e12c89e8c9
Document version and how to extract sources in thirdparty/README.md. Drop unnecessary CMake and Premake files. Simplify SCsub, drop unused one.
823 lines
22 KiB
C++
823 lines
22 KiB
C++
/*
|
|
Bullet Continuous Collision Detection and Physics Library
|
|
Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
///btDbvtBroadphase implementation by Nathanael Presson
|
|
|
|
#include "btDbvtBroadphase.h"
|
|
#include "LinearMath/btThreads.h"
|
|
|
|
//
|
|
// Profiling
|
|
//
|
|
|
|
#if DBVT_BP_PROFILE||DBVT_BP_ENABLE_BENCHMARK
|
|
#include <stdio.h>
|
|
#endif
|
|
|
|
#if DBVT_BP_PROFILE
|
|
struct ProfileScope
|
|
{
|
|
__forceinline ProfileScope(btClock& clock,unsigned long& value) :
|
|
m_clock(&clock),m_value(&value),m_base(clock.getTimeMicroseconds())
|
|
{
|
|
}
|
|
__forceinline ~ProfileScope()
|
|
{
|
|
(*m_value)+=m_clock->getTimeMicroseconds()-m_base;
|
|
}
|
|
btClock* m_clock;
|
|
unsigned long* m_value;
|
|
unsigned long m_base;
|
|
};
|
|
#define SPC(_value_) ProfileScope spc_scope(m_clock,_value_)
|
|
#else
|
|
#define SPC(_value_)
|
|
#endif
|
|
|
|
//
|
|
// Helpers
|
|
//
|
|
|
|
//
|
|
template <typename T>
|
|
static inline void listappend(T* item,T*& list)
|
|
{
|
|
item->links[0]=0;
|
|
item->links[1]=list;
|
|
if(list) list->links[0]=item;
|
|
list=item;
|
|
}
|
|
|
|
//
|
|
template <typename T>
|
|
static inline void listremove(T* item,T*& list)
|
|
{
|
|
if(item->links[0]) item->links[0]->links[1]=item->links[1]; else list=item->links[1];
|
|
if(item->links[1]) item->links[1]->links[0]=item->links[0];
|
|
}
|
|
|
|
//
|
|
template <typename T>
|
|
static inline int listcount(T* root)
|
|
{
|
|
int n=0;
|
|
while(root) { ++n;root=root->links[1]; }
|
|
return(n);
|
|
}
|
|
|
|
//
|
|
template <typename T>
|
|
static inline void clear(T& value)
|
|
{
|
|
static const struct ZeroDummy : T {} zerodummy;
|
|
value=zerodummy;
|
|
}
|
|
|
|
//
|
|
// Colliders
|
|
//
|
|
|
|
/* Tree collider */
|
|
struct btDbvtTreeCollider : btDbvt::ICollide
|
|
{
|
|
btDbvtBroadphase* pbp;
|
|
btDbvtProxy* proxy;
|
|
btDbvtTreeCollider(btDbvtBroadphase* p) : pbp(p) {}
|
|
void Process(const btDbvtNode* na,const btDbvtNode* nb)
|
|
{
|
|
if(na!=nb)
|
|
{
|
|
btDbvtProxy* pa=(btDbvtProxy*)na->data;
|
|
btDbvtProxy* pb=(btDbvtProxy*)nb->data;
|
|
#if DBVT_BP_SORTPAIRS
|
|
if(pa->m_uniqueId>pb->m_uniqueId)
|
|
btSwap(pa,pb);
|
|
#endif
|
|
pbp->m_paircache->addOverlappingPair(pa,pb);
|
|
++pbp->m_newpairs;
|
|
}
|
|
}
|
|
void Process(const btDbvtNode* n)
|
|
{
|
|
Process(n,proxy->leaf);
|
|
}
|
|
};
|
|
|
|
//
|
|
// btDbvtBroadphase
|
|
//
|
|
|
|
//
|
|
btDbvtBroadphase::btDbvtBroadphase(btOverlappingPairCache* paircache)
|
|
{
|
|
m_deferedcollide = false;
|
|
m_needcleanup = true;
|
|
m_releasepaircache = (paircache!=0)?false:true;
|
|
m_prediction = 0;
|
|
m_stageCurrent = 0;
|
|
m_fixedleft = 0;
|
|
m_fupdates = 1;
|
|
m_dupdates = 0;
|
|
m_cupdates = 10;
|
|
m_newpairs = 1;
|
|
m_updates_call = 0;
|
|
m_updates_done = 0;
|
|
m_updates_ratio = 0;
|
|
