bf05309af7
As requested by reduz, an import of thekla_atlas into thirdparty/
920 lines
22 KiB
C++
920 lines
22 KiB
C++
// This code is in the public domain -- castanyo@yahoo.es
|
|
|
|
#pragma once
|
|
#ifndef NV_MATH_VECTOR_INL
|
|
#define NV_MATH_VECTOR_INL
|
|
|
|
#include "Vector.h"
|
|
#include "nvcore/Utils.h" // min, max
|
|
#include "nvcore/Hash.h" // hash
|
|
|
|
namespace nv
|
|
{
|
|
|
|
// Helpers to convert vector types. Assume T has x,y members and 2 argument constructor.
|
|
//template <typename T> T to(Vector2::Arg v) { return T(v.x, v.y); }
|
|
|
|
// Helpers to convert vector types. Assume T has x,y,z members and 3 argument constructor.
|
|
//template <typename T> T to(Vector3::Arg v) { return T(v.x, v.y, v.z); }
|
|
|
|
// Helpers to convert vector types. Assume T has x,y,z members and 3 argument constructor.
|
|
//template <typename T> T to(Vector4::Arg v) { return T(v.x, v.y, v.z, v.w); }
|
|
|
|
|
|
// Vector2
|
|
inline Vector2::Vector2() {}
|
|
inline Vector2::Vector2(float f) : x(f), y(f) {}
|
|
inline Vector2::Vector2(float x, float y) : x(x), y(y) {}
|
|
inline Vector2::Vector2(Vector2::Arg v) : x(v.x), y(v.y) {}
|
|
|
|
inline const Vector2 & Vector2::operator=(Vector2::Arg v)
|
|
{
|
|
x = v.x;
|
|
y = v.y;
|
|
return *this;
|
|
}
|
|
|
|
inline const float * Vector2::ptr() const
|
|
{
|
|
return &x;
|
|
}
|
|
|
|
inline void Vector2::set(float x, float y)
|
|
{
|
|
this->x = x;
|
|
this->y = y;
|
|
}
|
|
|
|
inline Vector2 Vector2::operator-() const
|
|
{
|
|
return Vector2(-x, -y);
|
|
}
|
|
|
|
inline void Vector2::operator+=(Vector2::Arg v)
|
|
{
|
|
x += v.x;
|
|
y += v.y;
|
|
}
|
|
|
|
inline void Vector2::operator-=(Vector2::Arg v)
|
|
{
|
|
x -= v.x;
|
|
y -= v.y;
|
|
}
|
|
|
|
inline void Vector2::operator*=(float s)
|
|
{
|
|
x *= s;
|
|
y *= s;
|
|
}
|
|
|
|
inline void Vector2::operator*=(Vector2::Arg v)
|
|
{
|
|
x *= v.x;
|
|
y *= v.y;
|
|
}
|
|
|
|
inline bool operator==(Vector2::Arg a, Vector2::Arg b)
|
|
{
|
|
return a.x == b.x && a.y == b.y;
|
|
}
|
|
inline bool operator!=(Vector2::Arg a, Vector2::Arg b)
|
|
{
|
|
return a.x != b.x || a.y != b.y;
|
|
}
|
|
|
|
|
|
// Vector3
|
|
inline Vector3::Vector3() {}
|
|
inline Vector3::Vector3(float f) : x(f), y(f), z(f) {}
|
|
inline Vector3::Vector3(float x, float y, float z) : x(x), y(y), z(z) {}
|
|
inline Vector3::Vector3(Vector2::Arg v, float z) : x(v.x), y(v.y), z(z) {}
|
|
inline Vector3::Vector3(Vector3::Arg v) : x(v.x), y(v.y), z(v.z) {}
|
|
|
|
inline const Vector3 & Vector3::operator=(Vector3::Arg v)
|
|
{
|
|
x = v.x;
|
|
y = v.y;
|
|
z = v.z;
|
|
return *this;
|
|
}
|
|
|
|
|
|
inline Vector2 Vector3::xy() const
|
|
{
|
|
return Vector2(x, y);
|
|
}
|
|
|
|
inline const float * Vector3::ptr() const
|
|
{
|
|
return &x;
|
|
}
|
|
|
|
inline void Vector3::set(float x, float y, float z)
|
|
{
|
|
this->x = x;
|
|
this->y = y;
|
|
