtxSize_usingCParams(cParams)
+ (dictLoadMethod == ZSTD_dlm_byRef ? 0 : dictSize);
}
size_t ZSTD_estimateCDictSize(size_t dictSize, int compressionLevel)
{
ZSTD_compressionParameters const cParams = ZSTD_getCParams(compressionLevel, 0, dictSize);
return ZSTD_estimateCDictSize_advanced(dictSize, cParams, ZSTD_dlm_byCopy);
}
size_t ZSTD_sizeof_CDict(const ZSTD_CDict* cdict)
{
if (cdict==NULL) return 0; /* support sizeof on NULL */
DEBUGLOG(5, "sizeof(*cdict) : %u", (U32)sizeof(*cdict));
DEBUGLOG(5, "ZSTD_sizeof_CCtx : %u", (U32)ZSTD_sizeof_CCtx(cdict->refContext));
return ZSTD_sizeof_CCtx(cdict->refContext) + (cdict->dictBuffer ? cdict->dictContentSize : 0) + sizeof(*cdict);
}
static size_t ZSTD_initCDict_internal(
ZSTD_CDict* cdict,
const void* dictBuffer, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictMode_e dictMode,
ZSTD_compressionParameters cParams)
{
DEBUGLOG(3, "ZSTD_initCDict_internal, mode %u", (U32)dictMode);
if ((dictLoadMethod == ZSTD_dlm_byRef) || (!dictBuffer) || (!dictSize)) {
cdict->dictBuffer = NULL;
cdict->dictContent = dictBuffer;
} else {
void* const internalBuffer = ZSTD_malloc(dictSize, cdict->refContext->customMem);
cdict->dictBuffer = internalBuffer;
cdict->dictContent = internalBuffer;
if (!internalBuffer) return ERROR(memory_allocation);
memcpy(internalBuffer, dictBuffer, dictSize);
}
cdict->dictContentSize = dictSize;
{ ZSTD_CCtx_params cctxParams = cdict->refContext->requestedParams;
cctxParams.cParams = cParams;
CHECK_F( ZSTD_compressBegin_internal(cdict->refContext,
cdict->dictContent, dictSize, dictMode,
NULL,
cctxParams, ZSTD_CONTENTSIZE_UNKNOWN,
ZSTDb_not_buffered) );
}
return 0;
}
ZSTD_CDict* ZSTD_createCDict_advanced(const void* dictBuffer, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictMode_e dictMode,
ZSTD_compressionParameters cParams, ZSTD_customMem customMem)
{
DEBUGLOG(3, "ZSTD_createCDict_advanced, mode %u", (U32)dictMode);
if (!customMem.customAlloc ^ !customMem.customFree) return NULL;
{ ZSTD_CDict* const cdict = (ZSTD_CDict*)ZSTD_malloc(sizeof(ZSTD_CDict), customMem);
ZSTD_CCtx* const cctx = ZSTD_createCCtx_advanced(customMem);
if (!cdict || !cctx) {
ZSTD_free(cdict, customMem);
ZSTD_freeCCtx(cctx);
return NULL;
}
cdict->refContext = cctx;
if (ZSTD_isError( ZSTD_initCDict_internal(cdict,
dictBuffer, dictSize,
dictLoadMethod, dictMode,
cParams) )) {
ZSTD_freeCDict(cdict);
return NULL;
}
return cdict;
}
}
ZSTD_CDict* ZSTD_createCDict(const void* dict, size_t dictSize, int compressionLevel)
{
ZSTD_compressionParameters cParams = ZSTD_getCParams(compressionLevel, 0, dictSize);
return ZSTD_createCDict_advanced(dict, dictSize,
ZSTD_dlm_byCopy, ZSTD_dm_auto,
cParams, ZSTD_defaultCMem);
}
ZSTD_CDict* ZSTD_createCDict_byReference(const void* dict, size_t dictSize, int compressionLevel)
{
ZSTD_compressionParameters cParams = ZSTD_getCParams(compressionLevel, 0, dictSize);
return ZSTD_createCDict_advanced(dict, dictSize,
ZSTD_dlm_byRef, ZSTD_dm_auto,
cParams, ZSTD_defaultCMem);
}
size_t ZSTD_freeCDict(ZSTD_CDict* cdict)
{
if (cdict==NULL) return 0; /* support free on NULL */
{ ZSTD_customMem const cMem = cdict->refContext->customMem;
ZSTD_freeCCtx(cdict->refContext);
ZSTD_free(cdict->dictBuffer, cMem);
ZSTD_free(cdict, cMem);
return 0;
}
}
/*! ZSTD_initStaticCDict_advanced() :
* Generate a digested dictionary in provided memory area.
* workspace: The memory area to emplace the dictionary into.
* Provided pointer must 8-bytes aligned.
* It must outlive dictionary usage.
* workspaceSize: Use ZSTD_estimateCDictSize()
* to determine how large workspace must be.
* cParams : use ZSTD_getCParams() to transform a compression level
* into its relevants cParams.
* @return : pointer to ZSTD_CDict*, or NULL if error (size too small)
* Note : there is no corresponding "free" function.
* Since workspace was allocated externally, it must be freed externally.