m_paircache = paircache? paircache : new(btAlignedAlloc(sizeof(btHashedOverlappingPairCache),16)) btHashedOverlappingPairCache();
|
|
m_gid = 0;
|
|
m_pid = 0;
|
|
m_cid = 0;
|
|
for(int i=0;i<=STAGECOUNT;++i)
|
|
{
|
|
m_stageRoots[i]=0;
|
|
}
|
|
#if BT_THREADSAFE
|
|
m_rayTestStacks.resize(BT_MAX_THREAD_COUNT);
|
|
#else
|
|
m_rayTestStacks.resize(1);
|
|
#endif
|
|
#if DBVT_BP_PROFILE
|
|
clear(m_profiling);
|
|
#endif
|
|
}
|
|
|
|
//
|
|
btDbvtBroadphase::~btDbvtBroadphase()
|
|
{
|
|
if(m_releasepaircache)
|
|
{
|
|
m_paircache->~btOverlappingPairCache();
|
|
btAlignedFree(m_paircache);
|
|
}
|
|
}
|
|
|
|
//
|
|
btBroadphaseProxy* btDbvtBroadphase::createProxy( const btVector3& aabbMin,
|
|
const btVector3& aabbMax,
|
|
int /*shapeType*/,
|
|
void* userPtr,
|
|
int collisionFilterGroup,
|
|
int collisionFilterMask,
|
|
btDispatcher* /*dispatcher*/)
|
|
{
|
|
btDbvtProxy* proxy=new(btAlignedAlloc(sizeof(btDbvtProxy),16)) btDbvtProxy( aabbMin,aabbMax,userPtr,
|
|
collisionFilterGroup,
|
|
collisionFilterMask);
|
|
|
|
btDbvtAabbMm aabb = btDbvtVolume::FromMM(aabbMin,aabbMax);
|
|
|
|
//bproxy->aabb = btDbvtVolume::FromMM(aabbMin,aabbMax);
|
|
proxy->stage = m_stageCurrent;
|
|
proxy->m_uniqueId = ++m_gid;
|
|
proxy->leaf = m_sets[0].insert(aabb,proxy);
|
|
listappend(proxy,m_stageRoots[m_stageCurrent]);
|
|
if(!m_deferedcollide)
|
|
{
|
|
btDbvtTreeCollider collider(this);
|
|
collider.proxy=proxy;
|
|
m_sets[0].collideTV(m_sets[0].m_root,aabb,collider);
|
|
m_sets[1].collideTV(m_sets[1].m_root,aabb,collider);
|
|
}
|
|
return(proxy);
|
|
}
|
|
|
|
//
|
|
void btDbvtBroadphase::destroyProxy( btBroadphaseProxy* absproxy,
|
|
btDispatcher* dispatcher)
|
|
{
|
|
btDbvtProxy* proxy=(btDbvtProxy*)absproxy;
|
|
if(proxy->stage==STAGECOUNT)
|
|
m_sets[1].remove(proxy->leaf);
|
|
else
|
|
m_sets[0].remove(proxy->leaf);
|
|
listremove(proxy,m_stageRoots[proxy->stage]);
|
|
m_paircache->removeOverlappingPairsContainingProxy(proxy,dispatcher);
|
|
btAlignedFree(proxy);
|
|
m_needcleanup=true;
|
|
}
|
|
|
|
void btDbvtBroadphase::getAabb(btBroadphaseProxy* absproxy,btVector3& aabbMin, btVector3& aabbMax ) const
|
|
{
|
|
btDbvtProxy* proxy=(btDbvtProxy*)absproxy;
|
|
aabbMin = proxy->m_aabbMin;
|
|
aabbMax = proxy->m_aabbMax;
|
|
}
|
|
|
|
struct BroadphaseRayTester : btDbvt::ICollide
|
|
{
|
|
btBroadphaseRayCallback& m_rayCallback;
|
|
BroadphaseRayTester(btBroadphaseRayCallback& orgCallback)
|
|
:m_rayCallback(orgCallback)
|
|
{
|
|
}
|
|
void Process(const btDbvtNode* leaf)
|
|
{
|
|
btDbvtProxy* proxy=(btDbvtProxy*)leaf->data;
|
|
m_rayCallback.process(proxy);
|
|
}
|
|
};
|
|
|
|
void btDbvtBroadphase::rayTest(const btVector3& rayFrom,const btVector3& rayTo, btBroadphaseRayCallback& rayCallback,const btVector3& aabbMin,const btVector3& aabbMax)
|
|
{
|
|
BroadphaseRayTester callback(rayCallback);
|
|
btAlignedObjectArray<const btDbvtNode*>* stack = &m_rayTestStacks[0];
|
|
#if BT_THREADSAFE
|
|
// for this function to be threadsafe, each thread must have a separate copy
|
|
// of this stack. This could be thread-local static to avoid dynamic allocations,
|
|
// instead of just a local.