this->z = z;
|
|
}
|
|
|
|
inline Vector3 Vector3::operator-() const
|
|
{
|
|
return Vector3(-x, -y, -z);
|
|
}
|
|
|
|
inline void Vector3::operator+=(Vector3::Arg v)
|
|
{
|
|
x += v.x;
|
|
y += v.y;
|
|
z += v.z;
|
|
}
|
|
|
|
inline void Vector3::operator-=(Vector3::Arg v)
|
|
{
|
|
x -= v.x;
|
|
y -= v.y;
|
|
z -= v.z;
|
|
}
|
|
|
|
inline void Vector3::operator*=(float s)
|
|
{
|
|
x *= s;
|
|
y *= s;
|
|
z *= s;
|
|
}
|
|
|
|
inline void Vector3::operator/=(float s)
|
|
{
|
|
float is = 1.0f / s;
|
|
x *= is;
|
|
y *= is;
|
|
z *= is;
|
|
}
|
|
|
|
inline void Vector3::operator*=(Vector3::Arg v)
|
|
{
|
|
x *= v.x;
|
|
y *= v.y;
|
|
z *= v.z;
|
|
}
|
|
|
|
inline void Vector3::operator/=(Vector3::Arg v)
|
|
{
|
|
x /= v.x;
|
|
y /= v.y;
|
|
z /= v.z;
|
|
}
|
|
|
|
inline bool operator==(Vector3::Arg a, Vector3::Arg b)
|
|
{
|
|
return a.x == b.x && a.y == b.y && a.z == b.z;
|
|
}
|
|
inline bool operator!=(Vector3::Arg a, Vector3::Arg b)
|
|
{
|
|
return a.x != b.x || a.y != b.y || a.z != b.z;
|
|
}
|
|
|
|
|
|
// Vector4
|
|
inline Vector4::Vector4() {}
|
|
inline Vector4::Vector4(float f) : x(f), y(f), z(f), w(f) {}
|
|
inline Vector4::Vector4(float x, float y, float z, float w) : x(x), y(y), z(z), w(w) {}
|
|
inline Vector4::Vector4(Vector2::Arg v, float z, float w) : x(v.x), y(v.y), z(z), w(w) {}
|
|
inline Vector4::Vector4(Vector2::Arg v, Vector2::Arg u) : x(v.x), y(v.y), z(u.x), w(u.y) {}
|
|
inline Vector4::Vector4(Vector3::Arg v, float w) : x(v.x), y(v.y), z(v.z), w(w) {}
|
|
inline Vector4::Vector4(Vector4::Arg v) : x(v.x), y(v.y), z(v.z), w(v.w) {}
|
|
|
|
inline const Vector4 & Vector4::operator=(const Vector4 & v)
|
|
{
|
|
x = v.x;
|
|
y = v.y;
|
|
z = v.z;
|
|
w = v.w;
|
|
return *this;
|
|
}
|
|
|
|
inline Vector2 Vector4::xy() const
|
|
{
|
|
return Vector2(x, y);
|
|
}
|
|
|
|
inline Vector2 Vector4::zw() const
|
|
{
|
|
return Vector2(z, w);
|
|
}
|
|
|
|
inline Vector3 Vector4::xyz() const
|
|
{
|
|
return Vector3(x, y, z);
|
|
}
|
|
|
|
inline const float * Vector4::ptr() const
|
|
{
|
|
return &x;
|
|
}
|
|
|
|
inline void Vector4::set(float x, float y, float z, float w)
|
|
{
|
|
this->x = x;
|
|
this->y = y;
|
|
this->z = z;
|
|
this->w = w;
|
|
}
|
|
|
|
inline Vector4 Vector4::operator-() const
|
|
{
|
|
return Vector4(-x, -y, -z, -w);
|
|
}
|
|
|
|
inline void Vector4::operator+=(Vector4::Arg v)
|
|
{
|
|
x += v.x;
|
|
y += v.y;
|
|
z += v.z;
|
|
w += v.w;
|
|
}
|
|
|
|
inline void Vector4::operator-=(Vector4::Arg v)
|
|
{
|
|
x -= v.x;
|
|
y -= v.y;
|
|
z -= v.z;
|
|
w -= v.w;
|
|
}
|
|
|
|
inline void Vector4::operator*=(float s)
|
|
{
|
|
x *= s;
|
|
y *= s;
|
|
z *= s;
|
|
w *= s;
|
|
}
|
|
|
|
inline void Vector4::operator/=(float s)
|
|
{
|
|
x /= s;
|
|
y /= s;
|
|
z /= s;
|
|
w /= s;
|
|
}
|
|
|
|
inline void Vector4::operator*=(Vector4::Arg v)
|
|
{
|
|
x *= v.x;
|
|
y *= v.y;
|
|
z *= v.z;
