godot/modules/pvr/texture_loader_pvr.cpp
Juan Linietsky 118eed485e ObjectTypeDB was renamed to ClassDB. Types are meant to be more generic to Variant.
All usages of "type" to refer to classes were renamed to "class"
ClassDB has been exposed to GDScript.
OBJ_TYPE() macro is now GDCLASS()
2017-01-02 23:03:46 -03:00

712 lines
17 KiB
C++

/*************************************************************************/
/* texture_loader_pvr.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "texture_loader_pvr.h"
#include "os/file_access.h"
#include <string.h>
#include "PvrTcEncoder.h"
#include "RgbaBitmap.h"
static void _pvrtc_decompress(Image* p_img);
enum PVRFLags {
PVR_HAS_MIPMAPS=0x00000100,
PVR_TWIDDLED=0x00000200,
PVR_NORMAL_MAP=0x00000400,
PVR_BORDER=0x00000800,
PVR_CUBE_MAP=0x00001000,
PVR_FALSE_MIPMAPS=0x00002000,
PVR_VOLUME_TEXTURES=0x00004000,
PVR_HAS_ALPHA=0x00008000,
PVR_VFLIP=0x00010000
};
RES ResourceFormatPVR::load(const String &p_path,const String& p_original_path,Error *r_error) {
if (r_error)
*r_error=ERR_CANT_OPEN;
Error err;
FileAccess *f = FileAccess::open(p_path,FileAccess::READ,&err);
if (!f)
return RES();
FileAccessRef faref(f);
ERR_FAIL_COND_V(err,RES());
if (r_error)
*r_error=ERR_FILE_CORRUPT;
uint32_t hsize = f->get_32();
ERR_FAIL_COND_V(hsize!=52,RES());
uint32_t height = f->get_32();
uint32_t width = f->get_32();
uint32_t mipmaps = f->get_32();
uint32_t flags = f->get_32();
uint32_t surfsize = f->get_32();
uint32_t bpp = f->get_32();
uint32_t rmask = f->get_32();
uint32_t gmask = f->get_32();
uint32_t bmask = f->get_32();
uint32_t amask = f->get_32();
uint8_t pvrid[5]={0,0,0,0,0};
f->get_buffer(pvrid,4);
ERR_FAIL_COND_V(String((char*)pvrid)!="PVR!",RES());
uint32_t surfcount = f->get_32();
/*
print_line("height: "+itos(height));
print_line("width: "+itos(width));
print_line("mipmaps: "+itos(mipmaps));
print_line("flags: "+itos(flags));
print_line("surfsize: "+itos(surfsize));
print_line("bpp: "+itos(bpp));
print_line("rmask: "+itos(rmask));
print_line("gmask: "+itos(gmask));
print_line("bmask: "+itos(bmask));
print_line("amask: "+itos(amask));
print_line("surfcount: "+itos(surfcount));
*/
DVector<uint8_t> data;
data.resize(surfsize);
ERR_FAIL_COND_V(data.size()==0,RES());
DVector<uint8_t>::Write w = data.write();
f->get_buffer(&w[0],surfsize);
err = f->get_error();
ERR_FAIL_COND_V(err!=OK,RES());
Image::Format format=Image::FORMAT_MAX;
switch(flags&0xFF) {
case 0x18:
case 0xC: format=(flags&PVR_HAS_ALPHA)?Image::FORMAT_PVRTC2A:Image::FORMAT_PVRTC2; break;
case 0x19:
case 0xD: format=(flags&PVR_HAS_ALPHA)?Image::FORMAT_PVRTC4A:Image::FORMAT_PVRTC4; break;
case 0x16:
format=Image::FORMAT_L8; break;
case 0x17:
format=Image::FORMAT_LA8; break;
case 0x20:
case 0x80:
case 0x81:
format=Image::FORMAT_DXT1; break;
case 0x21:
case 0x22:
case 0x82:
case 0x83:
format=Image::FORMAT_DXT3; break;
case 0x23:
case 0x24:
case 0x84:
case 0x85:
format=Image::FORMAT_DXT5; break;
case 0x4:
case 0x15:
format=Image::FORMAT_RGB8; break;
case 0x5:
case 0x12:
format=Image::FORMAT_RGBA8; break;
case 0x36:
format=Image::FORMAT_ETC; break;
default:
ERR_EXPLAIN("Unsupported format in PVR texture: "+itos(flags&0xFF));
ERR_FAIL_V(RES());
}
w = DVector<uint8_t>::Write();
int tex_flags=Texture::FLAG_FILTER|Texture::FLAG_REPEAT;
if (mipmaps)
tex_flags|=Texture::FLAG_MIPMAPS;
print_line("flip: "+itos(flags&PVR_VFLIP));
Image image(width,height,mipmaps,format,data);
ERR_FAIL_COND_V(image.empty(),RES());
Ref<ImageTexture> texture = memnew( ImageTexture );
texture->create_from_image(image,tex_flags);
if (r_error)
*r_error=OK;
return texture;
}
void ResourceFormatPVR::get_recognized_extensions(List<String> *p_extensions) const {
p_extensions->push_back("pvr");
}
bool ResourceFormatPVR::handles_type(const String& p_type) const {
return ClassDB::is_parent_class(p_type,"Texture");
}
String ResourceFormatPVR::get_resource_type(const String &p_path) const {
if (p_path.extension().to_lower()=="pvr")
return "Texture";
return "";
}
static void _compress_pvrtc4(Image * p_img) {
Image img = *p_img;
bool make_mipmaps=false;
if (img.get_width()%8 || img.get_height()%8) {
make_mipmaps=img.has_mipmaps();
img.resize(img.get_width()+(8-(img.get_width()%8)),img.get_height()+(8-(img.get_height()%8)));
}
img.convert(Image::FORMAT_RGBA8);
if (!img.has_mipmaps() && make_mipmaps)
img.generate_mipmaps();
bool use_alpha=img.detect_alpha();
Image new_img;
new_img.create(img.get_width(),img.get_height(),true,use_alpha?Image::FORMAT_PVRTC4A:Image::FORMAT_PVRTC4);
DVector<uint8_t> data=new_img.get_data();
{
DVector<uint8_t>::Write wr=data.write();
DVector<uint8_t>::Read r=img.get_data().read();
for(int i=0;i<=new_img.get_mipmap_count();i++) {
int ofs,size,w,h;
img.get_mipmap_offset_size_and_dimensions(i,ofs,size,w,h);
Javelin::RgbaBitmap bm(w,h);
copymem(bm.GetData(),&r[ofs],size);
{
Javelin::ColorRgba<unsigned char> *dp = bm.GetData();
for(int j=0;j<size/4;j++) {
SWAP(dp[j].r,dp[j].b);
}
}
new_img.get_mipmap_offset_size_and_dimensions(i,ofs,size,w,h);
Javelin::PvrTcEncoder::EncodeRgba4Bpp(&wr[ofs],bm);
}
}
*p_img = Image(new_img.get_width(),new_img.get_height(),new_img.has_mipmaps(),new_img.get_format(),data);
}
ResourceFormatPVR::ResourceFormatPVR() {
Image::_image_decompress_pvrtc=_pvrtc_decompress;
Image::_image_compress_pvrtc4_func=_compress_pvrtc4;
Image::_image_compress_pvrtc2_func=_compress_pvrtc4;
}
/////////////////////////////////////////////////////////
//PVRTC decompressor, Based on PVRTC decompressor by IMGTEC.
