godot/servers/rendering/rasterizer_rd/shaders/screen_space_reflection.glsl
Rémi Verschelde c74d65cec8 GLSL: Change shader type specifier from [vertex] to #[vertex]
The added `#` prevents clang-format from misinterpreting the meaning
of this statement and thus messing up the formatting of the next
lines up until the first `layout` statement.

Similarly, a semicolon is now enforced on `versions` defines to
prevent clang-format from messing up formatting and putting them
all on a single line. Note: In its current state the code will
ignore chained statements on a single line separated by a semicolon.

Also removed some extraneous lines missed in previous style changes
or added by mistake with said changes (e.g. after uniform definitions
that clang-format messes up somewhat too, but we live with it).
2020-05-18 10:58:14 +02:00

253 lines
7.4 KiB
GLSL

#[compute]
#version 450
VERSION_DEFINES
layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
layout(rgba16f, set = 0, binding = 0) uniform restrict readonly image2D source_diffuse;
layout(r32f, set = 0, binding = 1) uniform restrict readonly image2D source_depth;
layout(rgba16f, set = 1, binding = 0) uniform restrict writeonly image2D ssr_image;
#ifdef MODE_ROUGH
layout(r8, set = 1, binding = 1) uniform restrict writeonly image2D blur_radius_image;
#endif
layout(rgba8, set = 2, binding = 0) uniform restrict readonly image2D source_normal;
layout(set = 3, binding = 0) uniform sampler2D source_metallic;
#ifdef MODE_ROUGH
layout(set = 3, binding = 1) uniform sampler2D source_roughness;
#endif
layout(push_constant, binding = 2, std430) uniform Params {
vec4 proj_info;
ivec2 screen_size;
float camera_z_near;
float camera_z_far;
int num_steps;
float depth_tolerance;
float distance_fade;
float curve_fade_in;
bool orthogonal;
float filter_mipmap_levels;
bool use_half_res;
uint metallic_mask;
mat4 projection;
}
params;
vec2 view_to_screen(vec3 view_pos, out float w) {
vec4 projected = params.projection * vec4(view_pos, 1.0);
projected.xyz /= projected.w;
projected.xy = projected.xy * 0.5 + 0.5;
w = projected.w;
return projected.xy;
}
#define M_PI 3.14159265359
vec3 reconstructCSPosition(vec2 S, float z) {
if (params.orthogonal) {
return vec3((S.xy * params.proj_info.xy + params.proj_info.zw), z);
} else {
return vec3((S.xy * params.proj_info.xy + params.proj_info.zw) * z, z);
}
}
void main() {
// Pixel being shaded
ivec2 ssC = ivec2(gl_GlobalInvocationID.xy);
if (any(greaterThanEqual(ssC, params.screen_size))) { //too large, do nothing
return;
}
vec2 pixel_size = 1.0 / vec2(params.screen_size);
vec2 uv = vec2(ssC) * pixel_size;
uv += pixel_size * 0.5;
float base_depth = imageLoad(source_depth, ssC).r;
// World space point being shaded
vec3 vertex = reconstructCSPosition(uv * vec2(params.screen_size), base_depth);
vec3 normal = imageLoad(source_normal, ssC).xyz * 2.0 - 1.0;
normal = normalize(normal);
normal.y = -normal.y; //because this code reads flipped
vec3 view_dir = normalize(vertex);
vec3 ray_dir = normalize(reflect(view_dir, normal));
if (dot(ray_dir, normal) < 0.001) {
imageStore(ssr_image, ssC, vec4(0.0));
return;
}
//ray_dir = normalize(view_dir - normal * dot(normal,view_dir) * 2.0);
//ray_dir = normalize(vec3(1.0, 1.0, -1.0));
////////////////
// make ray length and clip it against the near plane (don't want to trace beyond visible)
float ray_len = (vertex.z + ray_dir.z * params.camera_z_far) > -params.camera_z_near ? (-params.camera_z_near - vertex.z) / ray_dir.z : params.camera_z_far;
vec3 ray_end = vertex + ray_dir * ray_len;
float w_begin;
vec2 vp_line_begin = view_to_screen(vertex, w_begin);
float w_end;
vec2 vp_line_end = view_to_screen(ray_end, w_end);
vec2 vp_line_dir = vp_line_end - vp_line_begin;
// we need to interpolate w along the ray, to generate perspective correct reflections
w_begin = 1.0 / w_begin;
w_end = 1.0 / w_end;
float z_begin = vertex.z * w_begin;
float z_end = ray_end.z * w_end;
vec2 line_begin = vp_line_begin / pixel_size;
vec2 line_dir = vp_line_dir / pixel_size;
float z_dir = z_end - z_begin;