|
|
w *= v.w;
|
|
}
|
|
|
|
inline void Vector4::operator/=(Vector4::Arg v)
|
|
{
|
|
x /= v.x;
|
|
y /= v.y;
|
|
z /= v.z;
|
|
w /= v.w;
|
|
}
|
|
|
|
inline bool operator==(Vector4::Arg a, Vector4::Arg b)
|
|
{
|
|
return a.x == b.x && a.y == b.y && a.z == b.z && a.w == b.w;
|
|
}
|
|
inline bool operator!=(Vector4::Arg a, Vector4::Arg b)
|
|
{
|
|
return a.x != b.x || a.y != b.y || a.z != b.z || a.w != b.w;
|
|
}
|
|
|
|
|
|
|
|
// Functions
|
|
|
|
|
|
// Vector2
|
|
|
|
inline Vector2 add(Vector2::Arg a, Vector2::Arg b)
|
|
{
|
|
return Vector2(a.x + b.x, a.y + b.y);
|
|
}
|
|
inline Vector2 operator+(Vector2::Arg a, Vector2::Arg b)
|
|
{
|
|
return add(a, b);
|
|
}
|
|
|
|
inline Vector2 sub(Vector2::Arg a, Vector2::Arg b)
|
|
{
|
|
return Vector2(a.x - b.x, a.y - b.y);
|
|
}
|
|
inline Vector2 operator-(Vector2::Arg a, Vector2::Arg b)
|
|
{
|
|
return sub(a, b);
|
|
}
|
|
|
|
inline Vector2 scale(Vector2::Arg v, float s)
|
|
{
|
|
return Vector2(v.x * s, v.y * s);
|
|
}
|
|
|
|
inline Vector2 scale(Vector2::Arg v, Vector2::Arg s)
|
|
{
|
|
return Vector2(v.x * s.x, v.y * s.y);
|
|
}
|
|
|
|
inline Vector2 operator*(Vector2::Arg v, float s)
|
|
{
|
|
return scale(v, s);
|
|
}
|
|
|
|
inline Vector2 operator*(Vector2::Arg v1, Vector2::Arg v2)
|
|
{
|
|
return Vector2(v1.x*v2.x, v1.y*v2.y);
|
|
}
|
|
|
|
inline Vector2 operator*(float s, Vector2::Arg v)
|
|
{
|
|
return scale(v, s);
|
|
}
|
|
|
|
inline Vector2 operator/(Vector2::Arg v, float s)
|
|
{
|
|
return scale(v, 1.0f/s);
|
|
}
|
|
|
|
inline Vector2 lerp(Vector2::Arg v1, Vector2::Arg v2, float t)
|
|
{
|
|
const float s = 1.0f - t;
|
|
return Vector2(v1.x * s + t * v2.x, v1.y * s + t * v2.y);
|
|
}
|
|
|
|
inline float dot(Vector2::Arg a, Vector2::Arg b)
|
|
{
|
|
return a.x * b.x + a.y * b.y;
|
|
}
|
|
|
|
inline float lengthSquared(Vector2::Arg v)
|
|
{
|
|
return v.x * v.x + v.y * v.y;
|
|
}
|
|
|
|
inline float length(Vector2::Arg v)
|
|
{
|
|
return sqrtf(lengthSquared(v));
|
|
}
|
|
|
|
inline float distance(Vector2::Arg a, Vector2::Arg b)
|
|
{
|
|
return length(a - b);
|
|
}
|
|
|
|
inline float inverseLength(Vector2::Arg v)
|
|
{
|
|
return 1.0f / sqrtf(lengthSquared(v));
|
|
}
|
|
|
|
inline bool isNormalized(Vector2::Arg v, float epsilon = NV_NORMAL_EPSILON)
|
|
{
|
|
return equal(length(v), 1, epsilon);
|
|
}
|
|
|
|
inline Vector2 normalize(Vector2::Arg v, float epsilon = NV_EPSILON)
|
|
{
|
|
float l = length(v);
|
|
nvDebugCheck(!isZero(l, epsilon));
|
|
Vector2 n = scale(v, 1.0f / l);
|
|
nvDebugCheck(isNormalized(n));
|
|
return n;
|
|
}
|
|
|
|
inline Vector2 normalizeSafe(Vector2::Arg v, Vector2::Arg fallback, float epsilon = NV_EPSILON)
|
|
{
|
|
float l = length(v);
|
|
if (isZero(l, epsilon)) {
|
|
return fallback;
|
|
}
|
|
return scale(v, 1.0f / l);
|
|
}
|
|
|
|
// Safe, branchless normalization from Andy Firth. All error checking ommitted.
