d95794ec8a
As many open source projects have started doing it, we're removing the current year from the copyright notice, so that we don't need to bump it every year. It seems like only the first year of publication is technically relevant for copyright notices, and even that seems to be something that many companies stopped listing altogether (in a version controlled codebase, the commits are a much better source of date of publication than a hardcoded copyright statement). We also now list Godot Engine contributors first as we're collectively the current maintainers of the project, and we clarify that the "exclusive" copyright of the co-founders covers the timespan before opensourcing (their further contributions are included as part of Godot Engine contributors). Also fixed "cf." Frenchism - it's meant as "refer to / see".
398 lines
16 KiB
C++
398 lines
16 KiB
C++
/**************************************************************************/
|
|
/* test_vector4.h */
|
|
/**************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/**************************************************************************/
|
|
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
|
|
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/**************************************************************************/
|
|
|
|
#ifndef TEST_VECTOR4_H
|
|
#define TEST_VECTOR4_H
|
|
|
|
#include "core/math/vector4.h"
|
|
#include "tests/test_macros.h"
|
|
|
|
#define Math_SQRT3 1.7320508075688772935274463415059
|
|
|
|
namespace TestVector4 {
|
|
|
|
TEST_CASE("[Vector4] Constructor methods") {
|
|
const Vector4 vector_empty = Vector4();
|
|
const Vector4 vector_zero = Vector4(0.0, 0.0, 0.0, 0.0);
|
|
CHECK_MESSAGE(
|
|
vector_empty == vector_zero,
|
|
"Vector4 Constructor with no inputs should return a zero Vector4.");
|
|
}
|
|
|
|
TEST_CASE("[Vector4] Axis methods") {
|
|
Vector4 vector = Vector4(1.2, 3.4, 5.6, -0.9);
|
|
CHECK_MESSAGE(
|
|
vector.max_axis_index() == Vector4::Axis::AXIS_Z,
|
|
"Vector4 max_axis_index should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector.min_axis_index() == Vector4::Axis::AXIS_W,
|
|
"Vector4 min_axis_index should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector[vector.max_axis_index()] == (real_t)5.6,
|
|
"Vector4 array operator should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector[vector.min_axis_index()] == (real_t)-0.9,
|
|
"Vector4 array operator should work as expected.");
|
|
|
|
vector[Vector4::Axis::AXIS_Y] = 3.7;
|
|
CHECK_MESSAGE(
|
|
vector[Vector4::Axis::AXIS_Y] == (real_t)3.7,
|
|
"Vector4 array operator setter should work as expected.");
|
|
}
|
|
|
|
TEST_CASE("[Vector4] Interpolation methods") {
|
|
const Vector4 vector1 = Vector4(1, 2, 3, 4);
|
|
const Vector4 vector2 = Vector4(4, 5, 6, 7);
|
|
CHECK_MESSAGE(
|
|
vector1.lerp(vector2, 0.5) == Vector4(2.5, 3.5, 4.5, 5.5),
|
|
"Vector4 lerp should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector1.lerp(vector2, 1.0 / 3.0).is_equal_approx(Vector4(2, 3, 4, 5)),
|
|
"Vector4 lerp should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector1.cubic_interpolate(vector2, Vector4(), Vector4(7, 7, 7, 7), 0.5) == Vector4(2.375, 3.5, 4.625, 5.75),
|
|
