322 lines
12 KiB
C++
322 lines
12 KiB
C++
// Copyright 2009-2021 Intel Corporation
|
|
// SPDX-License-Identifier: Apache-2.0
|
|
|
|
#include "bvh_intersector1.h"
|
|
#include "node_intersector1.h"
|
|
#include "bvh_traverser1.h"
|
|
|
|
#include "../geometry/intersector_iterators.h"
|
|
#include "../geometry/triangle_intersector.h"
|
|
#include "../geometry/trianglev_intersector.h"
|
|
#include "../geometry/trianglev_mb_intersector.h"
|
|
#include "../geometry/trianglei_intersector.h"
|
|
#include "../geometry/quadv_intersector.h"
|
|
#include "../geometry/quadi_intersector.h"
|
|
#include "../geometry/curveNv_intersector.h"
|
|
#include "../geometry/curveNi_intersector.h"
|
|
#include "../geometry/curveNi_mb_intersector.h"
|
|
#include "../geometry/linei_intersector.h"
|
|
#include "../geometry/subdivpatch1_intersector.h"
|
|
#include "../geometry/object_intersector.h"
|
|
#include "../geometry/instance_intersector.h"
|
|
#include "../geometry/subgrid_intersector.h"
|
|
#include "../geometry/subgrid_mb_intersector.h"
|
|
#include "../geometry/curve_intersector_virtual.h"
|
|
|
|
namespace embree
|
|
{
|
|
namespace isa
|
|
{
|
|
template<int N, int types, bool robust, typename PrimitiveIntersector1>
|
|
void BVHNIntersector1<N, types, robust, PrimitiveIntersector1>::intersect(const Accel::Intersectors* __restrict__ This,
|
|
RayHit& __restrict__ ray,
|
|
IntersectContext* __restrict__ context)
|
|
{
|
|
const BVH* __restrict__ bvh = (const BVH*)This->ptr;
|
|
|
|
/* we may traverse an empty BVH in case all geometry was invalid */
|
|
if (bvh->root == BVH::emptyNode)
|
|
return;
|
|
|
|
/* perform per ray precalculations required by the primitive intersector */
|
|
Precalculations pre(ray, bvh);
|
|
|
|
/* stack state */
|
|
StackItemT<NodeRef> stack[stackSize]; // stack of nodes
|
|
StackItemT<NodeRef>* stackPtr = stack+1; // current stack pointer
|
|
StackItemT<NodeRef>* stackEnd = stack+stackSize;
|
|
stack[0].ptr = bvh->root;
|
|
stack[0].dist = neg_inf;
|
|
|
|
if (bvh->root == BVH::emptyNode)
|
|
return;
|
|
|
|
/* filter out invalid rays */
|
|
#if defined(EMBREE_IGNORE_INVALID_RAYS)
|
|
if (!ray.valid()) return;
|
|
#endif
|
|
/* verify correct input */
|
|
assert(ray.valid());
|
|
assert(ray.tnear() >= 0.0f);
|
|
assert(!(types & BVH_MB) || (ray.time() >= 0.0f && ray.time() <= 1.0f));
|
|
|
|
/* load the ray into SIMD registers */
|
|
TravRay<N,robust> tray(ray.org, ray.dir, max(ray.tnear(), 0.0f), max(ray.tfar, 0.0f));
|
|
|
|
/* initialize the node traverser */
|
|
BVHNNodeTraverser1Hit<N, types> nodeTraverser;
|
|
|
|
/* pop loop */
|
|
while (true) pop:
|
|
{
|
|
/* pop next node */
|
|
if (unlikely(stackPtr == stack)) break;
|
|
stackPtr--;
|
|
NodeRef cur = NodeRef(stackPtr->ptr);
|
|
|
|
/* if popped node is too far, pop next one */
|
|
if (unlikely(*(float*)&stackPtr->dist > ray.tfar))
|
|
continue;
|
|
|
|
/* downtraversal loop */
|
|
while (true)
|
|
{
|
|
/* intersect node */
|
|
size_t mask; vfloat<N> tNear;
|
|
STAT3(normal.trav_nodes,1,1,1);
|
|
bool nodeIntersected = BVHNNodeIntersector1<N, types, robust>::intersect(cur, tray, ray.time(), tNear, mask);
|
|
if (unlikely(!nodeIntersected)) { STAT3(normal.trav_nodes,-1,-1,-1); break; }
|
|
|
|
/* if no child is hit, pop next node */
|
|
if (unlikely(mask == 0))
|
|
goto pop;
|
|
|
|
/* select next child and push other children */
|
|
nodeTraverser.traverseClosestHit(cur, mask, tNear, stackPtr, stackEnd);
|
|
}
|
|
|
|
/* this is a leaf node */
|
|
assert(cur != BVH::emptyNode);
|
|
STAT3(normal.trav_leaves,1,1,1);
|
|
size_t num; Primitive* prim = (Primitive*)cur.leaf(num);
|
|
size_t lazy_node = 0;
|
|
PrimitiveIntersector1::intersect(This, pre, ray, context, prim, num, tray, lazy_node);
|
|
tray.tfar = ray.tfar;
|