|
|
int threadIndex = btGetCurrentThreadIndex();
|
|
btAlignedObjectArray<const btDbvtNode*> localStack;
|
|
if (threadIndex < m_rayTestStacks.size())
|
|
{
|
|
// use per-thread preallocated stack if possible to avoid dynamic allocations
|
|
stack = &m_rayTestStacks[threadIndex];
|
|
}
|
|
else
|
|
{
|
|
stack = &localStack;
|
|
}
|
|
#endif
|
|
|
|
m_sets[0].rayTestInternal( m_sets[0].m_root,
|
|
rayFrom,
|
|
rayTo,
|
|
rayCallback.m_rayDirectionInverse,
|
|
rayCallback.m_signs,
|
|
rayCallback.m_lambda_max,
|
|
aabbMin,
|
|
aabbMax,
|
|
*stack,
|
|
callback);
|
|
|
|
m_sets[1].rayTestInternal( m_sets[1].m_root,
|
|
rayFrom,
|
|
rayTo,
|
|
rayCallback.m_rayDirectionInverse,
|
|
rayCallback.m_signs,
|
|
rayCallback.m_lambda_max,
|
|
aabbMin,
|
|
aabbMax,
|
|
*stack,
|
|
callback);
|
|
|
|
}
|
|
|
|
|
|
struct BroadphaseAabbTester : btDbvt::ICollide
|
|
{
|
|
btBroadphaseAabbCallback& m_aabbCallback;
|
|
BroadphaseAabbTester(btBroadphaseAabbCallback& orgCallback)
|
|
:m_aabbCallback(orgCallback)
|
|
{
|
|
}
|
|
void Process(const btDbvtNode* leaf)
|
|
{
|
|
btDbvtProxy* proxy=(btDbvtProxy*)leaf->data;
|
|
m_aabbCallback.process(proxy);
|
|
}
|
|
};
|
|
|
|
void btDbvtBroadphase::aabbTest(const btVector3& aabbMin,const btVector3& aabbMax,btBroadphaseAabbCallback& aabbCallback)
|
|
{
|
|
BroadphaseAabbTester callback(aabbCallback);
|
|
|
|
const ATTRIBUTE_ALIGNED16(btDbvtVolume) bounds=btDbvtVolume::FromMM(aabbMin,aabbMax);
|
|
//process all children, that overlap with the given AABB bounds
|
|
m_sets[0].collideTV(m_sets[0].m_root,bounds,callback);
|
|
m_sets[1].collideTV(m_sets[1].m_root,bounds,callback);
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
void btDbvtBroadphase::setAabb( btBroadphaseProxy* absproxy,
|
|
const btVector3& aabbMin,
|
|
const btVector3& aabbMax,
|
|
btDispatcher* /*dispatcher*/)
|
|
{
|
|
btDbvtProxy* proxy=(btDbvtProxy*)absproxy;
|
|
ATTRIBUTE_ALIGNED16(btDbvtVolume) aabb=btDbvtVolume::FromMM(aabbMin,aabbMax);
|
|
#if DBVT_BP_PREVENTFALSEUPDATE
|
|
if(NotEqual(aabb,proxy->leaf->volume))
|
|
#endif
|
|
{
|
|
bool docollide=false;
|
|
if(proxy->stage==STAGECOUNT)
|
|
{/* fixed -> dynamic set */
|
|
m_sets[1].remove(proxy->leaf);
|
|
proxy->leaf=m_sets[0].insert(aabb,proxy);
|
|
docollide=true;
|
|
}
|
|
else
|
|
{/* dynamic set */
|
|
++m_updates_call;
|
|
if(Intersect(proxy->leaf->volume,aabb))
|
|
{/* Moving */
|
|
|
|
const btVector3 delta=aabbMin-proxy->m_aabbMin;
|
|
btVector3 velocity(((proxy->m_aabbMax-proxy->m_aabbMin)/2)*m_prediction);
|
|
if(delta[0]<0) velocity[0]=-velocity[0];
|
|
if(delta[1]<0) velocity[1]=-velocity[1];
|
|
if(delta[2]<0) velocity[2]=-velocity[2];
|
|
if (
|
|
#ifdef DBVT_BP_MARGIN
|
|