*/
ZSTD_CDict* ZSTD_initStaticCDict(void* workspace, size_t workspaceSize,
const void* dict, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictMode_e dictMode,
ZSTD_compressionParameters cParams)
{
size_t const cctxSize = ZSTD_estimateCCtxSize_usingCParams(cParams);
size_t const neededSize = sizeof(ZSTD_CDict) + (dictLoadMethod == ZSTD_dlm_byRef ? 0 : dictSize)
+ cctxSize;
ZSTD_CDict* const cdict = (ZSTD_CDict*) workspace;
void* ptr;
DEBUGLOG(4, "(size_t)workspace & 7 : %u", (U32)(size_t)workspace & 7);
if ((size_t)workspace & 7) return NULL; /* 8-aligned */
DEBUGLOG(4, "(workspaceSize < neededSize) : (%u < %u) => %u",
(U32)workspaceSize, (U32)neededSize, (U32)(workspaceSize < neededSize));
if (workspaceSize < neededSize) return NULL;
if (dictLoadMethod == ZSTD_dlm_byCopy) {
memcpy(cdict+1, dict, dictSize);
dict = cdict+1;
ptr = (char*)workspace + sizeof(ZSTD_CDict) + dictSize;
} else {
ptr = cdict+1;
}
cdict->refContext = ZSTD_initStaticCCtx(ptr, cctxSize);
if (ZSTD_isError( ZSTD_initCDict_internal(cdict,
dict, dictSize,
ZSTD_dlm_byRef, dictMode,
cParams) ))
return NULL;
return cdict;
}
ZSTD_compressionParameters ZSTD_getCParamsFromCDict(const ZSTD_CDict* cdict) {
return cdict->refContext->appliedParams.cParams;
}
/* ZSTD_compressBegin_usingCDict_advanced() :
* cdict must be != NULL */
size_t ZSTD_compressBegin_usingCDict_advanced(
ZSTD_CCtx* const cctx, const ZSTD_CDict* const cdict,
ZSTD_frameParameters const fParams, unsigned long long const pledgedSrcSize)
{
DEBUGLOG(4, "ZSTD_compressBegin_usingCDict_advanced");
if (cdict==NULL) return ERROR(dictionary_wrong);
{ ZSTD_CCtx_params params = cctx->requestedParams;
params.cParams = ZSTD_getCParamsFromCDict(cdict);
params.fParams = fParams;
return ZSTD_compressBegin_internal(cctx,
NULL, 0, ZSTD_dm_auto,
cdict,
params, pledgedSrcSize,
ZSTDb_not_buffered);
}
}
/* ZSTD_compressBegin_usingCDict() :
* pledgedSrcSize=0 means "unknown"
* if pledgedSrcSize>0, it will enable contentSizeFlag */
size_t ZSTD_compressBegin_usingCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict)
{
ZSTD_frameParameters const fParams = { 0 /*content*/, 0 /*checksum*/, 0 /*noDictID*/ };
DEBUGLOG(4, "ZSTD_compressBegin_usingCDict : dictIDFlag == %u", !fParams.noDictIDFlag);
return ZSTD_compressBegin_usingCDict_advanced(cctx, cdict, fParams, 0);
}
size_t ZSTD_compress_usingCDict_advanced(ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const ZSTD_CDict* cdict, ZSTD_frameParameters fParams)
{
CHECK_F (ZSTD_compressBegin_usingCDict_advanced(cctx, cdict, fParams, srcSize)); /* will check if cdict != NULL */
return ZSTD_compressEnd(cctx, dst, dstCapacity, src, srcSize);
}
/*! ZSTD_compress_usingCDict() :
* Compression using a digested Dictionary.
* Faster startup than ZSTD_compress_usingDict(), recommended when same dictionary is used multiple times.
* Note that compression parameters are decided at CDict creation time
* while frame parameters are hardcoded */
size_t ZSTD_compress_usingCDict(ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const ZSTD_CDict* cdict)
{
ZSTD_frameParameters const fParams = { 1 /*content*/, 0 /*checksum*/, 0 /*noDictID*/ };
return ZSTD_compress_usingCDict_advanced(cctx, dst, dstCapacity, src, srcSize, cdict, fParams);
}
/* ******************************************************************
* Streaming
********************************************************************/
ZSTD_CStream* ZSTD_createCStream(void)
{
DEBUGLOG(3, "ZSTD_createCStream");
return ZSTD_createCStream_advanced(ZSTD_defaultCMem);
}
ZSTD_CStream* ZSTD_initStaticCStream(void *workspace, size_t workspaceSize)
{
return ZSTD_initStaticCCtx(workspace, workspaceSize);
}
ZSTD_CStream* ZSTD_createCStream_advanced(ZSTD_customMem customMem)
{ /* CStream and CCtx are now same object */
return ZSTD_createCCtx_advanced(customMem);
}
size_t ZSTD_freeCStream(ZSTD_CStream* zcs)
{
return ZSTD_freeCCtx(zcs); /* same object */
}
/*====== Initialization ======*/
size_t ZSTD_CStreamInSize(void) { return ZSTD_BLOCKSIZE_MAX; }
size_t ZSTD_CStreamOutSize(void)
{
return ZSTD_compressBound(ZSTD_BLOCKSIZE_MAX) + ZSTD_blockHeaderSize + 4 /* 32-bits hash */ ;
}
static size_t ZSTD_resetCStream_internal(ZSTD_CStream* zcs,
const void* const dict, size_t const dictSize, ZSTD_dictMode_e const dictMode,
const ZSTD_CDict* const cdict,
ZSTD_CCtx_params const params, unsigned long long const pledgedSrcSize)
{
DEBUGLOG(4, "ZSTD_resetCStream_internal");
/* params are supposed to be fully validated at this point */
assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams)));
assert(!((dict) && (cdict))); /* either dict or cdict, not both */
CHECK_F( ZSTD_compressBegin_internal(zcs,
dict, dictSize, dictMode,
cdict,
params, pledgedSrcSize,
ZSTDb_buffered) );
zcs->inToCompress = 0;
zcs->inBuffPos = 0;
zcs->inBuffTarget = zcs->blockSize
+ (zcs->blockSize == pledgedSrcSize); /* for small input: avoid automatic flush on reaching end of block, since it would require to add a 3-bytes null block to end frame */
zcs->outBuffContentSize = zcs->outBuffFlushedSize = 0;
zcs->streamStage = zcss_load;
zcs->frameEnded = 0;
return 0; /* ready to go */
}
/* ZSTD_resetCStream():
* pledgedSrcSize == 0 means "unknown" */
size_t ZSTD_resetCStream(ZSTD_CStream* zcs, unsigned long long pledgedSrcSize)
{
ZSTD_CCtx_params params = zcs->requestedParams;
DEBUGLOG(4, "ZSTD_resetCStream: pledgedSrcSize = %u", (U32)pledgedSrcSize);
if (pledgedSrcSize==0) pledgedSrcSize = ZSTD_CONTENTSIZE_UNKNOWN;
params.fParams.contentSizeFlag = 1;
params.cParams = ZSTD_getCParamsFromCCtxParams(params, pledgedSrcSize, 0);
return ZSTD_resetCStream_internal(zcs, NULL, 0, ZSTD_dm_auto, zcs->cdict, params, pledgedSrcSize);
}
/*! ZSTD_initCStream_internal() :
* Note : for lib/compress only. Used by zstdmt_compress.c.