float w_dir = w_end - w_begin;
// clip the line to the viewport edges
float scale_max_x = min(1.0, 0.99 * (1.0 - vp_line_begin.x) / max(1e-5, vp_line_dir.x));
float scale_max_y = min(1.0, 0.99 * (1.0 - vp_line_begin.y) / max(1e-5, vp_line_dir.y));
float scale_min_x = min(1.0, 0.99 * vp_line_begin.x / max(1e-5, -vp_line_dir.x));
float scale_min_y = min(1.0, 0.99 * vp_line_begin.y / max(1e-5, -vp_line_dir.y));
float line_clip = min(scale_max_x, scale_max_y) * min(scale_min_x, scale_min_y);
line_dir *= line_clip;
z_dir *= line_clip;
w_dir *= line_clip;
// clip z and w advance to line advance
vec2 line_advance = normalize(line_dir); // down to pixel
float step_size = length(line_advance) / length(line_dir);
float z_advance = z_dir * step_size; // adapt z advance to line advance
float w_advance = w_dir * step_size; // adapt w advance to line advance
// make line advance faster if direction is closer to pixel edges (this avoids sampling the same pixel twice)
float advance_angle_adj = 1.0 / max(abs(line_advance.x), abs(line_advance.y));
line_advance *= advance_angle_adj; // adapt z advance to line advance
z_advance *= advance_angle_adj;
w_advance *= advance_angle_adj;
vec2 pos = line_begin;
float z = z_begin;
float w = w_begin;
float z_from = z / w;
float z_to = z_from;
float depth;
vec2 prev_pos = pos;
bool found = false;
float steps_taken = 0.0;
for (int i = 0; i < params.num_steps; i++) {
pos += line_advance;
z += z_advance;
w += w_advance;
// convert to linear depth
depth = imageLoad(source_depth, ivec2(pos - 0.5)).r;
if (-depth >= params.camera_z_far) { //went beyond camera
break;
}
z_from = z_to;
z_to = z / w;
if (depth > z_to) {
// if depth was surpassed
if (depth <= max(z_to, z_from) + params.depth_tolerance) {
// check the depth tolerance
//check that normal is valid
found = true;
}
break;
}
steps_taken += 1.0;
prev_pos = pos;
}
if (found) {
float margin_blend = 1.0;
vec2 margin = vec2((params.screen_size.x + params.screen_size.y) * 0.5 * 0.05); // make a uniform margin
if (any(bvec4(lessThan(pos, -margin), greaterThan(pos, params.screen_size + margin)))) {
// clip outside screen + margin
imageStore(ssr_image, ssC, vec4(0.0));
return;
}
{
//blend fading out towards external margin
vec2 margin_grad = mix(pos - params.screen_size, -pos, lessThan(pos, vec2(0.0)));
margin_blend = 1.0 - smoothstep(0.0, margin.x, max(margin_grad.x, margin_grad.y));
//margin_blend = 1.0;
}
vec2 final_pos;
float grad;
grad = steps_taken / float(params.num_steps);
float initial_fade = params.curve_fade_in == 0.0 ? 1.0 : pow(clamp(grad, 0.0, 1.0), params.curve_fade_in);
float fade = pow(clamp(1.0 - grad, 0.0, 1.0), params.distance_fade) * initial_fade;
final_pos = pos;
vec4 final_color;
#ifdef MODE_ROUGH
// if roughness is enabled, do screen space cone tracing
float blur_radius = 0.0;
float roughness = texelFetch(source_roughness, ssC << 1, 0).r;
if (roughness > 0.001) {
float cone_angle = min(roughness, 0.999) * M_PI * 0.5;
float cone_len = length(final_pos - line_begin);
float op_len = 2.0 * tan(cone_angle) * cone_len; // opposite side of iso triangle
{
// fit to sphere inside cone (sphere ends at end of cone), something like this:
// ___
// \O/
// V
//
// as it avoids bleeding from beyond the reflection as much as possible. As a plus
// it also makes the rough reflection more elongated.
float a = op_len;
float h = cone_len;
float a2 = a * a;
float fh2 = 4.0f * h * h;
blur_radius = (a * (sqrt(a2 + fh2) - a)) / (4.0f * h);
}
}
final_color = imageLoad(source_diffuse, ivec2((final_pos - 0.5) * pixel_size));
imageStore(blur_radius_image, ssC, vec4(blur_radius / 255.0)); //stored in r8
#endif
final_color = vec4(imageLoad(source_diffuse, ivec2(final_pos - 0.5)).rgb, fade * margin_blend);
//change blend by metallic
vec4 metallic_mask = unpackUnorm4x8(params.metallic_mask);
final_color.a *= dot(metallic_mask, texelFetch(source_metallic, ssC << 1, 0));
imageStore(ssr_image, ssC, final_color);
} else {
#ifdef MODE_ROUGH
imageStore(blur_radius_image, ssC, vec4(0.0));
#endif
imageStore(ssr_image, ssC, vec4(0.0));
}
}