|
|
// http://altdevblogaday.com/2011/08/21/practical-flt-point-tricks/
|
|
inline Vector2 normalizeFast(Vector2::Arg v)
|
|
{
|
|
const float very_small_float = 1.0e-037f;
|
|
float l = very_small_float + length(v);
|
|
return scale(v, 1.0f / l);
|
|
}
|
|
|
|
inline bool equal(Vector2::Arg v1, Vector2::Arg v2, float epsilon = NV_EPSILON)
|
|
{
|
|
return equal(v1.x, v2.x, epsilon) && equal(v1.y, v2.y, epsilon);
|
|
}
|
|
|
|
inline Vector2 min(Vector2::Arg a, Vector2::Arg b)
|
|
{
|
|
return Vector2(min(a.x, b.x), min(a.y, b.y));
|
|
}
|
|
|
|
inline Vector2 max(Vector2::Arg a, Vector2::Arg b)
|
|
{
|
|
return Vector2(max(a.x, b.x), max(a.y, b.y));
|
|
}
|
|
|
|
inline Vector2 clamp(Vector2::Arg v, float min, float max)
|
|
{
|
|
return Vector2(clamp(v.x, min, max), clamp(v.y, min, max));
|
|
}
|
|
|
|
inline Vector2 saturate(Vector2::Arg v)
|
|
{
|
|
return Vector2(saturate(v.x), saturate(v.y));
|
|
}
|
|
|
|
inline bool isFinite(Vector2::Arg v)
|
|
{
|
|
return isFinite(v.x) && isFinite(v.y);
|
|
}
|
|
|
|
inline Vector2 validate(Vector2::Arg v, Vector2::Arg fallback = Vector2(0.0f))
|
|
{
|
|
if (!isFinite(v)) return fallback;
|
|
Vector2 vf = v;
|
|
nv::floatCleanup(vf.component, 2);
|
|
return vf;
|
|
}
|
|
|
|
// Note, this is the area scaled by 2!
|
|
inline float triangleArea(Vector2::Arg v0, Vector2::Arg v1)
|
|
{
|
|
return (v0.x * v1.y - v0.y * v1.x); // * 0.5f;
|
|
}
|
|
inline float triangleArea(Vector2::Arg a, Vector2::Arg b, Vector2::Arg c)
|
|
{
|
|
// IC: While it may be appealing to use the following expression:
|
|
//return (c.x * a.y + a.x * b.y + b.x * c.y - b.x * a.y - c.x * b.y - a.x * c.y); // * 0.5f;
|
|
|
|
// That's actually a terrible idea. Small triangles far from the origin can end up producing fairly large floating point
|
|
// numbers and the results becomes very unstable and dependent on the order of the factors.
|
|
|
|
// Instead, it's preferable to subtract the vertices first, and multiply the resulting small values together. The result
|
|
// in this case is always much more accurate (as long as the triangle is small) and less dependent of the location of
|
|
// the triangle.