* Assumption 1 : params are valid
* Assumption 2 : either dict, or cdict, is defined, not both */
size_t ZSTD_initCStream_internal(ZSTD_CStream* zcs,
const void* dict, size_t dictSize, const ZSTD_CDict* cdict,
ZSTD_CCtx_params params, unsigned long long pledgedSrcSize)
{
DEBUGLOG(4, "ZSTD_initCStream_internal");
assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams)));
assert(!((dict) && (cdict))); /* either dict or cdict, not both */
if (dict && dictSize >= 8) {
DEBUGLOG(4, "loading dictionary of size %u", (U32)dictSize);
if (zcs->staticSize) { /* static CCtx : never uses malloc */
/* incompatible with internal cdict creation */
return ERROR(memory_allocation);
}
ZSTD_freeCDict(zcs->cdictLocal);
zcs->cdictLocal = ZSTD_createCDict_advanced(dict, dictSize,
ZSTD_dlm_byCopy, ZSTD_dm_auto,
params.cParams, zcs->customMem);
zcs->cdict = zcs->cdictLocal;
if (zcs->cdictLocal == NULL) return ERROR(memory_allocation);
} else {
if (cdict) {
params.cParams = ZSTD_getCParamsFromCDict(cdict); /* cParams are enforced from cdict; it includes windowLog */
}
ZSTD_freeCDict(zcs->cdictLocal);
zcs->cdictLocal = NULL;
zcs->cdict = cdict;
}
params.compressionLevel = ZSTD_CLEVEL_CUSTOM; /* enforce usage of cParams, instead of a dynamic derivation from cLevel (but does that happen ?) */
zcs->requestedParams = params;
return ZSTD_resetCStream_internal(zcs, NULL, 0, ZSTD_dm_auto, zcs->cdict, params, pledgedSrcSize);
}
/* ZSTD_initCStream_usingCDict_advanced() :
* same as ZSTD_initCStream_usingCDict(), with control over frame parameters */
size_t ZSTD_initCStream_usingCDict_advanced(ZSTD_CStream* zcs,
const ZSTD_CDict* cdict,
ZSTD_frameParameters fParams,
unsigned long long pledgedSrcSize)
{
DEBUGLOG(4, "ZSTD_initCStream_usingCDict_advanced");
if (!cdict) return ERROR(dictionary_wrong); /* cannot handle NULL cdict (does not know what to do) */
{ ZSTD_CCtx_params params = zcs->requestedParams;
params.cParams = ZSTD_getCParamsFromCDict(cdict);
params.fParams = fParams;
return ZSTD_initCStream_internal(zcs,
NULL, 0, cdict,
params, pledgedSrcSize);
}
}
/* note : cdict must outlive compression session */
size_t ZSTD_initCStream_usingCDict(ZSTD_CStream* zcs, const ZSTD_CDict* cdict)
{
ZSTD_frameParameters const fParams = { 0 /* contentSizeFlag */, 0 /* checksum */, 0 /* hideDictID */ };
DEBUGLOG(4, "ZSTD_initCStream_usingCDict");
return ZSTD_initCStream_usingCDict_advanced(zcs, cdict, fParams, ZSTD_CONTENTSIZE_UNKNOWN); /* note : will check that cdict != NULL */
}
/* ZSTD_initCStream_advanced() :
* pledgedSrcSize must be correct.
* if srcSize is not known at init time, use value ZSTD_CONTENTSIZE_UNKNOWN.