/////////////////////////////////////////////////////////
#define PT_INDEX 2
#define BLK_Y_SIZE 4
#define BLK_X_MAX 8
#define BLK_X_2BPP 8
#define BLK_X_4BPP 4
#define WRAP_COORD(Val, Size) ((Val) & ((Size)-1))
/*
Define an expression to either wrap or clamp large or small vals to the
legal coordinate range
*/
#define LIMIT_COORD(Val, Size, p_tiled) \
((p_tiled)? WRAP_COORD((Val), (Size)): CLAMP((Val), 0, (Size)-1))
struct PVRTCBlock {
//blocks are 64 bits
uint32_t data[2];
};
_FORCE_INLINE_ bool is_po2( uint32_t p_input ) {
if( p_input==0 )
return 0;
uint32_t minus1=p_input- 1;
return ((p_input|minus1)==(p_input^minus1))?1:0;
}
static void unpack_5554(const PVRTCBlock *p_block, int p_ab_colors[2][4]) {
uint32_t raw_bits[2];
raw_bits[0] = p_block->data[1] & (0xFFFE);
raw_bits[1] = p_block->data[1] >> 16;
for(int i=0;i<2;i++) {
if(raw_bits[i] & (1<<15)) {
p_ab_colors[i][0]= (raw_bits[i] >> 10) & 0x1F;
p_ab_colors[i][1]= (raw_bits[i] >> 5) & 0x1F;
p_ab_colors[i][2]= raw_bits[i] & 0x1F;
if(i==0)
p_ab_colors[0][2]|= p_ab_colors[0][2] >> 4;
p_ab_colors[i][3] = 0xF;
} else {
p_ab_colors[i][0] = (raw_bits[i] >> (8-1)) & 0x1E;
p_ab_colors[i][1] = (raw_bits[i] >> (4-1)) & 0x1E;
p_ab_colors[i][0] |= p_ab_colors[i][0] >> 4;
p_ab_colors[i][1] |= p_ab_colors[i][1] >> 4;
p_ab_colors[i][2] = (raw_bits[i] & 0xF) << 1;
if(i==0)
p_ab_colors[0][2] |= p_ab_colors[0][2] >> 3;
else
p_ab_colors[0][2] |= p_ab_colors[0][2] >> 4;
p_ab_colors[i][3] = (raw_bits[i] >> 11) & 0xE;
}
}
}
static void unpack_modulations(const PVRTCBlock *p_block, const int p_2bit, int p_modulation[8][16], int p_modulation_modes[8][16], int p_x, int p_y) {
int block_mod_mode = p_block->data[1] & 1;
uint32_t modulation_bits = p_block->data[0];
if(p_2bit && block_mod_mode) {
for(int y = 0; y < BLK_Y_SIZE; y++) {
for(int x = 0; x < BLK_X_2BPP; x++) {
p_modulation_modes[y+p_y][x+p_x] = block_mod_mode;
if(((x^y)&1) == 0) {
p_modulation[y+p_y][x+p_x] = modulation_bits & 3;
modulation_bits >>= 2;
}
}
}
} else if(p_2bit) {
for(int y = 0; y < BLK_Y_SIZE; y++) {
for(int x = 0; x < BLK_X_2BPP; x++) {
p_modulation_modes[y+p_y][x+p_x] = block_mod_mode;
if(modulation_bits & 1)
p_modulation[y+p_y][x+p_x] = 0x3;
else
p_modulation[y+p_y][x+p_x] = 0x0;
modulation_bits >>= 1;
}
}
} else {
for(int y = 0; y < BLK_Y_SIZE; y++) {
for(int x = 0; x < BLK_X_4BPP; x++) {
p_modulation_modes[y+p_y][x+p_x] = block_mod_mode;
p_modulation[y+p_y][x+p_x] = modulation_bits & 3;
modulation_bits >>= 2;
}
}
}
ERR_FAIL_COND(modulation_bits!=0);
}
static void interpolate_colors(const int p_colorp[4], const int p_colorq[4], const int p_colorr[4], const int p_colors[4], bool p_2bit, const int x, const int y, int r_result[4]) {
int u, v, uscale;
int k;
int tmp1, tmp2;
int P[4], Q[4], R[4], S[4];
for(k = 0; k < 4; k++) {
P[k] = p_colorp[k];
Q[k] = p_colorq[k];
R[k] = p_colorr[k];
S[k] = p_colors[k];
}
v = (y & 0x3) | ((~y & 0x2) << 1);
if(p_2bit)
u = (x & 0x7) | ((~x & 0x4) << 1);
else
u = (x & 0x3) | ((~x & 0x2) << 1);
v = v - BLK_Y_SIZE/2;
if(p_2bit) {
u = u - BLK_X_2BPP/2;
uscale = 8;
} else {
u = u - BLK_X_4BPP/2;
uscale = 4;
}
for(k = 0; k < 4; k++) {