|
|
|
|
//return ((a.x - c.x) * (b.y - c.y) - (a.y - c.y) * (b.x - c.x)); // * 0.5f;
|
|
return triangleArea(a-c, b-c);
|
|
}
|
|
|
|
|
|
template <>
|
|
inline uint hash(const Vector2 & v, uint h)
|
|
{
|
|
return sdbmFloatHash(v.component, 2, h);
|
|
}
|
|
|
|
|
|
|
|
// Vector3
|
|
|
|
inline Vector3 add(Vector3::Arg a, Vector3::Arg b)
|
|
{
|
|
return Vector3(a.x + b.x, a.y + b.y, a.z + b.z);
|
|
}
|
|
inline Vector3 add(Vector3::Arg a, float b)
|
|
{
|
|
return Vector3(a.x + b, a.y + b, a.z + b);
|
|
}
|
|
inline Vector3 operator+(Vector3::Arg a, Vector3::Arg b)
|
|
{
|
|
return add(a, b);
|
|
}
|
|
inline Vector3 operator+(Vector3::Arg a, float b)
|
|
{
|
|
return add(a, b);
|
|
}
|
|
|
|
inline Vector3 sub(Vector3::Arg a, Vector3::Arg b)
|
|
{
|
|
return Vector3(a.x - b.x, a.y - b.y, a.z - b.z);
|
|
}
|
|
inline Vector3 sub(Vector3::Arg a, float b)
|
|
{
|
|
return Vector3(a.x - b, a.y - b, a.z - b);
|
|
}
|
|
inline Vector3 operator-(Vector3::Arg a, Vector3::Arg b)
|
|
{
|
|
return sub(a, b);
|
|
}
|
|
inline Vector3 operator-(Vector3::Arg a, float b)
|
|
{
|
|
return sub(a, b);
|
|
}
|
|
|
|
inline Vector3 cross(Vector3::Arg a, Vector3::Arg b)
|
|
{
|
|
return Vector3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
|
|
}
|
|
|
|
inline Vector3 scale(Vector3::Arg v, float s)
|
|
{
|
|
return Vector3(v.x * s, v.y * s, v.z * s);
|
|
}
|
|
|
|
inline Vector3 scale(Vector3::Arg v, Vector3::Arg s)
|
|
{
|
|
return Vector3(v.x * s.x, v.y * s.y, v.z * s.z);
|
|
}
|
|
|
|
inline Vector3 operator*(Vector3::Arg v, float s)
|
|
{
|
|
return scale(v, s);
|
|
}
|
|
|
|
inline Vector3 operator*(float s, Vector3::Arg v)
|
|
{
|
|
return scale(v, s);
|
|
}
|
|
|
|
inline Vector3 operator*(Vector3::Arg v, Vector3::Arg s)
|
|
{
|
|
return scale(v, s);
|
|
}
|
|
|
|
inline Vector3 operator/(Vector3::Arg v, float s)
|
|
{
|
|
return scale(v, 1.0f/s);
|
|
}
|
|
|
|
/*inline Vector3 add_scaled(Vector3::Arg a, Vector3::Arg b, float s)
|
|
{
|
|
return Vector3(a.x + b.x * s, a.y + b.y * s, a.z + b.z * s);
|
|
}*/
|
|
|
|
inline Vector3 lerp(Vector3::Arg v1, Vector3::Arg v2, float t)
|
|
{
|
|
const float s = 1.0f - t;
|
|
return Vector3(v1.x * s + t * v2.x, v1.y * s + t * v2.y, v1.z * s + t * v2.z);
|
|
}
|
|
|
|
inline float dot(Vector3::Arg a, Vector3::Arg b)
|
|
{
|
|
return a.x * b.x + a.y * b.y + a.z * b.z;
|
|
}
|
|
|
|
inline float lengthSquared(Vector3::Arg v)
|
|
{
|
|
return v.x * v.x + v.y * v.y + v.z * v.z;
|
|
}
|
|
|
|
inline float length(Vector3::Arg v)
|
|
{
|
|
return sqrtf(lengthSquared(v));
|
|
}
|
|
|
|
inline float distance(Vector3::Arg a, Vector3::Arg b)
|
|
{
|
|
return length(a - b);
|
|
}
|
|
|
|
inline float distanceSquared(Vector3::Arg a, Vector3::Arg b)
|
|
{
|
|
return lengthSquared(a - b);
|
|
}
|
|
|
|
inline float inverseLength(Vector3::Arg v)
|
|
{
|
|
return 1.0f / sqrtf(lengthSquared(v));
|
|
}
|
|
|
|
inline bool isNormalized(Vector3::Arg v, float epsilon = NV_NORMAL_EPSILON)
|
|
{
|
|
return equal(length(v), 1, epsilon);
|
|
}
|
|
|
|
inline Vector3 normalize(Vector3::Arg v, float epsilon = NV_EPSILON)
|
|
{
|
|
float l = length(v);
|
|
nvDebugCheck(!isZero(l, epsilon));
|
|
Vector3 n = scale(v, 1.0f / l);
|
|
nvDebugCheck(isNormalized(n));
|
|
return n;
|
|
}
|
|
|
|
inline Vector3 normalizeSafe(Vector3::Arg v, Vector3::Arg fallback, float epsilon = NV_EPSILON)
|
|
{
|
|
float l = length(v);
|
|
if (isZero(l, epsilon)) {
|
|
return fallback;
|
|
}
|
|
return scale(v, 1.0f / l);
|
|
}
|
|
|
|
// Safe, branchless normalization from Andy Firth. All error checking ommitted.