* dict is loaded with default parameters ZSTD_dm_auto and ZSTD_dlm_byCopy. */
size_t ZSTD_initCStream_advanced(ZSTD_CStream* zcs,
const void* dict, size_t dictSize,
ZSTD_parameters params, unsigned long long pledgedSrcSize)
{
ZSTD_CCtx_params const cctxParams = ZSTD_assignParamsToCCtxParams(zcs->requestedParams, params);
DEBUGLOG(4, "ZSTD_initCStream_advanced: pledgedSrcSize=%u, flag=%u",
(U32)pledgedSrcSize, params.fParams.contentSizeFlag);
CHECK_F( ZSTD_checkCParams(params.cParams) );
if ((pledgedSrcSize==0) && (params.fParams.contentSizeFlag==0)) pledgedSrcSize = ZSTD_CONTENTSIZE_UNKNOWN; /* for compatibility with older programs relying on this behavior. Users should now specify ZSTD_CONTENTSIZE_UNKNOWN. This line will be removed in the future. */
return ZSTD_initCStream_internal(zcs, dict, dictSize, NULL /*cdict*/, cctxParams, pledgedSrcSize);
}
size_t ZSTD_initCStream_usingDict(ZSTD_CStream* zcs, const void* dict, size_t dictSize, int compressionLevel)
{
ZSTD_parameters const params = ZSTD_getParams(compressionLevel, 0, dictSize);
ZSTD_CCtx_params const cctxParams =
ZSTD_assignParamsToCCtxParams(zcs->requestedParams, params);
return ZSTD_initCStream_internal(zcs, dict, dictSize, NULL, cctxParams, ZSTD_CONTENTSIZE_UNKNOWN);
}
size_t ZSTD_initCStream_srcSize(ZSTD_CStream* zcs, int compressionLevel, unsigned long long pss)
{
U64 const pledgedSrcSize = (pss==0) ? ZSTD_CONTENTSIZE_UNKNOWN : pss; /* temporary : 0 interpreted as "unknown" during transition period. Users willing to specify "unknown" **must** use ZSTD_CONTENTSIZE_UNKNOWN. `0` will be interpreted as "empty" in the future */
ZSTD_parameters const params = ZSTD_getParams(compressionLevel, pledgedSrcSize, 0);
ZSTD_CCtx_params const cctxParams = ZSTD_assignParamsToCCtxParams(zcs->requestedParams, params);
return ZSTD_initCStream_internal(zcs, NULL, 0, NULL, cctxParams, pledgedSrcSize);
}
size_t ZSTD_initCStream(ZSTD_CStream* zcs, int compressionLevel)
{
DEBUGLOG(4, "ZSTD_initCStream");
return ZSTD_initCStream_srcSize(zcs, compressionLevel, ZSTD_CONTENTSIZE_UNKNOWN);
}
/*====== Compression ======*/
MEM_STATIC size_t ZSTD_limitCopy(void* dst, size_t dstCapacity,
const void* src, size_t srcSize)
{
size_t const length = MIN(dstCapacity, srcSize);
if (length) memcpy(dst, src, length);
return length;
}
/** ZSTD_compressStream_generic():
* internal function for all *compressStream*() variants and *compress_generic()
* non-static, because can be called from zstdmt.c
* @return : hint size for next input */
size_t ZSTD_compressStream_generic(ZSTD_CStream* zcs,
ZSTD_outBuffer* output,
ZSTD_inBuffer* input,
ZSTD_EndDirective const flushMode)
{
const char* const istart = (const char*)input->src;
const char* const iend = istart + input->size;
const char* ip = istart + input->pos;
char* const ostart = (char*)output->dst;
char* const oend = ostart + output->size;
char* op = ostart + output->pos;
U32 someMoreWork = 1;
/* check expectations */
DEBUGLOG(5, "ZSTD_compressStream_generic, flush=%u", (U32)flushMode);
assert(zcs->inBuff != NULL);
assert(zcs->inBuffSize > 0);
assert(zcs->outBuff != NULL);
assert(zcs->outBuffSize > 0);
assert(output->pos <= output->size);
assert(input->pos <= input->size);
while (someMoreWork) {
switch(zcs->streamStage)
{
case zcss_init:
/* call ZSTD_initCStream() first ! */
return ERROR(init_missing);
case zcss_load:
if ( (flushMode == ZSTD_e_end)
&& ((size_t)(oend-op) >= ZSTD_compressBound(iend-ip)) /* enough dstCapacity */
&& (zcs->inBuffPos == 0) ) {
/* shortcut to compression pass directly into output buffer */
size_t const cSize = ZSTD_compressEnd(zcs,
op, oend-op, ip, iend-ip);
DEBUGLOG(4, "ZSTD_compressEnd : %u", (U32)cSize);
if (ZSTD_isError(cSize)) return cSize;
ip = iend;
op += cSize;
zcs->frameEnded = 1;
ZSTD_startNewCompression(zcs);
someMoreWork = 0; break;
}
/* complete loading into inBuffer */
{ size_t const toLoad = zcs->inBuffTarget - zcs->inBuffPos;
size_t const loaded = ZSTD_limitCopy(
zcs->inBuff + zcs->inBuffPos, toLoad,
ip, iend-ip);
zcs->inBuffPos += loaded;
ip += loaded;
if ( (flushMode == ZSTD_e_continue)
&& (zcs->inBuffPos < zcs->inBuffTarget) ) {
/* not enough input to fill full block : stop here */
someMoreWork = 0; break;
}
if ( (flushMode == ZSTD_e_flush)
&& (zcs->inBuffPos == zcs->inToCompress) ) {
/* empty */
someMoreWork = 0; break;
}
}
/* compress current block (note : this stage cannot be stopped in the middle) */
DEBUGLOG(5, "stream compression stage (flushMode==%u)", flushMode);
{ void* cDst;
size_t cSize;
size_t const iSize = zcs->inBuffPos - zcs->inToCompress;
size_t oSize = oend-op;
unsigned const lastBlock = (flushMode == ZSTD_e_end) && (ip==iend);
if (oSize >= ZSTD_compressBound(iSize))
cDst = op; /* compress into output buffer, to skip flush stage */
else
cDst = zcs->outBuff, oSize = zcs->outBuffSize;
cSize = lastBlock ?