m_sets[0].update(proxy->leaf,aabb,velocity,DBVT_BP_MARGIN)
|
|
#else
|
|
m_sets[0].update(proxy->leaf,aabb,velocity)
|
|
#endif
|
|
)
|
|
{
|
|
++m_updates_done;
|
|
docollide=true;
|
|
}
|
|
}
|
|
else
|
|
{/* Teleporting */
|
|
m_sets[0].update(proxy->leaf,aabb);
|
|
++m_updates_done;
|
|
docollide=true;
|
|
}
|
|
}
|
|
listremove(proxy,m_stageRoots[proxy->stage]);
|
|
proxy->m_aabbMin = aabbMin;
|
|
proxy->m_aabbMax = aabbMax;
|
|
proxy->stage = m_stageCurrent;
|
|
listappend(proxy,m_stageRoots[m_stageCurrent]);
|
|
if(docollide)
|
|
{
|
|
m_needcleanup=true;
|
|
if(!m_deferedcollide)
|
|
{
|
|
btDbvtTreeCollider collider(this);
|
|
m_sets[1].collideTTpersistentStack(m_sets[1].m_root,proxy->leaf,collider);
|
|
m_sets[0].collideTTpersistentStack(m_sets[0].m_root,proxy->leaf,collider);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//
|
|
void btDbvtBroadphase::setAabbForceUpdate( btBroadphaseProxy* absproxy,
|
|
const btVector3& aabbMin,
|
|
const btVector3& aabbMax,
|
|
btDispatcher* /*dispatcher*/)
|
|
{
|
|
btDbvtProxy* proxy=(btDbvtProxy*)absproxy;
|
|
ATTRIBUTE_ALIGNED16(btDbvtVolume) aabb=btDbvtVolume::FromMM(aabbMin,aabbMax);
|
|
bool docollide=false;
|
|
if(proxy->stage==STAGECOUNT)
|
|
{/* fixed -> dynamic set */
|
|
m_sets[1].remove(proxy->leaf);
|
|
proxy->leaf=m_sets[0].insert(aabb,proxy);
|
|
docollide=true;
|
|
}
|
|
else
|
|
{/* dynamic set */
|
|
++m_updates_call;
|
|
/* Teleporting */
|
|
m_sets[0].update(proxy->leaf,aabb);
|
|
++m_updates_done;
|
|
docollide=true;
|
|
}
|
|
listremove(proxy,m_stageRoots[proxy->stage]);
|
|
proxy->m_aabbMin = aabbMin;
|
|
proxy->m_aabbMax = aabbMax;
|
|
proxy->stage = m_stageCurrent;
|
|
listappend(proxy,m_stageRoots[m_stageCurrent]);
|
|
if(docollide)
|
|
{
|
|
m_needcleanup=true;
|
|
if(!m_deferedcollide)
|
|
{
|
|
btDbvtTreeCollider collider(this);
|
|
m_sets[1].collideTTpersistentStack(m_sets[1].m_root,proxy->leaf,collider);
|
|
m_sets[0].collideTTpersistentStack(m_sets[0].m_root,proxy->leaf,collider);
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
void btDbvtBroadphase::calculateOverlappingPairs(btDispatcher* dispatcher)
|
|
{
|
|
collide(dispatcher);
|
|
#if DBVT_BP_PROFILE
|
|
if(0==(m_pid%DBVT_BP_PROFILING_RATE))
|
|
{
|
|
printf("fixed(%u) dynamics(%u) pairs(%u)\r\n",m_sets[1].m_leaves,m_sets[0].m_leaves,m_paircache->getNumOverlappingPairs());
|
|
unsigned int total=m_profiling.m_total;
|
|
if(total<=0) total=1;
|
|
printf("ddcollide: %u%% (%uus)\r\n",(50+m_profiling.m_ddcollide*100)/total,m_profiling.m_ddcollide/DBVT_BP_PROFILING_RATE);
|
|
printf("fdcollide: %u%% (%uus)\r\n",(50+m_profiling.m_fdcollide*100)/total,m_profiling.m_fdcollide/DBVT_BP_PROFILING_RATE);
|
|