|
|
// http://altdevblogaday.com/2011/08/21/practical-flt-point-tricks/
|
|
inline Vector3 normalizeFast(Vector3::Arg v)
|
|
{
|
|
const float very_small_float = 1.0e-037f;
|
|
float l = very_small_float + length(v);
|
|
return scale(v, 1.0f / l);
|
|
}
|
|
|
|
inline bool equal(Vector3::Arg v1, Vector3::Arg v2, float epsilon = NV_EPSILON)
|
|
{
|
|
return equal(v1.x, v2.x, epsilon) && equal(v1.y, v2.y, epsilon) && equal(v1.z, v2.z, epsilon);
|
|
}
|
|
|
|
inline Vector3 min(Vector3::Arg a, Vector3::Arg b)
|
|
{
|
|
return Vector3(min(a.x, b.x), min(a.y, b.y), min(a.z, b.z));
|
|
}
|
|
|
|
inline Vector3 max(Vector3::Arg a, Vector3::Arg b)
|
|
{
|
|
return Vector3(max(a.x, b.x), max(a.y, b.y), max(a.z, b.z));
|
|
}
|
|
|
|
inline Vector3 clamp(Vector3::Arg v, float min, float max)
|
|
{
|
|
return Vector3(clamp(v.x, min, max), clamp(v.y, min, max), clamp(v.z, min, max));
|
|
}
|
|
|
|
inline Vector3 saturate(Vector3::Arg v)
|
|
{
|
|
return Vector3(saturate(v.x), saturate(v.y), saturate(v.z));
|
|
}
|
|
|
|
inline Vector3 floor(Vector3::Arg v)
|
|
{
|
|
return Vector3(floorf(v.x), floorf(v.y), floorf(v.z));
|
|
}
|
|
|
|
inline Vector3 ceil(Vector3::Arg v)
|
|
{
|
|
return Vector3(ceilf(v.x), ceilf(v.y), ceilf(v.z));
|
|
}
|
|
|
|
inline bool isFinite(Vector3::Arg v)
|
|
{
|
|
return isFinite(v.x) && isFinite(v.y) && isFinite(v.z);
|
|
}
|
|
|
|
inline Vector3 validate(Vector3::Arg v, Vector3::Arg fallback = Vector3(0.0f))
|
|
{
|
|
if (!isFinite(v)) return fallback;
|
|
Vector3 vf = v;
|
|
nv::floatCleanup(vf.component, 3);
|
|
return vf;
|
|
}
|
|
|
|
inline Vector3 reflect(Vector3::Arg v, Vector3::Arg n)
|
|
{
|
|
return v - (2 * dot(v, n)) * n;
|
|
}
|
|
|
|
template <>
|
|
inline uint hash(const Vector3 & v, uint h)
|
|
{
|
|
return sdbmFloatHash(v.component, 3, h);
|
|
}
|
|
|
|
|
|
// Vector4
|
|
|
|
inline Vector4 add(Vector4::Arg a, Vector4::Arg b)
|
|
{
|
|
return Vector4(a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w);
|
|
}
|
|
inline Vector4 operator+(Vector4::Arg a, Vector4::Arg b)
|
|
{
|
|
return add(a, b);
|
|
}
|
|
|
|
inline Vector4 sub(Vector4::Arg a, Vector4::Arg b)
|
|
{
|
|
return Vector4(a.x - b.x, a.y - b.y, a.z - b.z, a.w - b.w);
|
|
}
|
|
inline Vector4 operator-(Vector4::Arg a, Vector4::Arg b)
