godot/thirdparty/bullet/BulletInverseDynamics/details/IDMatVec.hpp

490 lines
11 KiB
C++

/// @file Built-In Matrix-Vector functions
#ifndef IDMATVEC_HPP_
#define IDMATVEC_HPP_
#include <cstdlib>
#include "../IDConfig.hpp"
#define BT_ID_HAVE_MAT3X
namespace btInverseDynamics
{
class vec3;
class vecx;
class mat33;
class matxx;
class mat3x;
/// This is a very basic implementation to enable stand-alone use of the library.
/// The implementation is not really optimized and misses many features that you would
/// want from a "fully featured" linear math library.
class vec3
{
public:
idScalar& operator()(int i) { return m_data[i]; }
const idScalar& operator()(int i) const { return m_data[i]; }
const int size() const { return 3; }
const vec3& operator=(const vec3& rhs);
const vec3& operator+=(const vec3& b);
const vec3& operator-=(const vec3& b);
vec3 cross(const vec3& b) const;
idScalar dot(const vec3& b) const;
friend vec3 operator*(const mat33& a, const vec3& b);
friend vec3 operator*(const vec3& a, const idScalar& s);
friend vec3 operator*(const idScalar& s, const vec3& a);
friend vec3 operator+(const vec3& a, const vec3& b);
friend vec3 operator-(const vec3& a, const vec3& b);
friend vec3 operator/(const vec3& a, const idScalar& s);
private:
idScalar m_data[3];
};
class mat33
{
public:
idScalar& operator()(int i, int j) { return m_data[3 * i + j]; }
const idScalar& operator()(int i, int j) const { return m_data[3 * i + j]; }
const mat33& operator=(const mat33& rhs);
mat33 transpose() const;
const mat33& operator+=(const mat33& b);
const mat33& operator-=(const mat33& b);
friend mat33 operator*(const mat33& a, const mat33& b);
friend vec3 operator*(const mat33& a, const vec3& b);
friend mat33 operator*(const mat33& a, const idScalar& s);
friend mat33 operator*(const idScalar& s, const mat33& a);
friend mat33 operator+(const mat33& a, const mat33& b);
friend mat33 operator-(const mat33& a, const mat33& b);
friend mat33 operator/(const mat33& a, const idScalar& s);
private:
// layout is [0,1,2;3,4,5;6,7,8]
idScalar m_data[9];
};
class vecx
{
public:
vecx(int size) : m_size(size)
{
m_data = static_cast<idScalar*>(idMalloc(sizeof(idScalar) * size));
}
~vecx() { idFree(m_data); }
const vecx& operator=(const vecx& rhs);
idScalar& operator()(int i) { return m_data[i]; }
const idScalar& operator()(int i) const { return m_data[i]; }
const int& size() const { return m_size; }
friend vecx operator*(const vecx& a, const idScalar& s);
friend vecx operator*(const idScalar& s, const vecx& a);
friend vecx operator+(const vecx& a, const vecx& b);
friend vecx operator-(const vecx& a, const vecx& b);
friend vecx operator/(const vecx& a, const idScalar& s);
private:
int m_size;
idScalar* m_data;
};
class matxx
{
public:
matxx()
{
m_data = 0x0;
m_cols = 0;
m_rows = 0;
}
matxx(int rows, int cols) : m_rows(rows), m_cols(cols)
{
m_data = static_cast<idScalar*>(idMalloc(sizeof(idScalar) * rows * cols));
}
~matxx() { idFree(m_data); }
idScalar& operator()(int row, int col) { return m_data[row * m_cols + col]; }
const idScalar& operator()(int row, int col) const { return m_data[row * m_cols + col]; }
const int& rows() const { return m_rows; }
const int& cols() const { return m_cols; }
private:
int m_rows;
int m_cols;
idScalar* m_data;
};
class mat3x
{
public:
mat3x()
{
m_data = 0x0;
m_cols = 0;
}
mat3x(const mat3x& rhs)
{
m_cols = rhs.m_cols;
allocate();
*this = rhs;
}
mat3x(int rows, int cols) : m_cols(cols)
{
allocate();
};
void operator=(const mat3x& rhs)
{
if (m_cols != rhs.m_cols)
{
bt_id_error_message("size missmatch, cols= %d but rhs.cols= %d\n", cols(), rhs.cols());
abort();
}
for (int i = 0; i < 3 * m_cols; i++)
{