printf("cleanup: %u%% (%uus)\r\n",(50+m_profiling.m_cleanup*100)/total,m_profiling.m_cleanup/DBVT_BP_PROFILING_RATE);
|
|
printf("total: %uus\r\n",total/DBVT_BP_PROFILING_RATE);
|
|
const unsigned long sum=m_profiling.m_ddcollide+
|
|
m_profiling.m_fdcollide+
|
|
m_profiling.m_cleanup;
|
|
printf("leaked: %u%% (%uus)\r\n",100-((50+sum*100)/total),(total-sum)/DBVT_BP_PROFILING_RATE);
|
|
printf("job counts: %u%%\r\n",(m_profiling.m_jobcount*100)/((m_sets[0].m_leaves+m_sets[1].m_leaves)*DBVT_BP_PROFILING_RATE));
|
|
clear(m_profiling);
|
|
m_clock.reset();
|
|
}
|
|
#endif
|
|
|
|
performDeferredRemoval(dispatcher);
|
|
|
|
}
|
|
|
|
void btDbvtBroadphase::performDeferredRemoval(btDispatcher* dispatcher)
|
|
{
|
|
|
|
if (m_paircache->hasDeferredRemoval())
|
|
{
|
|
|
|
btBroadphasePairArray& overlappingPairArray = m_paircache->getOverlappingPairArray();
|
|
|
|
//perform a sort, to find duplicates and to sort 'invalid' pairs to the end
|
|
overlappingPairArray.quickSort(btBroadphasePairSortPredicate());
|
|
|
|
int invalidPair = 0;
|
|
|
|
|
|
int i;
|
|
|
|
btBroadphasePair previousPair;
|
|
previousPair.m_pProxy0 = 0;
|
|
previousPair.m_pProxy1 = 0;
|
|
previousPair.m_algorithm = 0;
|
|
|
|
|
|
for (i=0;i<overlappingPairArray.size();i++)
|
|
{
|
|
|
|
btBroadphasePair& pair = overlappingPairArray[i];
|
|
|
|
bool isDuplicate = (pair == previousPair);
|
|
|
|
previousPair = pair;
|
|
|
|
bool needsRemoval = false;
|
|
|
|
if (!isDuplicate)
|
|
{
|
|
//important to perform AABB check that is consistent with the broadphase
|
|
btDbvtProxy* pa=(btDbvtProxy*)pair.m_pProxy0;
|
|
btDbvtProxy* pb=(btDbvtProxy*)pair.m_pProxy1;
|
|
bool hasOverlap = Intersect(pa->leaf->volume,pb->leaf->volume);
|
|
|
|
if (hasOverlap)
|
|
{
|
|
needsRemoval = false;
|
|
} else
|
|
{
|
|
needsRemoval = true;
|
|
}
|
|
} else
|
|
{
|
|
//remove duplicate
|
|
needsRemoval = true;
|
|
//should have no algorithm
|
|
btAssert(!pair.m_algorithm);
|
|
}
|
|
|
|
if (needsRemoval)
|
|
{
|
|
m_paircache->cleanOverlappingPair(pair,dispatcher);
|
|
|
|
pair.m_pProxy0 = 0;
|
|
pair.m_pProxy1 = 0;
|
|
invalidPair++;
|
|
}
|
|
|
|
}
|
|
|
|
//perform a sort, to sort 'invalid' pairs to the end
|
|
overlappingPairArray.quickSort(btBroadphasePairSortPredicate());
|
|
overlappingPairArray.resize(overlappingPairArray.size() - invalidPair);
|
|
}
|
|
}
|
|
|
|
//
|
|
void btDbvtBroadphase::collide(btDispatcher* dispatcher)
|
|
{
|
|
/*printf("---------------------------------------------------------\n");
|
|
printf("m_sets[0].m_leaves=%d\n",m_sets[0].m_leaves);
|
|
printf("m_sets[1].m_leaves=%d\n",m_sets[1].m_leaves);
|
|
printf("numPairs = %d\n",getOverlappingPairCache()->getNumOverlappingPairs());
|
|
{
|
|
int i;
|
|
for (i=0;i<getOverlappingPairCache()->getNumOverlappingPairs();i++)