|
|
{
|
|
return sub(a, b);
|
|
}
|
|
|
|
inline Vector4 scale(Vector4::Arg v, float s)
|
|
{
|
|
return Vector4(v.x * s, v.y * s, v.z * s, v.w * s);
|
|
}
|
|
|
|
inline Vector4 scale(Vector4::Arg v, Vector4::Arg s)
|
|
{
|
|
return Vector4(v.x * s.x, v.y * s.y, v.z * s.z, v.w * s.w);
|
|
}
|
|
|
|
inline Vector4 operator*(Vector4::Arg v, float s)
|
|
{
|
|
return scale(v, s);
|
|
}
|
|
|
|
inline Vector4 operator*(float s, Vector4::Arg v)
|
|
{
|
|
return scale(v, s);
|
|
}
|
|
|
|
inline Vector4 operator*(Vector4::Arg v, Vector4::Arg s)
|
|
{
|
|
return scale(v, s);
|
|
}
|
|
|
|
inline Vector4 operator/(Vector4::Arg v, float s)
|
|
{
|
|
return scale(v, 1.0f/s);
|
|
}
|
|
|
|
/*inline Vector4 add_scaled(Vector4::Arg a, Vector4::Arg b, float s)
|
|
{
|
|
return Vector4(a.x + b.x * s, a.y + b.y * s, a.z + b.z * s, a.w + b.w * s);
|
|
}*/
|
|
|
|
inline Vector4 lerp(Vector4::Arg v1, Vector4::Arg v2, float t)
|
|
{
|
|
const float s = 1.0f - t;
|
|
return Vector4(v1.x * s + t * v2.x, v1.y * s + t * v2.y, v1.z * s + t * v2.z, v1.w * s + t * v2.w);
|
|
}
|
|
|
|
inline float dot(Vector4::Arg a, Vector4::Arg b)
|
|
{
|
|
return a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w;
|
|
}
|
|
|
|
inline float lengthSquared(Vector4::Arg v)
|
|
{
|
|
return v.x * v.x + v.y * v.y + v.z * v.z + v.w * v.w;
|
|
}
|
|
|
|
inline float length(Vector4::Arg v)
|
|
{
|
|
return sqrtf(lengthSquared(v));
|
|
}
|
|
|
|
inline float inverseLength(Vector4::Arg v)
|
|
{
|
|
return 1.0f / sqrtf(lengthSquared(v));
|
|
}
|
|
|
|
inline bool isNormalized(Vector4::Arg v, float epsilon = NV_NORMAL_EPSILON)
|
|
{
|
|
return equal(length(v), 1, epsilon);
|
|
}
|
|
|
|
inline Vector4 normalize(Vector4::Arg v, float epsilon = NV_EPSILON)
|
|
{
|
|
float l = length(v);
|
|
nvDebugCheck(!isZero(l, epsilon));
|
|
Vector4 n = scale(v, 1.0f / l);
|
|
nvDebugCheck(isNormalized(n));
|
|
return n;
|
|
}
|
|
|
|
inline Vector4 normalizeSafe(Vector4::Arg v, Vector4::Arg fallback, float epsilon = NV_EPSILON)
|
|
{
|
|
float l = length(v);
|
|
if (isZero(l, epsilon)) {
|
|
return fallback;
|
|
}
|
|
return scale(v, 1.0f / l);
|
|
}
|
|
|
|
// Safe, branchless normalization from Andy Firth. All error checking ommitted.