"Vector4 cubic_interpolate should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector1.cubic_interpolate(vector2, Vector4(), Vector4(7, 7, 7, 7), 1.0 / 3.0).is_equal_approx(Vector4(1.851851940155029297, 2.962963104248046875, 4.074074268341064453, 5.185185185185)),
|
|
"Vector4 cubic_interpolate should work as expected.");
|
|
}
|
|
|
|
TEST_CASE("[Vector4] Length methods") {
|
|
const Vector4 vector1 = Vector4(10, 10, 10, 10);
|
|
const Vector4 vector2 = Vector4(20, 30, 40, 50);
|
|
CHECK_MESSAGE(
|
|
vector1.length_squared() == 400,
|
|
"Vector4 length_squared should work as expected and return exact result.");
|
|
CHECK_MESSAGE(
|
|
vector1.length() == doctest::Approx(20),
|
|
"Vector4 length should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector2.length_squared() == 5400,
|
|
"Vector4 length_squared should work as expected and return exact result.");
|
|
CHECK_MESSAGE(
|
|
vector2.length() == doctest::Approx((real_t)73.484692283495),
|
|
"Vector4 length should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector1.distance_to(vector2) == doctest::Approx((real_t)54.772255750517),
|
|
"Vector4 distance_to should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector1.distance_squared_to(vector2) == doctest::Approx(3000),
|
|
"Vector4 distance_squared_to should work as expected.");
|
|
}
|
|
|
|
TEST_CASE("[Vector4] Limiting methods") {
|
|
const Vector4 vector = Vector4(10, 10, 10, 10);
|
|
CHECK_MESSAGE(
|
|
Vector4(-5, 5, 15, -15).clamp(Vector4(), vector) == Vector4(0, 5, 10, 0),
|
|
"Vector4 clamp should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector.clamp(Vector4(0, 10, 15, 18), Vector4(5, 10, 20, 25)) == Vector4(5, 10, 15, 18),
|
|
"Vector4 clamp should work as expected.");
|
|
}
|
|
|
|
TEST_CASE("[Vector4] Normalization methods") {
|
|
CHECK_MESSAGE(
|
|
Vector4(1, 0, 0, 0).is_normalized() == true,
|
|
"Vector4 is_normalized should return true for a normalized vector.");
|
|
CHECK_MESSAGE(
|
|
Vector4(1, 1, 1, 1).is_normalized() == false,
|
|
"Vector4 is_normalized should return false for a non-normalized vector.");
|
|
CHECK_MESSAGE(
|
|
Vector4(1, 0, 0, 0).normalized() == Vector4(1, 0, 0, 0),
|
|
"Vector4 normalized should return the same vector for a normalized vector.");
|
|
CHECK_MESSAGE(
|
|
Vector4(1, 1, 0, 0).normalized().is_equal_approx(Vector4(Math_SQRT12, Math_SQRT12, 0, 0)),
|
|
"Vector4 normalized should work as expected.");
|
|
CHECK_MESSAGE(
|
|
Vector4(1, 1, 1, 1).normalized().is_equal_approx(Vector4(0.5, 0.5, 0.5, 0.5)),
|
|
"Vector4 normalized should work as expected.");
|
|
}
|
|
|
|
TEST_CASE("[Vector4] Operators") {
|
|
const Vector4 decimal1 = Vector4(2.3, 4.9, 7.8, 3.2);
|
|
const Vector4 decimal2 = Vector4(1.2, 3.4, 5.6, 1.7);
|
|
const Vector4 power1 = Vector4(0.75, 1.5, 0.625, 0.125);
|
|
const Vector4 power2 = Vector4(0.5, 0.125, 0.25, 0.75);
|
|
const Vector4 int1 = Vector4(4, 5, 9, 2);
|
|
const Vector4 int2 = Vector4(1, 2, 3, 1);
|
|
|
|
CHECK_MESSAGE(
|
|
-decimal1 == Vector4(-2.3, -4.9, -7.8, -3.2),
|
|
"Vector4 change of sign should work as expected.");
|
|
CHECK_MESSAGE(
|
|
(decimal1 + decimal2).is_equal_approx(Vector4(3.5, 8.3, 13.4, 4.9)),
|
|
"Vector4 addition should behave as expected.");
|
|
CHECK_MESSAGE(