tmp1 = P[k] * uscale + u * (Q[k] - P[k]);
tmp2 = R[k] * uscale + u * (S[k] - R[k]);
tmp1 = tmp1 * 4 + v * (tmp2 - tmp1);
r_result[k] = tmp1;
}
if(p_2bit) {
for(k = 0; k < 3; k++) {
r_result[k] >>= 2;
}
r_result[3] >>= 1;
} else {
for(k = 0; k < 3; k++) {
r_result[k] >>= 1;
}
}
for(k = 0; k < 4; k++) {
ERR_FAIL_COND(r_result[k] >= 256);
}
for(k = 0; k < 3; k++) {
r_result[k] += r_result[k] >> 5;
}
r_result[3] += r_result[3] >> 4;
for(k = 0; k < 4; k++) {
ERR_FAIL_COND(r_result[k] >= 256);
}
}
static void get_modulation_value(int x, int y, const int p_2bit, const int p_modulation[8][16], const int p_modulation_modes[8][16], int *r_mod, int *p_dopt)
{
static const int rep_vals0[4] = {0, 3, 5, 8};
static const int rep_vals1[4] = {0, 4, 4, 8};
int mod_val;
y = (y & 0x3) | ((~y & 0x2) << 1);
if(p_2bit)
x = (x & 0x7) | ((~x & 0x4) << 1);
else
x = (x & 0x3) | ((~x & 0x2) << 1);
*p_dopt = 0;
if(p_modulation_modes[y][x]==0) {
mod_val = rep_vals0[p_modulation[y][x]];
} else if(p_2bit) {
if(((x^y)&1)==0)
mod_val = rep_vals0[p_modulation[y][x]];
else if(p_modulation_modes[y][x] == 1) {
mod_val = (rep_vals0[p_modulation[y-1][x]] +
rep_vals0[p_modulation[y+1][x]] +
rep_vals0[p_modulation[y][x-1]] +
rep_vals0[p_modulation[y][x+1]] + 2) / 4;
} else if(p_modulation_modes[y][x] == 2) {
mod_val = (rep_vals0[p_modulation[y][x-1]] +
rep_vals0[p_modulation[y][x+1]] + 1) / 2;
} else {
mod_val = (rep_vals0[p_modulation[y-1][x]] +
rep_vals0[p_modulation[y+1][x]] + 1) / 2;
}
} else {
mod_val = rep_vals1[p_modulation[y][x]];
*p_dopt = p_modulation[y][x] == PT_INDEX;
}
*r_mod =mod_val;
}
static int disable_twiddling = 0;
static uint32_t twiddle_uv(uint32_t p_height, uint32_t p_width, uint32_t p_y, uint32_t p_x) {
uint32_t twiddled;
uint32_t min_dimension;
uint32_t max_value;
uint32_t scr_bit_pos;
uint32_t dst_bit_pos;
int shift_count;
ERR_FAIL_COND_V(p_y >= p_height,0);
ERR_FAIL_COND_V(p_x >= p_width,0);
ERR_FAIL_COND_V(!is_po2(p_height),0);
ERR_FAIL_COND_V(!is_po2(p_width),0);
if(p_height < p_width) {
min_dimension = p_height;
max_value = p_x;
} else {
min_dimension = p_width;
max_value = p_y;
}
if(disable_twiddling)
return (p_y* p_width + p_x);
scr_bit_pos = 1;
dst_bit_pos = 1;
twiddled = 0;
shift_count = 0;
while(scr_bit_pos < min_dimension) {
if(p_y & scr_bit_pos) {
twiddled |= dst_bit_pos;
}
if(p_x & scr_bit_pos) {
twiddled |= (dst_bit_pos << 1);
}
scr_bit_pos <<= 1;
dst_bit_pos <<= 2;
shift_count += 1;
}
max_value >>= shift_count;
twiddled |= (max_value << (2*shift_count));
return twiddled;
}
static void decompress_pvrtc(PVRTCBlock *p_comp_img, const int p_2bit, const int p_width, const int p_height, const int p_tiled, unsigned char* p_dst) {
int x, y;
int i, j;
int block_x, blk_y;
int block_xp1, blk_yp1;
int x_block_size;
int block_width, block_height;
int p_x, p_y;
int p_modulation[8][16];
int p_modulation_modes[8][16];
int Mod, DoPT;
unsigned int u_pos;
// local neighbourhood of blocks
PVRTCBlock *p_blocks[2][2];
PVRTCBlock *prev[2][2] = {{NULL, NULL}, {NULL, NULL}};
struct
{
int Reps[2][4];
}colors5554[2][2];
int ASig[4], BSig[4];
int r_result[4];
if(p_2bit)
x_block_size = BLK_X_2BPP;