|
|
{
|
|
printf("pair[%d]=(%d,%d),",i,getOverlappingPairCache()->getOverlappingPairArray()[i].m_pProxy0->getUid(),
|
|
getOverlappingPairCache()->getOverlappingPairArray()[i].m_pProxy1->getUid());
|
|
}
|
|
printf("\n");
|
|
}
|
|
*/
|
|
|
|
|
|
|
|
SPC(m_profiling.m_total);
|
|
/* optimize */
|
|
m_sets[0].optimizeIncremental(1+(m_sets[0].m_leaves*m_dupdates)/100);
|
|
if(m_fixedleft)
|
|
{
|
|
const int count=1+(m_sets[1].m_leaves*m_fupdates)/100;
|
|
m_sets[1].optimizeIncremental(1+(m_sets[1].m_leaves*m_fupdates)/100);
|
|
m_fixedleft=btMax<int>(0,m_fixedleft-count);
|
|
}
|
|
/* dynamic -> fixed set */
|
|
m_stageCurrent=(m_stageCurrent+1)%STAGECOUNT;
|
|
btDbvtProxy* current=m_stageRoots[m_stageCurrent];
|
|
if(current)
|
|
{
|
|
#if DBVT_BP_ACCURATESLEEPING
|
|
btDbvtTreeCollider collider(this);
|
|
#endif
|
|
do {
|
|
btDbvtProxy* next=current->links[1];
|
|
listremove(current,m_stageRoots[current->stage]);
|
|
listappend(current,m_stageRoots[STAGECOUNT]);
|
|
#if DBVT_BP_ACCURATESLEEPING
|
|
m_paircache->removeOverlappingPairsContainingProxy(current,dispatcher);
|
|
collider.proxy=current;
|
|
btDbvt::collideTV(m_sets[0].m_root,current->aabb,collider);
|
|
btDbvt::collideTV(m_sets[1].m_root,current->aabb,collider);
|
|
#endif
|
|
m_sets[0].remove(current->leaf);
|
|
ATTRIBUTE_ALIGNED16(btDbvtVolume) curAabb=btDbvtVolume::FromMM(current->m_aabbMin,current->m_aabbMax);
|
|
current->leaf = m_sets[1].insert(curAabb,current);
|
|
current->stage = STAGECOUNT;
|
|
current = next;
|
|
} while(current);
|
|
m_fixedleft=m_sets[1].m_leaves;
|
|
m_needcleanup=true;
|
|
}
|
|
/* collide dynamics */
|
|
{
|
|
btDbvtTreeCollider collider(this);
|
|
if(m_deferedcollide)
|
|
{
|
|
SPC(m_profiling.m_fdcollide);
|
|
m_sets[0].collideTTpersistentStack(m_sets[0].m_root,m_sets[1].m_root,collider);
|
|
}
|
|
if(m_deferedcollide)
|
|
{
|
|
SPC(m_profiling.m_ddcollide);
|
|
m_sets[0].collideTTpersistentStack(m_sets[0].m_root,m_sets[0].m_root,collider);
|
|
}
|
|
}
|
|
/* clean up */
|
|
if(m_needcleanup)
|
|
{
|
|
SPC(m_profiling.m_cleanup);
|
|
btBroadphasePairArray& pairs=m_paircache->getOverlappingPairArray();
|
|
if(pairs.size()>0)
|
|
{
|
|
|
|
int ni=btMin(pairs.size(),btMax<int>(m_newpairs,(pairs.size()*m_cupdates)/100));
|
|
for(int i=0;i<ni;++i)
|
|
{
|
|
btBroadphasePair& p=pairs[(m_cid+i)%pairs.size()];
|
|
btDbvtProxy* pa=(btDbvtProxy*)p.m_pProxy0;
|
|
btDbvtProxy* pb=(btDbvtProxy*)p.m_pProxy1;
|
|
if(!Intersect(pa->leaf->volume,pb->leaf->volume))
|
|
{
|
|
#if DBVT_BP_SORTPAIRS
|
|
if(pa->m_uniqueId>pb->m_uniqueId)
|
|
btSwap(pa,pb);
|
|
#endif
|
|
m_paircache->removeOverlappingPair(pa,pb,dispatcher);
|
|
--ni;--i;
|
|
}
|
|
}
|
|