|
|
(power1 + power2) == Vector4(1.25, 1.625, 0.875, 0.875),
|
|
"Vector4 addition with powers of two should give exact results.");
|
|
CHECK_MESSAGE(
|
|
(int1 + int2) == Vector4(5, 7, 12, 3),
|
|
"Vector4 addition with integers should give exact results.");
|
|
|
|
CHECK_MESSAGE(
|
|
(decimal1 - decimal2).is_equal_approx(Vector4(1.1, 1.5, 2.2, 1.5)),
|
|
"Vector4 subtraction should behave as expected.");
|
|
CHECK_MESSAGE(
|
|
(power1 - power2) == Vector4(0.25, 1.375, 0.375, -0.625),
|
|
"Vector4 subtraction with powers of two should give exact results.");
|
|
CHECK_MESSAGE(
|
|
(int1 - int2) == Vector4(3, 3, 6, 1),
|
|
"Vector4 subtraction with integers should give exact results.");
|
|
|
|
CHECK_MESSAGE(
|
|
(decimal1 * decimal2).is_equal_approx(Vector4(2.76, 16.66, 43.68, 5.44)),
|
|
"Vector4 multiplication should behave as expected.");
|
|
CHECK_MESSAGE(
|
|
(power1 * power2) == Vector4(0.375, 0.1875, 0.15625, 0.09375),
|
|
"Vector4 multiplication with powers of two should give exact results.");
|
|
CHECK_MESSAGE(
|
|
(int1 * int2) == Vector4(4, 10, 27, 2),
|
|
"Vector4 multiplication with integers should give exact results.");
|
|
|
|
CHECK_MESSAGE(
|
|
(decimal1 / decimal2).is_equal_approx(Vector4(1.91666666666666666, 1.44117647058823529, 1.39285714285714286, 1.88235294118)),
|
|
"Vector4 division should behave as expected.");
|
|
CHECK_MESSAGE(
|
|
(power1 / power2) == Vector4(1.5, 12.0, 2.5, 1.0 / 6.0),
|
|
"Vector4 division with powers of two should give exact results.");
|
|
CHECK_MESSAGE(
|
|
(int1 / int2) == Vector4(4, 2.5, 3, 2),
|
|
"Vector4 division with integers should give exact results.");
|
|
|
|
CHECK_MESSAGE(
|
|
(decimal1 * 2).is_equal_approx(Vector4(4.6, 9.8, 15.6, 6.4)),
|
|
"Vector4 multiplication should behave as expected.");
|
|
CHECK_MESSAGE(
|
|
(power1 * 2) == Vector4(1.5, 3, 1.25, 0.25),
|
|
"Vector4 multiplication with powers of two should give exact results.");
|
|
CHECK_MESSAGE(
|
|
(int1 * 2) == Vector4(8, 10, 18, 4),
|
|
"Vector4 multiplication with integers should give exact results.");
|
|
|
|
CHECK_MESSAGE(
|
|
(decimal1 / 2).is_equal_approx(Vector4(1.15, 2.45, 3.9, 1.6)),
|
|
"Vector4 division should behave as expected.");
|
|
CHECK_MESSAGE(
|
|
(power1 / 2) == Vector4(0.375, 0.75, 0.3125, 0.0625),
|
|
"Vector4 division with powers of two should give exact results.");
|
|
CHECK_MESSAGE(
|
|
(int1 / 2) == Vector4(2, 2.5, 4.5, 1),
|
|
"Vector4 division with integers should give exact results.");
|
|
|
|
CHECK_MESSAGE(
|
|
((String)decimal1) == "(2.3, 4.9, 7.8, 3.2)",
|
|
"Vector4 cast to String should work as expected.");
|
|
CHECK_MESSAGE(
|
|
((String)decimal2) == "(1.2, 3.4, 5.6, 1.7)",
|
|
"Vector4 cast to String should work as expected.");
|
|
CHECK_MESSAGE(
|
|
((String)Vector4(9.7, 9.8, 9.9, -1.8)) == "(9.7, 9.8, 9.9, -1.8)",
|
|
"Vector4 cast to String should work as expected.");
|
|
#ifdef REAL_T_IS_DOUBLE
|
|
CHECK_MESSAGE(
|
|
((String)Vector4(Math_E, Math_SQRT2, Math_SQRT3, Math_SQRT3)) == "(2.71828182845905, 1.4142135623731, 1.73205080756888, 1.73205080756888)",
|
|
"Vector4 cast to String should print the correct amount of digits for real_t = double.");
|
|
#else
|
|
CHECK_MESSAGE(
|
|