ZSTD_compressEnd(zcs, cDst, oSize,
zcs->inBuff + zcs->inToCompress, iSize) :
ZSTD_compressContinue(zcs, cDst, oSize,
zcs->inBuff + zcs->inToCompress, iSize);
if (ZSTD_isError(cSize)) return cSize;
zcs->frameEnded = lastBlock;
/* prepare next block */
zcs->inBuffTarget = zcs->inBuffPos + zcs->blockSize;
if (zcs->inBuffTarget > zcs->inBuffSize)
zcs->inBuffPos = 0, zcs->inBuffTarget = zcs->blockSize;
DEBUGLOG(5, "inBuffTarget:%u / inBuffSize:%u",
(U32)zcs->inBuffTarget, (U32)zcs->inBuffSize);
if (!lastBlock)
assert(zcs->inBuffTarget <= zcs->inBuffSize);
zcs->inToCompress = zcs->inBuffPos;
if (cDst == op) { /* no need to flush */
op += cSize;
if (zcs->frameEnded) {
DEBUGLOG(5, "Frame completed directly in outBuffer");
someMoreWork = 0;
ZSTD_startNewCompression(zcs);
}
break;
}
zcs->outBuffContentSize = cSize;
zcs->outBuffFlushedSize = 0;
zcs->streamStage = zcss_flush; /* pass-through to flush stage */
}
/* fall-through */
case zcss_flush:
DEBUGLOG(5, "flush stage");
{ size_t const toFlush = zcs->outBuffContentSize - zcs->outBuffFlushedSize;
size_t const flushed = ZSTD_limitCopy(op, oend-op,
zcs->outBuff + zcs->outBuffFlushedSize, toFlush);
DEBUGLOG(5, "toFlush: %u into %u ==> flushed: %u",
(U32)toFlush, (U32)(oend-op), (U32)flushed);
op += flushed;
zcs->outBuffFlushedSize += flushed;
if (toFlush!=flushed) {
/* flush not fully completed, presumably because dst is too small */
assert(op==oend);
someMoreWork = 0;
break;
}
zcs->outBuffContentSize = zcs->outBuffFlushedSize = 0;
if (zcs->frameEnded) {
DEBUGLOG(5, "Frame completed on flush");
someMoreWork = 0;
ZSTD_startNewCompression(zcs);
break;
}
zcs->streamStage = zcss_load;
break;
}
default: /* impossible */
assert(0);
}
}
input->pos = ip - istart;
output->pos = op - ostart;
if (zcs->frameEnded) return 0;
{ size_t hintInSize = zcs->inBuffTarget - zcs->inBuffPos;
if (hintInSize==0) hintInSize = zcs->blockSize;
return hintInSize;
}
}
size_t ZSTD_compressStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output, ZSTD_inBuffer* input)
{
/* check conditions */
if (output->pos > output->size) return ERROR(GENERIC);
if (input->pos > input->size) return ERROR(GENERIC);
return ZSTD_compressStream_generic(zcs, output, input, ZSTD_e_continue);
}
size_t ZSTD_compress_generic (ZSTD_CCtx* cctx,
ZSTD_outBuffer* output,
ZSTD_inBuffer* input,
ZSTD_EndDirective endOp)
{
DEBUGLOG(5, "ZSTD_compress_generic, endOp=%u ", (U32)endOp);
/* check conditions */
if (output->pos > output->size) return ERROR(GENERIC);
if (input->pos > input->size) return ERROR(GENERIC);
assert(cctx!=NULL);
/* transparent initialization stage */
if (cctx->streamStage == zcss_init) {
ZSTD_CCtx_params params = cctx->requestedParams;
ZSTD_prefixDict const prefixDict = cctx->prefixDict;
memset(&cctx->prefixDict, 0, sizeof(cctx->prefixDict)); /* single usage */
assert(prefixDict.dict==NULL || cctx->cdict==NULL); /* only one can be set */
DEBUGLOG(4, "ZSTD_compress_generic : transparent init stage");
if (endOp == ZSTD_e_end) cctx->pledgedSrcSizePlusOne = input->size + 1; /* auto-fix pledgedSrcSize */
params.cParams = ZSTD_getCParamsFromCCtxParams(
cctx->requestedParams, cctx->pledgedSrcSizePlusOne-1, 0 /*dictSize*/);
#ifdef ZSTD_MULTITHREAD
if ((cctx->pledgedSrcSizePlusOne-1) <= ZSTDMT_JOBSIZE_MIN)
params.nbThreads = 1; /* do not invoke multi-threading when src size is too small */
if (params.nbThreads > 1) {
if (cctx->mtctx == NULL || (params.nbThreads != ZSTDMT_getNbThreads(cctx->mtctx))) {
DEBUGLOG(4, "ZSTD_compress_generic: creating new mtctx for nbThreads=%u (previous: %u)",
params.nbThreads, ZSTDMT_getNbThreads(cctx->mtctx));
