242 lines
7.3 KiB
C++
242 lines
7.3 KiB
C++
/*
|
|
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
|
|
#ifndef BT_TRANSFORM_UTIL_H
|
|
#define BT_TRANSFORM_UTIL_H
|
|
|
|
#include "btTransform.h"
|
|
#define ANGULAR_MOTION_THRESHOLD btScalar(0.5)*SIMD_HALF_PI
|
|
|
|
|
|
|
|
|
|
SIMD_FORCE_INLINE btVector3 btAabbSupport(const btVector3& halfExtents,const btVector3& supportDir)
|
|
{
|
|
return btVector3(supportDir.x() < btScalar(0.0) ? -halfExtents.x() : halfExtents.x(),
|
|
supportDir.y() < btScalar(0.0) ? -halfExtents.y() : halfExtents.y(),
|
|
supportDir.z() < btScalar(0.0) ? -halfExtents.z() : halfExtents.z());
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/// Utils related to temporal transforms
|
|
class btTransformUtil
|
|
{
|
|
|
|
public:
|
|
|
|
static void integrateTransform(const btTransform& curTrans,const btVector3& linvel,const btVector3& angvel,btScalar timeStep,btTransform& predictedTransform)
|
|
{
|
|
predictedTransform.setOrigin(curTrans.getOrigin() + linvel * timeStep);
|
|
// #define QUATERNION_DERIVATIVE
|
|
#ifdef QUATERNION_DERIVATIVE
|
|
btQuaternion predictedOrn = curTrans.getRotation();
|
|
predictedOrn += (angvel * predictedOrn) * (timeStep * btScalar(0.5));
|
|
predictedOrn.safeNormalize();
|
|
#else
|
|
//Exponential map
|
|
//google for "Practical Parameterization of Rotations Using the Exponential Map", F. Sebastian Grassia
|
|
|
|
btVector3 axis;
|
|
btScalar fAngle2 = angvel.length2();
|
|
btScalar fAngle = 0;
|
|
if (fAngle2>SIMD_EPSILON)
|
|
{
|
|
fAngle = btSqrt(fAngle2);
|
|
}
|
|
|
|
//limit the angular motion
|
|
if (fAngle*timeStep > ANGULAR_MOTION_THRESHOLD)
|
|
{
|
|
fAngle = ANGULAR_MOTION_THRESHOLD / timeStep;
|
|
}
|
|
|
|
if ( fAngle < btScalar(0.001) )
|
|
{
|
|
// use Taylor's expansions of sync function
|
|
axis = angvel*( btScalar(0.5)*timeStep-(timeStep*timeStep*timeStep)*(btScalar(0.020833333333))*fAngle*fAngle );
|
|
}
|
|
else
|
|
{
|
|
// sync(fAngle) = sin(c*fAngle)/t
|
|
axis = angvel*( btSin(btScalar(0.5)*fAngle*timeStep)/fAngle );
|
|
}
|
|
btQuaternion dorn (axis.x(),axis.y(),axis.z(),btCos( fAngle*timeStep*btScalar(0.5) ));
|
|
btQuaternion orn0 = curTrans.getRotation();
|
|
|
|
btQuaternion predictedOrn = dorn * orn0;
|
|
predictedOrn.safeNormalize();
|
|
#endif
|
|
if (predictedOrn.length2()>SIMD_EPSILON)
|
|
{
|
|
predictedTransform.setRotation(predictedOrn);
|
|
}
|
|
else
|
|
{
|
|
predictedTransform.setBasis(curTrans.getBasis());
|
|
}
|
|
}
|
|
|
|
static void calculateVelocityQuaternion(const btVector3& pos0,const btVector3& pos1,const btQuaternion& orn0,const btQuaternion& orn1,btScalar timeStep,btVector3& linVel,btVector3& angVel)
|
|
{
|
|
linVel = (pos1 - pos0) / timeStep;
|
|
btVector3 axis;
|
|
btScalar angle;
|
|
if (orn0 != orn1)
|
|
{
|
|
calculateDiffAxisAngleQuaternion(orn0,orn1,axis,angle);
|
|
angVel = axis * angle / timeStep;
|
|
} else
|
|
{
|
|
angVel.setValue(0,0,0);
|
|
}
|
|
}
|
|
|
|
static void calculateDiffAxisAngleQuaternion(const btQuaternion& orn0,const btQuaternion& orn1a,btVector3& axis,btScalar& angle)
|
|
{
|
|
btQuaternion orn1 = orn0.nearest(orn1a);
|
|
btQuaternion dorn = orn1 * orn0.inverse();
|
|
angle = dorn.getAngle();
|
|
axis = btVector3(dorn.x(),dorn.y(),dorn.z());
|
|
axis[3] = btScalar(0.);
|
|
//check for axis length
|
|
btScalar len = axis.length2();
|
|
if (len < SIMD_EPSILON*SIMD_EPSILON)
|
|
axis = btVector3(btScalar(1.),btScalar(0.),btScalar(0.));
|
|
else
|
|
axis /= btSqrt(len);
|
|
}
|
|
|
|
static void calculateVelocity(const btTransform& transform0,const btTransform& transform1,btScalar timeStep,btVector3& linVel,btVector3& angVel)