m_data[i] = rhs.m_data[i];
}
}
~mat3x()
{
free();
}
idScalar& operator()(int row, int col) { return m_data[row * m_cols + col]; }
const idScalar& operator()(int row, int col) const { return m_data[row * m_cols + col]; }
int rows() const { return m_rows; }
const int& cols() const { return m_cols; }
void resize(int rows, int cols)
{
m_cols = cols;
free();
allocate();
}
void setZero()
{
memset(m_data, 0x0, sizeof(idScalar) * m_rows * m_cols);
}
// avoid operators that would allocate -- use functions sub/add/mul in IDMath.hpp instead
private:
void allocate() { m_data = static_cast<idScalar*>(idMalloc(sizeof(idScalar) * m_rows * m_cols)); }
void free() { idFree(m_data); }
enum
{
m_rows = 3
};
int m_cols;
idScalar* m_data;
};
inline void resize(mat3x& m, idArrayIdx size)
{
m.resize(3, size);
m.setZero();
}
//////////////////////////////////////////////////
// Implementations
inline const vec3& vec3::operator=(const vec3& rhs)
{
if (&rhs != this)
{
memcpy(m_data, rhs.m_data, 3 * sizeof(idScalar));
}
return *this;
}
inline vec3 vec3::cross(const vec3& b) const
{
vec3 result;
result.m_data[0] = m_data[1] * b.m_data[2] - m_data[2] * b.m_data[1];
result.m_data[1] = m_data[2] * b.m_data[0] - m_data[0] * b.m_data[2];
result.m_data[2] = m_data[0] * b.m_data[1] - m_data[1] * b.m_data[0];
return result;
}
inline idScalar vec3::dot(const vec3& b) const
{
return m_data[0] * b.m_data[0] + m_data[1] * b.m_data[1] + m_data[2] * b.m_data[2];
}
inline const mat33& mat33::operator=(const mat33& rhs)
{
if (&rhs != this)
{
memcpy(m_data, rhs.m_data, 9 * sizeof(idScalar));
}
return *this;
}
inline mat33 mat33::transpose() const
{
mat33 result;
result.m_data[0] = m_data[0];
result.m_data[1] = m_data[3];
result.m_data[2] = m_data[6];
result.m_data[3] = m_data[1];
result.m_data[4] = m_data[4];
result.m_data[5] = m_data[7];
result.m_data[6] = m_data[2];
result.m_data[7] = m_data[5];
result.m_data[8] = m_data[8];
return result;
}
inline mat33 operator*(const mat33& a, const mat33& b)
{
mat33 result;
result.m_data[0] =
a.m_data[0] * b.m_data[0] + a.m_data[1] * b.m_data[3] + a.m_data[2] * b.m_data[6];
result.m_data[1] =
a.m_data[0] * b.m_data[1] + a.m_data[1] * b.m_data[4] + a.m_data[2] * b.m_data[7];
result.m_data[2] =
a.m_data[0] * b.m_data[2] + a.m_data[1] * b.m_data[5] + a.m_data[2] * b.m_data[8];
result.m_data[3] =
a.m_data[3] * b.m_data[0] + a.m_data[4] * b.m_data[3] + a.m_data[5] * b.m_data[6];
result.m_data[4] =
a.m_data[3] * b.m_data[1] + a.m_data[4] * b.m_data[4] + a.m_data[5] * b.m_data[7];
result.m_data[5] =
a.m_data[3] * b.m_data[2] + a.m_data[4] * b.m_data[5] + a.m_data[5] * b.m_data[8];
result.m_data[6] =
a.m_data[6] * b.m_data[0] + a.m_data[7] * b.m_data[3] + a.m_data[8] * b.m_data[6];
result.m_data[7] =
a.m_data[6] * b.m_data[1] + a.m_data[7] * b.m_data[4] + a.m_data[8] * b.m_data[7];
result.m_data[8] =
a.m_data[6] * b.m_data[2] + a.m_data[7] * b.m_data[5] + a.m_data[8] * b.m_data[8];
return result;
}
inline const mat33& mat33::operator+=(const mat33& b)
{
for (int i = 0; i < 9; i++)
{
m_data[i] += b.m_data[i];
}
return *this;
}
inline const mat33& mat33::operator-=(const mat33& b)
{
for (int i = 0; i < 9; i++)
{
m_data[i] -= b.m_data[i];
}
return *this;
}
inline vec3 operator*(const mat33& a, const vec3& b)
{
vec3 result;
result.m_data[0] =
a.m_data[0] * b.m_data[0] + a.m_data[1] * b.m_data[1] + a.m_data[2] * b.m_data[2];
result.m_data[1] =
a.m_data[3] * b.m_data[0] + a.m_data[4] * b.m_data[1] + a.m_data[5] * b.m_data[2];
result.m_data[2] =
a.m_data[6] * b.m_data[0] + a.m_data[7] * b.m_data[1] + a.m_data[8] * b.m_data[2];
return result;
}
inline const vec3& vec3::operator+=(const vec3& b)
{
for (int i = 0; i < 3; i++)
{
m_data[i] += b.m_data[i];