ZSTDMT_freeCCtx(cctx->mtctx);
cctx->mtctx = ZSTDMT_createCCtx_advanced(params.nbThreads, cctx->customMem);
if (cctx->mtctx == NULL) return ERROR(memory_allocation);
}
DEBUGLOG(4, "call ZSTDMT_initCStream_internal as nbThreads=%u", params.nbThreads);
CHECK_F( ZSTDMT_initCStream_internal(
cctx->mtctx,
prefixDict.dict, prefixDict.dictSize, ZSTD_dm_rawContent,
cctx->cdict, params, cctx->pledgedSrcSizePlusOne-1) );
cctx->streamStage = zcss_load;
cctx->appliedParams.nbThreads = params.nbThreads;
} else
#endif
{ CHECK_F( ZSTD_resetCStream_internal(
cctx, prefixDict.dict, prefixDict.dictSize,
prefixDict.dictMode, cctx->cdict, params,
cctx->pledgedSrcSizePlusOne-1) );
assert(cctx->streamStage == zcss_load);
assert(cctx->appliedParams.nbThreads <= 1);
} }
/* compression stage */
#ifdef ZSTD_MULTITHREAD
if (cctx->appliedParams.nbThreads > 1) {
size_t const flushMin = ZSTDMT_compressStream_generic(cctx->mtctx, output, input, endOp);
if ( ZSTD_isError(flushMin)
|| (endOp == ZSTD_e_end && flushMin == 0) ) { /* compression completed */
ZSTD_startNewCompression(cctx);
}
return flushMin;
}
#endif
CHECK_F( ZSTD_compressStream_generic(cctx, output, input, endOp) );
DEBUGLOG(5, "completed ZSTD_compress_generic");
return cctx->outBuffContentSize - cctx->outBuffFlushedSize; /* remaining to flush */
}
size_t ZSTD_compress_generic_simpleArgs (
ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity, size_t* dstPos,
const void* src, size_t srcSize, size_t* srcPos,
ZSTD_EndDirective endOp)
{
ZSTD_outBuffer output = { dst, dstCapacity, *dstPos };
ZSTD_inBuffer input = { src, srcSize, *srcPos };
/* ZSTD_compress_generic() will check validity of dstPos and srcPos */
size_t const cErr = ZSTD_compress_generic(cctx, &output, &input, endOp);
*dstPos = output.pos;
*srcPos = input.pos;
return cErr;
}
/*====== Finalize ======*/
/*! ZSTD_flushStream() :
* @return : amount of data remaining to flush */
size_t ZSTD_flushStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output)
{
ZSTD_inBuffer input = { NULL, 0, 0 };
if (output->pos > output->size) return ERROR(GENERIC);
CHECK_F( ZSTD_compressStream_generic(zcs, output, &input, ZSTD_e_flush) );
return zcs->outBuffContentSize - zcs->outBuffFlushedSize; /* remaining to flush */
}
size_t ZSTD_endStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output)
{
ZSTD_inBuffer input = { NULL, 0, 0 };
if (output->pos > output->size) return ERROR(GENERIC);
CHECK_F( ZSTD_compressStream_generic(zcs, output, &input, ZSTD_e_end) );
{ size_t const lastBlockSize = zcs->frameEnded ? 0 : ZSTD_BLOCKHEADERSIZE;
size_t const checksumSize = zcs->frameEnded ? 0 : zcs->appliedParams.fParams.checksumFlag * 4;
size_t const toFlush = zcs->outBuffContentSize - zcs->outBuffFlushedSize + lastBlockSize + checksumSize;
DEBUGLOG(4, "ZSTD_endStream : remaining to flush : %u", (U32)toFlush);
return toFlush;
}
}
/*-===== Pre-defined compression levels =====-*/
#define ZSTD_MAX_CLEVEL 22
int ZSTD_maxCLevel(void) { return ZSTD_MAX_CLEVEL; }
static const ZSTD_compressionParameters ZSTD_defaultCParameters[4][ZSTD_MAX_CLEVEL+1] = {
{ /* "default" - guarantees a monotonically increasing memory budget */
/* W, C, H, S, L, TL, strat */
{ 18, 12, 12, 1, 7, 16, ZSTD_fast }, /* level 0 - never used */
{ 19, 13, 14, 1, 7, 16, ZSTD_fast }, /* level 1 */
{ 19, 15, 16, 1, 6, 16, ZSTD_fast }, /* level 2 */
{ 20, 16, 17, 1, 5, 16, ZSTD_dfast }, /* level 3 */
{ 20, 17, 18, 1, 5, 16, ZSTD_dfast }, /* level 4 */
{ 20, 17, 18, 2, 5, 16, ZSTD_greedy }, /* level 5 */
{ 21, 17, 19, 2, 5, 16, ZSTD_lazy }, /* level 6 */