|
|
{
|
|
linVel = (transform1.getOrigin() - transform0.getOrigin()) / timeStep;
|
|
btVector3 axis;
|
|
btScalar angle;
|
|
calculateDiffAxisAngle(transform0,transform1,axis,angle);
|
|
angVel = axis * angle / timeStep;
|
|
}
|
|
|
|
static void calculateDiffAxisAngle(const btTransform& transform0,const btTransform& transform1,btVector3& axis,btScalar& angle)
|
|
{
|
|
btMatrix3x3 dmat = transform1.getBasis() * transform0.getBasis().inverse();
|
|
btQuaternion dorn;
|
|
dmat.getRotation(dorn);
|
|
|
|
///floating point inaccuracy can lead to w component > 1..., which breaks
|
|
dorn.normalize();
|
|
|
|
angle = dorn.getAngle();
|
|
axis = btVector3(dorn.x(),dorn.y(),dorn.z());
|
|
axis[3] = btScalar(0.);
|
|
//check for axis length
|
|
btScalar len = axis.length2();
|
|
if (len < SIMD_EPSILON*SIMD_EPSILON)
|
|
axis = btVector3(btScalar(1.),btScalar(0.),btScalar(0.));
|
|
else
|
|
axis /= btSqrt(len);
|
|
}
|
|
|
|
};
|
|
|
|
|
|
///The btConvexSeparatingDistanceUtil can help speed up convex collision detection
|
|
///by conservatively updating a cached separating distance/vector instead of re-calculating the closest distance
|
|
class btConvexSeparatingDistanceUtil
|
|
{
|
|
btQuaternion m_ornA;
|
|
btQuaternion m_ornB;
|
|
btVector3 m_posA;
|
|
btVector3 m_posB;
|
|
|
|
btVector3 m_separatingNormal;
|
|
|
|
btScalar m_boundingRadiusA;
|
|
btScalar m_boundingRadiusB;
|
|
btScalar m_separatingDistance;
|
|
|
|
public:
|
|
|
|
btConvexSeparatingDistanceUtil(btScalar boundingRadiusA,btScalar boundingRadiusB)
|
|
:m_boundingRadiusA(boundingRadiusA),
|
|
m_boundingRadiusB(boundingRadiusB),
|
|
m_separatingDistance(0.f)
|
|
{
|
|
}
|
|
|
|
btScalar getConservativeSeparatingDistance()
|
|
{
|
|
return m_separatingDistance;
|
|
}
|
|
|
|
void updateSeparatingDistance(const btTransform& transA,const btTransform& transB)
|
|
{
|
|
const btVector3& toPosA = transA.getOrigin();
|
|
const btVector3& toPosB = transB.getOrigin();
|
|
btQuaternion toOrnA = transA.getRotation();
|
|
btQuaternion toOrnB = transB.getRotation();
|
|
|
|
if (m_separatingDistance>0.f)
|
|
{
|
|
|
|
|
|
btVector3 linVelA,angVelA,linVelB,angVelB;
|
|
btTransformUtil::calculateVelocityQuaternion(m_posA,toPosA,m_ornA,toOrnA,btScalar(1.),linVelA,angVelA);
|
|
btTransformUtil::calculateVelocityQuaternion(m_posB,toPosB,m_ornB,toOrnB,btScalar(1.),linVelB,angVelB);
|
|
btScalar maxAngularProjectedVelocity = angVelA.length() * m_boundingRadiusA + angVelB.length() * m_boundingRadiusB;
|
|
btVector3 relLinVel = (linVelB-linVelA);
|
|
btScalar relLinVelocLength = relLinVel.dot(m_separatingNormal);
|
|
if (relLinVelocLength<0.f)
|
|
{
|
|
relLinVelocLength = 0.f;
|
|
}
|
|
|
|
btScalar projectedMotion = maxAngularProjectedVelocity +relLinVelocLength;
|
|
m_separatingDistance -= projectedMotion;
|
|
}
|
|
|
|
m_posA = toPosA;
|
|
m_posB = toPosB;
|
|
m_ornA = toOrnA;
|
|
m_ornB = toOrnB;
|
|
}
|
|
|
|
void initSeparatingDistance(const btVector3& separatingVector,btScalar separatingDistance,const btTransform& transA,const btTransform& transB)
|
|
{
|
|
m_separatingDistance = separatingDistance;
|
|
|
|
if (m_separatingDistance>0.f)
|
|
{
|
|
m_separatingNormal = separatingVector;
|
|
|
|
const btVector3& toPosA = transA.getOrigin();
|
|
const btVector3& toPosB = transB.getOrigin();
|
|
btQuaternion toOrnA = transA.getRotation();
|
|
btQuaternion toOrnB = transB.getRotation();
|
|
m_posA = toPosA;
|
|
m_posB = toPosB;
|
|
m_ornA = toOrnA;
|
|
m_ornB = toOrnB;
|
|
}
|
|
}
|
|
|
|
};
|
|
|
|
|
|
#endif //BT_TRANSFORM_UTIL_H
|
|
|