}
return *this;
}
inline const vec3& vec3::operator-=(const vec3& b)
{
for (int i = 0; i < 3; i++)
{
m_data[i] -= b.m_data[i];
}
return *this;
}
inline mat33 operator*(const mat33& a, const idScalar& s)
{
mat33 result;
for (int i = 0; i < 9; i++)
{
result.m_data[i] = a.m_data[i] * s;
}
return result;
}
inline mat33 operator*(const idScalar& s, const mat33& a) { return a * s; }
inline vec3 operator*(const vec3& a, const idScalar& s)
{
vec3 result;
for (int i = 0; i < 3; i++)
{
result.m_data[i] = a.m_data[i] * s;
}
return result;
}
inline vec3 operator*(const idScalar& s, const vec3& a) { return a * s; }
inline mat33 operator+(const mat33& a, const mat33& b)
{
mat33 result;
for (int i = 0; i < 9; i++)
{
result.m_data[i] = a.m_data[i] + b.m_data[i];
}
return result;
}
inline vec3 operator+(const vec3& a, const vec3& b)
{
vec3 result;
for (int i = 0; i < 3; i++)
{
result.m_data[i] = a.m_data[i] + b.m_data[i];
}
return result;
}
inline mat33 operator-(const mat33& a, const mat33& b)
{
mat33 result;
for (int i = 0; i < 9; i++)
{
result.m_data[i] = a.m_data[i] - b.m_data[i];
}
return result;
}
inline vec3 operator-(const vec3& a, const vec3& b)
{
vec3 result;
for (int i = 0; i < 3; i++)
{
result.m_data[i] = a.m_data[i] - b.m_data[i];
}
return result;
}
inline mat33 operator/(const mat33& a, const idScalar& s)
{
mat33 result;
for (int i = 0; i < 9; i++)
{
result.m_data[i] = a.m_data[i] / s;
}
return result;
}
inline vec3 operator/(const vec3& a, const idScalar& s)
{
vec3 result;
for (int i = 0; i < 3; i++)
{
result.m_data[i] = a.m_data[i] / s;
}
return result;
}
inline const vecx& vecx::operator=(const vecx& rhs)
{
if (size() != rhs.size())
{
bt_id_error_message("size missmatch, size()= %d but rhs.size()= %d\n", size(), rhs.size());
abort();
}
if (&rhs != this)
{
memcpy(m_data, rhs.m_data, rhs.size() * sizeof(idScalar));
}
return *this;
}
inline vecx operator*(const vecx& a, const idScalar& s)
{
vecx result(a.size());
for (int i = 0; i < result.size(); i++)
{
result.m_data[i] = a.m_data[i] * s;
}
return result;
}
inline vecx operator*(const idScalar& s, const vecx& a) { return a * s; }
inline vecx operator+(const vecx& a, const vecx& b)
{
vecx result(a.size());
// TODO: error handling for a.size() != b.size()??
if (a.size() != b.size())
{
bt_id_error_message("size missmatch. a.size()= %d, b.size()= %d\n", a.size(), b.size());
abort();
}
for (int i = 0; i < a.size(); i++)
{
result.m_data[i] = a.m_data[i] + b.m_data[i];
}
return result;
}
inline vecx operator-(const vecx& a, const vecx& b)
{
vecx result(a.size());
// TODO: error handling for a.size() != b.size()??
if (a.size() != b.size())
{
bt_id_error_message("size missmatch. a.size()= %d, b.size()= %d\n", a.size(), b.size());
abort();
}
for (int i = 0; i < a.size(); i++)
{
result.m_data[i] = a.m_data[i] - b.m_data[i];
}
return result;
}
inline vecx operator/(const vecx& a, const idScalar& s)
{
vecx result(a.size());
for (int i = 0; i < result.size(); i++)
{
result.m_data[i] = a.m_data[i] / s;
}
return result;
}
inline vec3 operator*(const mat3x& a, const vecx& b)
{
vec3 result;
if (a.cols() != b.size())
{
bt_id_error_message("size missmatch. a.cols()= %d, b.size()= %d\n", a.cols(), b.size());
abort();
}
result(0) = 0.0;
result(1) = 0.0;
result(2) = 0.0;
for (int i = 0; i < b.size(); i++)
{
for (int k = 0; k < 3; k++)
{
result(k) += a(k, i) * b(i);
}
}
return result;
}
inline void setMatxxElem(const idArrayIdx row, const idArrayIdx col, const idScalar val, matxx* m)
{
(*m)(row, col) = val;
}
inline void setMat3xElem(const idArrayIdx row, const idArrayIdx col, const idScalar val, mat3x* m)
{
(*m)(row, col) = val;
}
} // namespace btInverseDynamics
#endif