{ 21, 18, 19, 3, 5, 16, ZSTD_lazy }, /* level 7 */
{ 21, 18, 20, 3, 5, 16, ZSTD_lazy2 }, /* level 8 */
{ 21, 19, 20, 3, 5, 16, ZSTD_lazy2 }, /* level 9 */
{ 21, 19, 21, 4, 5, 16, ZSTD_lazy2 }, /* level 10 */
{ 22, 20, 22, 4, 5, 16, ZSTD_lazy2 }, /* level 11 */
{ 22, 20, 22, 5, 5, 16, ZSTD_lazy2 }, /* level 12 */
{ 22, 21, 22, 5, 5, 16, ZSTD_lazy2 }, /* level 13 */
{ 22, 21, 22, 6, 5, 16, ZSTD_lazy2 }, /* level 14 */
{ 22, 21, 22, 4, 5, 16, ZSTD_btlazy2 }, /* level 15 */
{ 22, 21, 22, 4, 5, 48, ZSTD_btopt }, /* level 16 */
{ 23, 22, 22, 4, 4, 48, ZSTD_btopt }, /* level 17 */
{ 23, 22, 22, 5, 3, 64, ZSTD_btopt }, /* level 18 */
{ 23, 23, 22, 7, 3,128, ZSTD_btopt }, /* level 19 */
{ 25, 25, 23, 7, 3,128, ZSTD_btultra }, /* level 20 */
{ 26, 26, 24, 7, 3,256, ZSTD_btultra }, /* level 21 */
{ 27, 27, 25, 9, 3,512, ZSTD_btultra }, /* level 22 */
},
{ /* for srcSize <= 256 KB */
/* W, C, H, S, L, T, strat */
{ 0, 0, 0, 0, 0, 0, ZSTD_fast }, /* level 0 - not used */
{ 18, 13, 14, 1, 6, 8, ZSTD_fast }, /* level 1 */
{ 18, 14, 13, 1, 5, 8, ZSTD_dfast }, /* level 2 */
{ 18, 16, 15, 1, 5, 8, ZSTD_dfast }, /* level 3 */
{ 18, 15, 17, 1, 5, 8, ZSTD_greedy }, /* level 4.*/
{ 18, 16, 17, 4, 5, 8, ZSTD_greedy }, /* level 5.*/
{ 18, 16, 17, 3, 5, 8, ZSTD_lazy }, /* level 6.*/
{ 18, 17, 17, 4, 4, 8, ZSTD_lazy }, /* level 7 */
{ 18, 17, 17, 4, 4, 8, ZSTD_lazy2 }, /* level 8 */
{ 18, 17, 17, 5, 4, 8, ZSTD_lazy2 }, /* level 9 */
{ 18, 17, 17, 6, 4, 8, ZSTD_lazy2 }, /* level 10 */
{ 18, 18, 17, 6, 4, 8, ZSTD_lazy2 }, /* level 11.*/
{ 18, 18, 17, 7, 4, 8, ZSTD_lazy2 }, /* level 12.*/
{ 18, 19, 17, 6, 4, 8, ZSTD_btlazy2 }, /* level 13 */
{ 18, 18, 18, 4, 4, 16, ZSTD_btopt }, /* level 14.*/
{ 18, 18, 18, 4, 3, 16, ZSTD_btopt }, /* level 15.*/
{ 18, 19, 18, 6, 3, 32, ZSTD_btopt }, /* level 16.*/
{ 18, 19, 18, 8, 3, 64, ZSTD_btopt }, /* level 17.*/
{ 18, 19, 18, 9, 3,128, ZSTD_btopt }, /* level 18.*/
{ 18, 19, 18, 10, 3,256, ZSTD_btopt }, /* level 19.*/
{ 18, 19, 18, 11, 3,512, ZSTD_btultra }, /* level 20.*/
{ 18, 19, 18, 12, 3,512, ZSTD_btultra }, /* level 21.*/
{ 18, 19, 18, 13, 3,512, ZSTD_btultra }, /* level 22.*/
},
{ /* for srcSize <= 128 KB */
/* W, C, H, S, L, T, strat */
{ 17, 12, 12, 1, 7, 8, ZSTD_fast }, /* level 0 - not used */
{ 17, 12, 13, 1, 6, 8, ZSTD_fast }, /* level 1 */
{ 17, 13, 16, 1, 5, 8, ZSTD_fast }, /* level 2 */
{ 17, 16, 16, 2, 5, 8, ZSTD_dfast }, /* level 3 */
{ 17, 13, 15, 3, 4, 8, ZSTD_greedy }, /* level 4 */
{ 17, 15, 17, 4, 4, 8, ZSTD_greedy }, /* level 5 */
{ 17, 16, 17, 3, 4, 8, ZSTD_lazy }, /* level 6 */
{ 17, 15, 17, 4, 4, 8, ZSTD_lazy2 }, /* level 7 */
{ 17, 17, 17, 4, 4, 8, ZSTD_lazy2 }, /* level 8 */
{ 17, 17, 17, 5, 4, 8, ZSTD_lazy2 }, /* level 9 */
{ 17, 17, 17, 6, 4, 8, ZSTD_lazy2 }, /* level 10 */
{ 17, 17, 17, 7, 4, 8, ZSTD_lazy2 }, /* level 11 */
{ 17, 17, 17, 8, 4, 8, ZSTD_lazy2 }, /* level 12 */
{ 17, 18, 17, 6, 4, 8, ZSTD_btlazy2 }, /* level 13.*/
{ 17, 17, 17, 7, 3, 8, ZSTD_btopt }, /* level 14.*/
{ 17, 17, 17, 7, 3, 16, ZSTD_btopt }, /* level 15.*/
{ 17, 18, 17, 7, 3, 32, ZSTD_btopt }, /* level 16.*/
{ 17, 18, 17, 7, 3, 64, ZSTD_btopt }, /* level 17.*/
{ 17, 18, 17, 7, 3,256, ZSTD_btopt }, /* level 18.*/
{ 17, 18, 17, 8, 3,256, ZSTD_btopt }, /* level 19.*/
{ 17, 18, 17, 9, 3,256, ZSTD_btultra }, /* level 20.*/
{ 17, 18, 17, 10, 3,256, ZSTD_btultra }, /* level 21.*/
{ 17, 18, 17, 11, 3,512, ZSTD_btultra }, /* level 22.*/
},
{ /* for srcSize <= 16 KB */
/* W, C, H, S, L, T, strat */
{ 14, 12, 12, 1, 7, 6, ZSTD_fast }, /* level 0 - not used */
{ 14, 14, 14, 1, 6, 6, ZSTD_fast }, /* level 1 */