|
|
// http://altdevblogaday.com/2011/08/21/practical-flt-point-tricks/
|
|
inline Vector4 normalizeFast(Vector4::Arg v)
|
|
{
|
|
const float very_small_float = 1.0e-037f;
|
|
float l = very_small_float + length(v);
|
|
return scale(v, 1.0f / l);
|
|
}
|
|
|
|
inline bool equal(Vector4::Arg v1, Vector4::Arg v2, float epsilon = NV_EPSILON)
|
|
{
|
|
return equal(v1.x, v2.x, epsilon) && equal(v1.y, v2.y, epsilon) && equal(v1.z, v2.z, epsilon) && equal(v1.w, v2.w, epsilon);
|
|
}
|
|
|
|
inline Vector4 min(Vector4::Arg a, Vector4::Arg b)
|
|
{
|
|
return Vector4(min(a.x, b.x), min(a.y, b.y), min(a.z, b.z), min(a.w, b.w));
|
|
}
|
|
|
|
inline Vector4 max(Vector4::Arg a, Vector4::Arg b)
|
|
{
|
|
return Vector4(max(a.x, b.x), max(a.y, b.y), max(a.z, b.z), max(a.w, b.w));
|
|
}
|
|
|
|
inline Vector4 clamp(Vector4::Arg v, float min, float max)
|
|
{
|
|
return Vector4(clamp(v.x, min, max), clamp(v.y, min, max), clamp(v.z, min, max), clamp(v.w, min, max));
|
|
}
|
|
|
|
inline Vector4 saturate(Vector4::Arg v)
|
|
{
|
|
return Vector4(saturate(v.x), saturate(v.y), saturate(v.z), saturate(v.w));
|
|
}
|
|
|
|
inline bool isFinite(Vector4::Arg v)
|
|
{
|
|
return isFinite(v.x) && isFinite(v.y) && isFinite(v.z) && isFinite(v.w);
|
|
}
|
|
|
|
inline Vector4 validate(Vector4::Arg v, Vector4::Arg fallback = Vector4(0.0f))
|
|
{
|
|
if (!isFinite(v)) return fallback;
|
|
Vector4 vf = v;
|
|
nv::floatCleanup(vf.component, 4);
|
|
return vf;
|
|
}
|
|
|
|
template <>
|
|
inline uint hash(const Vector4 & v, uint h)
|
|
{
|
|
return sdbmFloatHash(v.component, 4, h);
|
|
}
|
|
|
|
|
|
#if NV_OS_IOS // LLVM is not happy with implicit conversion of immediate constants to float
|
|
|
|
//int:
|
|
|
|
inline Vector2 scale(Vector2::Arg v, int s)
|
|
{
|
|
return Vector2(v.x * s, v.y * s);
|
|
}
|
|
|
|
inline Vector2 operator*(Vector2::Arg v, int s)
|
|
{
|
|
return scale(v, s);
|
|
}
|
|
|
|
inline Vector2 operator*(int s, Vector2::Arg v)
|
|
{
|
|
return scale(v, s);
|
|
}
|
|
|
|
inline Vector2 operator/(Vector2::Arg v, int s)
|
|
{
|
|
return scale(v, 1.0f/s);
|
|
}
|
|
|
|
inline Vector3 scale(Vector3::Arg v, int s)
|
|
{
|
|
return Vector3(v.x * s, v.y * s, v.z * s);
|
|
}
|
|
|
|
inline Vector3 operator*(Vector3::Arg v, int s)
|
|
{
|
|
return scale(v, s);
|
|
}
|
|
|
|
inline Vector3 operator*(int s, Vector3::Arg v)
|
|
{
|
|
return scale(v, s);
|
|
}
|
|
|
|
inline Vector3 operator/(Vector3::Arg v, int s)
|
|
{
|
|
return scale(v, 1.0f/s);
|
|
}
|
|
|
|
inline Vector4 scale(Vector4::Arg v, int s)
|
|
{
|
|
return Vector4(v.x * s, v.y * s, v.z * s, v.w * s);
|
|
}
|
|
|
|
inline Vector4 operator*(Vector4::Arg v, int s)
|
|
{
|
|
return scale(v, s);
|
|
}
|
|
|
|
inline Vector4 operator*(int s, Vector4::Arg v)
|
|
{
|
|
return scale(v, s);
|
|
}
|
|
|
|
inline Vector4 operator/(Vector4::Arg v, int s)
|
|
{
|
|
return scale(v, 1.0f/s);
|
|
}
|
|
|
|
//double:
|
|
|
|
inline Vector3 operator*(Vector3::Arg v, double s)
|
|
{
|
|
return scale(v, (float)s);
|
|
}
|
|
|
|
inline Vector3 operator*(double s, Vector3::Arg v)
|
|
{
|
|
return scale(v, (float)s);
|
|
}
|
|
|
|
inline Vector3 operator/(Vector3::Arg v, double s)
|
|
{
|
|
return scale(v, 1.f/((float)s));
|
|
}
|
|
|
|
#endif //NV_OS_IOS
|
|
|
|
} // nv namespace
|
|
|
|
#endif // NV_MATH_VECTOR_INL
|