|
|
|
/* push lazy node onto stack */
|
|
if (unlikely(lazy_node)) {
|
|
stackPtr->ptr = lazy_node;
|
|
stackPtr->dist = neg_inf;
|
|
stackPtr++;
|
|
}
|
|
}
|
|
}
|
|
|
|
template<int N, int types, bool robust, typename PrimitiveIntersector1>
|
|
void BVHNIntersector1<N, types, robust, PrimitiveIntersector1>::occluded(const Accel::Intersectors* __restrict__ This,
|
|
Ray& __restrict__ ray,
|
|
IntersectContext* __restrict__ context)
|
|
{
|
|
const BVH* __restrict__ bvh = (const BVH*)This->ptr;
|
|
|
|
/* we may traverse an empty BVH in case all geometry was invalid */
|
|
if (bvh->root == BVH::emptyNode)
|
|
return;
|
|
|
|
/* early out for already occluded rays */
|
|
if (unlikely(ray.tfar < 0.0f))
|
|
return;
|
|
|
|
/* perform per ray precalculations required by the primitive intersector */
|
|
Precalculations pre(ray, bvh);
|
|
|
|
/* stack state */
|
|
NodeRef stack[stackSize]; // stack of nodes that still need to get traversed
|
|
NodeRef* stackPtr = stack+1; // current stack pointer
|
|
NodeRef* stackEnd = stack+stackSize;
|
|
stack[0] = bvh->root;
|
|
|
|
/* filter out invalid rays */
|
|
#if defined(EMBREE_IGNORE_INVALID_RAYS)
|
|
if (!ray.valid()) return;
|
|
#endif
|
|
|
|
/* verify correct input */
|
|
assert(ray.valid());
|
|
assert(ray.tnear() >= 0.0f);
|
|
assert(!(types & BVH_MB) || (ray.time() >= 0.0f && ray.time() <= 1.0f));
|
|
|
|
/* load the ray into SIMD registers */
|
|
TravRay<N,robust> tray(ray.org, ray.dir, max(ray.tnear(), 0.0f), max(ray.tfar, 0.0f));
|
|
|
|
/* initialize the node traverser */
|
|
BVHNNodeTraverser1Hit<N, types> nodeTraverser;
|
|
|
|
/* pop loop */
|
|
while (true) pop:
|
|
{
|
|
/* pop next node */
|
|
if (unlikely(stackPtr == stack)) break;
|
|
stackPtr--;
|
|
NodeRef cur = (NodeRef)*stackPtr;
|
|
|
|
/* downtraversal loop */
|
|
while (true)
|
|
{
|
|
/* intersect node */
|
|
size_t mask; vfloat<N> tNear;
|
|
STAT3(shadow.trav_nodes,1,1,1);
|
|
bool nodeIntersected = BVHNNodeIntersector1<N, types, robust>::intersect(cur, tray, ray.time(), tNear, mask);
|
|
if (unlikely(!nodeIntersected)) { STAT3(shadow.trav_nodes,-1,-1,-1); break; }
|
|
|
|
/* if no child is hit, pop next node */
|
|
if (unlikely(mask == 0))
|
|
goto pop;
|
|
|
|
/* select next child and push other children */
|
|
nodeTraverser.traverseAnyHit(cur, mask, tNear, stackPtr, stackEnd);
|
|
}
|
|
|
|
/* this is a leaf node */
|
|
assert(cur != BVH::emptyNode);
|
|
STAT3(shadow.trav_leaves,1,1,1);
|
|
size_t num; Primitive* prim = (Primitive*)cur.leaf(num);
|
|
size_t lazy_node = 0;
|
|
if (PrimitiveIntersector1::occluded(This, pre, ray, context, prim, num, tray, lazy_node)) {
|
|
ray.tfar = neg_inf;
|
|
break;
|
|
}
|
|
|
|
/* push lazy node onto stack */
|
|
if (unlikely(lazy_node)) {
|
|
*stackPtr = (NodeRef)lazy_node;
|
|
stackPtr++;
|
|
}
|
|
}
|
|
}
|
|
|
|
template<int N, int types, bool robust, typename PrimitiveIntersector1>
|
|
struct PointQueryDispatch
|
|
{
|
|
typedef typename PrimitiveIntersector1::Precalculations Precalculations;
|
|
typedef typename PrimitiveIntersector1::Primitive Primitive;
|
|
typedef BVHN<N> BVH;
|
|
typedef typename BVH::NodeRef NodeRef;
|
|
typedef typename BVH::AABBNode AABBNode;
|
|
typedef typename BVH::AABBNodeMB4D AABBNodeMB4D;
|
|
|
|
static const size_t stackSize = 1+(N-1)*BVH::maxDepth+3; // +3 due to 16-wide store
|
|
|
|
static __forceinline bool pointQuery(const Accel::Intersectors* This, PointQuery* query, PointQueryContext* context)
|
|
{
|
|
const BVH* __restrict__ bvh = (const BVH*)This->ptr;
|
|
|
|
/* we may traverse an empty BVH in case all geometry was invalid */
|
|
if (bvh->root == BVH::emptyNode)
|
|
return false;
|
|
|
|
/* stack state */
|
|
StackItemT<NodeRef> stack[stackSize]; // stack of nodes
|
|