{ 14, 14, 14, 1, 4, 6, ZSTD_fast }, /* level 2 */
{ 14, 14, 14, 1, 4, 6, ZSTD_dfast }, /* level 3.*/
{ 14, 14, 14, 4, 4, 6, ZSTD_greedy }, /* level 4.*/
{ 14, 14, 14, 3, 4, 6, ZSTD_lazy }, /* level 5.*/
{ 14, 14, 14, 4, 4, 6, ZSTD_lazy2 }, /* level 6 */
{ 14, 14, 14, 5, 4, 6, ZSTD_lazy2 }, /* level 7 */
{ 14, 14, 14, 6, 4, 6, ZSTD_lazy2 }, /* level 8.*/
{ 14, 15, 14, 6, 4, 6, ZSTD_btlazy2 }, /* level 9.*/
{ 14, 15, 14, 3, 3, 6, ZSTD_btopt }, /* level 10.*/
{ 14, 15, 14, 6, 3, 8, ZSTD_btopt }, /* level 11.*/
{ 14, 15, 14, 6, 3, 16, ZSTD_btopt }, /* level 12.*/
{ 14, 15, 14, 6, 3, 24, ZSTD_btopt }, /* level 13.*/
{ 14, 15, 15, 6, 3, 48, ZSTD_btopt }, /* level 14.*/
{ 14, 15, 15, 6, 3, 64, ZSTD_btopt }, /* level 15.*/
{ 14, 15, 15, 6, 3, 96, ZSTD_btopt }, /* level 16.*/
{ 14, 15, 15, 6, 3,128, ZSTD_btopt }, /* level 17.*/
{ 14, 15, 15, 6, 3,256, ZSTD_btopt }, /* level 18.*/
{ 14, 15, 15, 7, 3,256, ZSTD_btopt }, /* level 19.*/
{ 14, 15, 15, 8, 3,256, ZSTD_btultra }, /* level 20.*/
{ 14, 15, 15, 9, 3,256, ZSTD_btultra }, /* level 21.*/
{ 14, 15, 15, 10, 3,256, ZSTD_btultra }, /* level 22.*/
},
};
#if defined(ZSTD_DEBUG) && (ZSTD_DEBUG>=1)
/* This function just controls
* the monotonic memory budget increase of ZSTD_defaultCParameters[0].
* Run once, on first ZSTD_getCParams() usage, if ZSTD_DEBUG is enabled
*/
MEM_STATIC void ZSTD_check_compressionLevel_monotonicIncrease_memoryBudget(void)
{
int level;
for (level=1; level<ZSTD_maxCLevel(); level++) {
ZSTD_compressionParameters const c1 = ZSTD_defaultCParameters[0][level];
ZSTD_compressionParameters const c2 = ZSTD_defaultCParameters[0][level+1];
assert(c1.windowLog <= c2.windowLog);
# define ZSTD_TABLECOST(h,c) ((1<<(h)) + (1<<(c)))
assert(ZSTD_TABLECOST(c1.hashLog, c1.chainLog) <= ZSTD_TABLECOST(c2.hashLog, c2.chainLog));
}
}
#endif
/*! ZSTD_getCParams() :
* @return ZSTD_compressionParameters structure for a selected compression level, `srcSize` and `dictSize`.
* Size values are optional, provide 0 if not known or unused */
ZSTD_compressionParameters ZSTD_getCParams(int compressionLevel, unsigned long long srcSizeHint, size_t dictSize)
{
size_t const addedSize = srcSizeHint ? 0 : 500;
U64 const rSize = srcSizeHint+dictSize ? srcSizeHint+dictSize+addedSize : (U64)-1;
U32 const tableID = (rSize <= 256 KB) + (rSize <= 128 KB) + (rSize <= 16 KB); /* intentional underflow for srcSizeHint == 0 */
#if defined(ZSTD_DEBUG) && (ZSTD_DEBUG>=1)
static int g_monotonicTest = 1;
if (g_monotonicTest) {
ZSTD_check_compressionLevel_monotonicIncrease_memoryBudget();
g_monotonicTest=0;
}
#endif
DEBUGLOG(4, "ZSTD_getCParams: cLevel=%i, srcSize=%u, dictSize=%u => table %u",
compressionLevel, (U32)srcSizeHint, (U32)dictSize, tableID);
if (compressionLevel <= 0) compressionLevel = ZSTD_CLEVEL_DEFAULT; /* 0 == default; no negative compressionLevel yet */
if (compressionLevel > ZSTD_MAX_CLEVEL) compressionLevel = ZSTD_MAX_CLEVEL;
{ ZSTD_compressionParameters const cp = ZSTD_defaultCParameters[tableID][compressionLevel];
return ZSTD_adjustCParams_internal(cp, srcSizeHint, dictSize); }
}
/*! ZSTD_getParams() :
* same as ZSTD_getCParams(), but @return a `ZSTD_parameters` object (instead of `ZSTD_compressionParameters`).
* All fields of `ZSTD_frameParameters` are set to default (0) */
ZSTD_parameters ZSTD_getParams(int compressionLevel, unsigned long long srcSizeHint, size_t dictSize) {
ZSTD_parameters params;
ZSTD_compressionParameters const cParams = ZSTD_getCParams(compressionLevel, srcSizeHint, dictSize);
memset(&params, 0, sizeof(params));
params.cParams = cParams;
params.fParams.contentSizeFlag = 1;
return params;
}