((String)Vector4(Math_E, Math_SQRT2, Math_SQRT3, Math_SQRT3)) == "(2.718282, 1.414214, 1.732051, 1.732051)",
|
|
"Vector4 cast to String should print the correct amount of digits for real_t = float.");
|
|
#endif // REAL_T_IS_DOUBLE
|
|
}
|
|
|
|
TEST_CASE("[Vector4] Other methods") {
|
|
const Vector4 vector = Vector4(1.2, 3.4, 5.6, 1.6);
|
|
CHECK_MESSAGE(
|
|
vector.direction_to(Vector4()).is_equal_approx(-vector.normalized()),
|
|
"Vector4 direction_to should work as expected.");
|
|
CHECK_MESSAGE(
|
|
Vector4(1, 1, 1, 1).direction_to(Vector4(2, 2, 2, 2)).is_equal_approx(Vector4(0.5, 0.5, 0.5, 0.5)),
|
|
"Vector4 direction_to should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector.inverse().is_equal_approx(Vector4(1 / 1.2, 1 / 3.4, 1 / 5.6, 1 / 1.6)),
|
|
"Vector4 inverse should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector.posmod(2).is_equal_approx(Vector4(1.2, 1.4, 1.6, 1.6)),
|
|
"Vector4 posmod should work as expected.");
|
|
CHECK_MESSAGE(
|
|
(-vector).posmod(2).is_equal_approx(Vector4(0.8, 0.6, 0.4, 0.4)),
|
|
"Vector4 posmod should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector.posmodv(Vector4(1, 2, 3, 4)).is_equal_approx(Vector4(0.2, 1.4, 2.6, 1.6)),
|
|
"Vector4 posmodv should work as expected.");
|
|
CHECK_MESSAGE(
|
|
(-vector).posmodv(Vector4(2, 3, 4, 5)).is_equal_approx(Vector4(0.8, 2.6, 2.4, 3.4)),
|
|
"Vector4 posmodv should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector.snapped(Vector4(1, 1, 1, 1)) == Vector4(1, 3, 6, 2),
|
|
"Vector4 snapped to integers should be the same as rounding.");
|
|
CHECK_MESSAGE(
|
|
vector.snapped(Vector4(0.25, 0.25, 0.25, 0.25)) == Vector4(1.25, 3.5, 5.5, 1.5),
|
|
"Vector4 snapped to 0.25 should give exact results.");
|
|
}
|
|
|
|
TEST_CASE("[Vector4] Rounding methods") {
|
|
const Vector4 vector1 = Vector4(1.2, 3.4, 5.6, 1.6);
|
|
const Vector4 vector2 = Vector4(1.2, -3.4, -5.6, -1.6);
|
|
CHECK_MESSAGE(
|
|
vector1.abs() == vector1,
|
|
"Vector4 abs should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector2.abs() == vector1,
|
|
"Vector4 abs should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector1.ceil() == Vector4(2, 4, 6, 2),
|
|
"Vector4 ceil should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector2.ceil() == Vector4(2, -3, -5, -1),
|
|
"Vector4 ceil should work as expected.");
|
|
|
|
CHECK_MESSAGE(
|
|
vector1.floor() == Vector4(1, 3, 5, 1),
|
|
"Vector4 floor should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector2.floor() == Vector4(1, -4, -6, -2),
|
|
"Vector4 floor should work as expected.");
|
|
|
|
CHECK_MESSAGE(
|
|
vector1.round() == Vector4(1, 3, 6, 2),
|
|
"Vector4 round should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector2.round() == Vector4(1, -3, -6, -2),
|
|
"Vector4 round should work as expected.");
|
|
|
|
CHECK_MESSAGE(
|
|
vector1.sign() == Vector4(1, 1, 1, 1),
|
|
"Vector4 sign should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector2.sign() == Vector4(1, -1, -1, -1),
|
|
"Vector4 sign should work as expected.");
|
|
}
|
|
|
|
TEST_CASE("[Vector4] Linear algebra methods") {
|
|
const Vector4 vector_x = Vector4(1, 0, 0, 0);
|
|
const Vector4 vector_y = Vector4(0, 1, 0, 0);
|
|
const Vector4 vector1 = Vector4(1.7, 2.3, 1, 9.1);
|
|