StackItemT<NodeRef>* stackPtr = stack+1; // current stack pointer
|
|
StackItemT<NodeRef>* stackEnd = stack+stackSize;
|
|
stack[0].ptr = bvh->root;
|
|
stack[0].dist = neg_inf;
|
|
|
|
/* verify correct input */
|
|
assert(!(types & BVH_MB) || (query->time >= 0.0f && query->time <= 1.0f));
|
|
|
|
/* load the point query into SIMD registers */
|
|
TravPointQuery<N> tquery(query->p, context->query_radius);
|
|
|
|
/* initialize the node traverser */
|
|
BVHNNodeTraverser1Hit<N,types> nodeTraverser;
|
|
|
|
bool changed = false;
|
|
float cull_radius = context->query_type == POINT_QUERY_TYPE_SPHERE
|
|
? query->radius * query->radius
|
|
: dot(context->query_radius, context->query_radius);
|
|
|
|
/* pop loop */
|
|
while (true) pop:
|
|
{
|
|
/* pop next node */
|
|
if (unlikely(stackPtr == stack)) break;
|
|
stackPtr--;
|
|
NodeRef cur = NodeRef(stackPtr->ptr);
|
|
|
|
/* if popped node is too far, pop next one */
|
|
if (unlikely(*(float*)&stackPtr->dist > cull_radius))
|
|
continue;
|
|
|
|
/* downtraversal loop */
|
|
while (true)
|
|
{
|
|
/* intersect node */
|
|
size_t mask; vfloat<N> tNear;
|
|
STAT3(point_query.trav_nodes,1,1,1);
|
|
bool nodeIntersected;
|
|
if (likely(context->query_type == POINT_QUERY_TYPE_SPHERE)) {
|
|
nodeIntersected = BVHNNodePointQuerySphere1<N, types>::pointQuery(cur, tquery, query->time, tNear, mask);
|
|
} else {
|
|
nodeIntersected = BVHNNodePointQueryAABB1 <N, types>::pointQuery(cur, tquery, query->time, tNear, mask);
|
|
}
|
|
if (unlikely(!nodeIntersected)) { STAT3(point_query.trav_nodes,-1,-1,-1); break; }
|
|
|
|
/* if no child is hit, pop next node */
|
|
if (unlikely(mask == 0))
|
|
goto pop;
|
|
|
|
/* select next child and push other children */
|
|
nodeTraverser.traverseClosestHit(cur, mask, tNear, stackPtr, stackEnd);
|
|
}
|
|
|
|
/* this is a leaf node */
|
|
assert(cur != BVH::emptyNode);
|
|
STAT3(point_query.trav_leaves,1,1,1);
|
|
size_t num; Primitive* prim = (Primitive*)cur.leaf(num);
|
|
size_t lazy_node = 0;
|
|
if (PrimitiveIntersector1::pointQuery(This, query, context, prim, num, tquery, lazy_node))
|
|
{
|
|
changed = true;
|
|
tquery.rad = context->query_radius;
|
|
cull_radius = context->query_type == POINT_QUERY_TYPE_SPHERE
|
|
? query->radius * query->radius
|
|
: dot(context->query_radius, context->query_radius);
|
|
}
|
|
|
|
/* push lazy node onto stack */
|
|
if (unlikely(lazy_node)) {
|
|
stackPtr->ptr = lazy_node;
|
|
stackPtr->dist = neg_inf;
|
|
stackPtr++;
|
|
}
|
|
}
|
|
return changed;
|
|
}
|
|
};
|
|
|
|
/* disable point queries for not yet supported geometry types */
|
|
template<int N, int types, bool robust>
|
|
struct PointQueryDispatch<N, types, robust, VirtualCurveIntersector1> {
|
|
static __forceinline bool pointQuery(const Accel::Intersectors* This, PointQuery* query, PointQueryContext* context) { return false; }
|
|
};
|
|
|
|
template<int N, int types, bool robust>
|
|
struct PointQueryDispatch<N, types, robust, SubdivPatch1Intersector1> {
|
|
static __forceinline bool pointQuery(const Accel::Intersectors* This, PointQuery* query, PointQueryContext* context) { return false; }
|
|
};
|
|
|
|
template<int N, int types, bool robust>
|
|
struct PointQueryDispatch<N, types, robust, SubdivPatch1MBIntersector1> {
|
|
static __forceinline bool pointQuery(const Accel::Intersectors* This, PointQuery* query, PointQueryContext* context) { return false; }
|
|
};
|
|
|
|
template<int N, int types, bool robust, typename PrimitiveIntersector1>
|
|
bool BVHNIntersector1<N, types, robust, PrimitiveIntersector1>::pointQuery(
|
|
const Accel::Intersectors* This, PointQuery* query, PointQueryContext* context)
|
|
{
|
|
return PointQueryDispatch<N, types, robust, PrimitiveIntersector1>::pointQuery(This, query, context);
|
|
}
|
|
}
|
|
}
|