else
x_block_size = BLK_X_4BPP;
block_width = MAX(2, p_width / x_block_size);
block_height = MAX(2, p_height / BLK_Y_SIZE);
for(y = 0; y < p_height; y++)
{
for(x = 0; x < p_width; x++)
{
block_x = (x - x_block_size/2);
blk_y = (y - BLK_Y_SIZE/2);
block_x = LIMIT_COORD(block_x, p_width, p_tiled);
blk_y = LIMIT_COORD(blk_y, p_height, p_tiled);
block_x /= x_block_size;
blk_y /= BLK_Y_SIZE;
block_xp1 = LIMIT_COORD(block_x+1, block_width, p_tiled);
blk_yp1 = LIMIT_COORD(blk_y+1, block_height, p_tiled);
p_blocks[0][0] = p_comp_img +twiddle_uv(block_height, block_width, blk_y, block_x);
p_blocks[0][1] = p_comp_img +twiddle_uv(block_height, block_width, blk_y, block_xp1);
p_blocks[1][0] = p_comp_img +twiddle_uv(block_height, block_width, blk_yp1, block_x);
p_blocks[1][1] = p_comp_img +twiddle_uv(block_height, block_width, blk_yp1, block_xp1);
if(memcmp(prev, p_blocks, 4*sizeof(void*)) != 0) {
p_y = 0;
for(i = 0; i < 2; i++) {
p_x = 0;
for(j = 0; j < 2; j++) {
unpack_5554(p_blocks[i][j], colors5554[i][j].Reps);
unpack_modulations(p_blocks[i][j],
p_2bit,
p_modulation,
p_modulation_modes,
p_x, p_y);
p_x += x_block_size;
}
p_y += BLK_Y_SIZE;
}
memcpy(prev, p_blocks, 4*sizeof(void*));
}
interpolate_colors(colors5554[0][0].Reps[0],
colors5554[0][1].Reps[0],
colors5554[1][0].Reps[0],
colors5554[1][1].Reps[0],
p_2bit, x, y,
ASig);
interpolate_colors(colors5554[0][0].Reps[1],
colors5554[0][1].Reps[1],
colors5554[1][0].Reps[1],
colors5554[1][1].Reps[1],
p_2bit, x, y,
BSig);
get_modulation_value(x,y, p_2bit, (const int (*)[16])p_modulation, (const int (*)[16])p_modulation_modes,
&Mod, &DoPT);
for(i = 0; i < 4; i++) {
r_result[i] = ASig[i] * 8 + Mod * (BSig[i] - ASig[i]);
r_result[i] >>= 3;
}
if(DoPT)
r_result[3] = 0;
u_pos = (x+y*p_width)<<2;
p_dst[u_pos+0] = (uint8_t)r_result[0];
p_dst[u_pos+1] = (uint8_t)r_result[1];
p_dst[u_pos+2] = (uint8_t)r_result[2];
p_dst[u_pos+3] = (uint8_t)r_result[3];
}
}
}
static void _pvrtc_decompress(Image* p_img) {
// static void decompress_pvrtc(const void *p_comp_img, const int p_2bit, const int p_width, const int p_height, unsigned char* p_dst) {
// decompress_pvrtc((PVRTCBlock*)p_comp_img,p_2bit,p_width,p_height,1,p_dst);
// }
ERR_FAIL_COND( p_img->get_format()!=Image::FORMAT_PVRTC2 && p_img->get_format()!=Image::FORMAT_PVRTC2A && p_img->get_format()!=Image::FORMAT_PVRTC4 && p_img->get_format()!=Image::FORMAT_PVRTC4A);
bool _2bit = (p_img->get_format()==Image::FORMAT_PVRTC2 || p_img->get_format()==Image::FORMAT_PVRTC2A );
DVector<uint8_t> data = p_img->get_data();
DVector<uint8_t>::Read r = data.read();
DVector<uint8_t> newdata;
newdata.resize( p_img->get_width() * p_img->get_height() * 4);
DVector<uint8_t>::Write w=newdata.write();
decompress_pvrtc((PVRTCBlock*)r.ptr(),_2bit,p_img->get_width(),p_img->get_height(),0,(unsigned char*)w.ptr());
//for(int i=0;i<newdata.size();i++) {
// print_line(itos(w[i]));
//}
w=DVector<uint8_t>::Write();
r=DVector<uint8_t>::Read();
bool make_mipmaps=p_img->has_mipmaps();
Image newimg(p_img->get_width(),p_img->get_height(),false,Image::FORMAT_RGBA8,newdata);
if (make_mipmaps)
newimg.generate_mipmaps();
*p_img=newimg;
}