const Vector4 vector2 = Vector4(-8.2, -16, 3, 2.4);
|
|
|
|
CHECK_MESSAGE(
|
|
vector_x.dot(vector_y) == 0.0,
|
|
"Vector4 dot product of perpendicular vectors should be zero.");
|
|
CHECK_MESSAGE(
|
|
vector_x.dot(vector_x) == 1.0,
|
|
"Vector4 dot product of identical unit vectors should be one.");
|
|
CHECK_MESSAGE(
|
|
(vector_x * 10).dot(vector_x * 10) == 100.0,
|
|
"Vector4 dot product of same direction vectors should behave as expected.");
|
|
CHECK_MESSAGE(
|
|
(vector1 * 2).dot(vector2 * 4) == doctest::Approx((real_t)-25.9 * 8),
|
|
"Vector4 dot product should work as expected.");
|
|
}
|
|
|
|
TEST_CASE("[Vector4] Finite number checks") {
|
|
const double infinite[] = { NAN, INFINITY, -INFINITY };
|
|
|
|
CHECK_MESSAGE(
|
|
Vector4(0, 1, 2, 3).is_finite(),
|
|
"Vector4(0, 1, 2, 3) should be finite");
|
|
|
|
for (double x : infinite) {
|
|
CHECK_FALSE_MESSAGE(
|
|
Vector4(x, 1, 2, 3).is_finite(),
|
|
"Vector4 with one component infinite should not be finite.");
|
|
CHECK_FALSE_MESSAGE(
|
|
Vector4(0, x, 2, 3).is_finite(),
|
|
"Vector4 with one component infinite should not be finite.");
|
|
CHECK_FALSE_MESSAGE(
|
|
Vector4(0, 1, x, 3).is_finite(),
|
|
"Vector4 with one component infinite should not be finite.");
|
|
CHECK_FALSE_MESSAGE(
|
|
Vector4(0, 1, 2, x).is_finite(),
|
|
"Vector4 with one component infinite should not be finite.");
|
|
}
|
|
|
|
for (double x : infinite) {
|
|
for (double y : infinite) {
|
|
CHECK_FALSE_MESSAGE(
|
|
Vector4(x, y, 2, 3).is_finite(),
|
|
"Vector4 with two components infinite should not be finite.");
|
|
CHECK_FALSE_MESSAGE(
|
|
Vector4(x, 1, y, 3).is_finite(),
|
|
"Vector4 with two components infinite should not be finite.");
|
|
CHECK_FALSE_MESSAGE(
|
|
Vector4(x, 1, 2, y).is_finite(),
|
|
"Vector4 with two components infinite should not be finite.");
|
|
CHECK_FALSE_MESSAGE(
|
|
Vector4(0, x, y, 3).is_finite(),
|
|
"Vector4 with two components infinite should not be finite.");
|
|
CHECK_FALSE_MESSAGE(
|
|
Vector4(0, x, 2, y).is_finite(),
|
|
"Vector4 with two components infinite should not be finite.");
|
|
CHECK_FALSE_MESSAGE(
|
|
Vector4(0, 1, x, y).is_finite(),
|
|
"Vector4 with two components infinite should not be finite.");
|
|
}
|
|
}
|
|
|
|
for (double x : infinite) {
|
|
for (double y : infinite) {
|
|
for (double z : infinite) {
|
|
CHECK_FALSE_MESSAGE(
|
|
Vector4(0, x, y, z).is_finite(),
|
|
"Vector4 with three components infinite should not be finite.");
|
|
CHECK_FALSE_MESSAGE(
|
|
Vector4(x, 1, y, z).is_finite(),
|
|
"Vector4 with three components infinite should not be finite.");
|
|
CHECK_FALSE_MESSAGE(
|
|
Vector4(x, y, 2, z).is_finite(),
|
|
"Vector4 with three components infinite should not be finite.");
|
|
CHECK_FALSE_MESSAGE(
|
|
Vector4(x, y, z, 3).is_finite(),
|
|
"Vector4 with three components infinite should not be finite.");
|
|
}
|
|
}
|
|
}
|
|
|
|
for (double x : infinite) {
|
|
for (double y : infinite) {
|
|
for (double z : infinite) {
|
|
for (double w : infinite) {
|
|
CHECK_FALSE_MESSAGE(
|
|
Vector4(x, y, z, w).is_finite(),
|
|
"Vector4 with four components infinite should not be finite.");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace TestVector4
|
|
|
|
#endif // TEST_VECTOR4_H
|