if(pairs.size()>0) m_cid=(m_cid+ni)%pairs.size(); else m_cid=0;
|
|
}
|
|
}
|
|
++m_pid;
|
|
m_newpairs=1;
|
|
m_needcleanup=false;
|
|
if(m_updates_call>0)
|
|
{ m_updates_ratio=m_updates_done/(btScalar)m_updates_call; }
|
|
else
|
|
{ m_updates_ratio=0; }
|
|
m_updates_done/=2;
|
|
m_updates_call/=2;
|
|
}
|
|
|
|
//
|
|
void btDbvtBroadphase::optimize()
|
|
{
|
|
m_sets[0].optimizeTopDown();
|
|
m_sets[1].optimizeTopDown();
|
|
}
|
|
|
|
//
|
|
btOverlappingPairCache* btDbvtBroadphase::getOverlappingPairCache()
|
|
{
|
|
return(m_paircache);
|
|
}
|
|
|
|
//
|
|
const btOverlappingPairCache* btDbvtBroadphase::getOverlappingPairCache() const
|
|
{
|
|
return(m_paircache);
|
|
}
|
|
|
|
//
|
|
void btDbvtBroadphase::getBroadphaseAabb(btVector3& aabbMin,btVector3& aabbMax) const
|
|
{
|
|
|
|
ATTRIBUTE_ALIGNED16(btDbvtVolume) bounds;
|
|
|
|
if(!m_sets[0].empty())
|
|
if(!m_sets[1].empty()) Merge( m_sets[0].m_root->volume,
|
|
m_sets[1].m_root->volume,bounds);
|
|
else
|
|
bounds=m_sets[0].m_root->volume;
|
|
else if(!m_sets[1].empty()) bounds=m_sets[1].m_root->volume;
|
|
else
|
|
bounds=btDbvtVolume::FromCR(btVector3(0,0,0),0);
|
|
aabbMin=bounds.Mins();
|
|
aabbMax=bounds.Maxs();
|
|
}
|
|
|
|
void btDbvtBroadphase::resetPool(btDispatcher* dispatcher)
|
|
{
|
|
|
|
int totalObjects = m_sets[0].m_leaves + m_sets[1].m_leaves;
|
|
if (!totalObjects)
|
|
{
|
|
//reset internal dynamic tree data structures
|
|
m_sets[0].clear();
|
|
m_sets[1].clear();
|
|
|
|
m_deferedcollide = false;
|
|
m_needcleanup = true;
|
|
m_stageCurrent = 0;
|
|
m_fixedleft = 0;
|
|
m_fupdates = 1;
|
|
m_dupdates = 0;
|
|
m_cupdates = 10;
|
|
m_newpairs = 1;
|
|
m_updates_call = 0;
|
|
m_updates_done = 0;
|
|
m_updates_ratio = 0;
|
|
|
|
m_gid = 0;
|
|
m_pid = 0;
|
|
m_cid = 0;
|
|
for(int i=0;i<=STAGECOUNT;++i)
|
|
{
|
|
m_stageRoots[i]=0;
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
void btDbvtBroadphase::printStats()
|
|
{}
|
|
|
|
//
|
|
#if DBVT_BP_ENABLE_BENCHMARK
|
|
|
|
struct btBroadphaseBenchmark
|
|
{
|
|
struct Experiment
|
|
{
|
|
const char* name;
|
|
int object_count;
|
|
int update_count;
|
|
int spawn_count;
|
|
int iterations;
|
|
btScalar speed;
|
|
btScalar amplitude;
|
|
};
|
|
struct Object
|
|
{
|
|
btVector3 center;
|
|
btVector3 extents;
|
|
btBroadphaseProxy* proxy;
|
|
btScalar time;
|
|
void update(btScalar speed,btScalar amplitude,btBroadphaseInterface* pbi)
|
|
{
|
|
time += speed;
|
|
center[0] = btCos(time*(btScalar)2.17)*amplitude+
|
|
btSin(time)*amplitude/2;
|
|
center[1] = btCos(time*(btScalar)1.38)*amplitude+
|
|
btSin(time)*amplitude;
|
|
center[2] = btSin(time*(btScalar)0.777)*amplitude;
|
|
pbi->setAabb(proxy,center-extents,center+extents,0);
|
|
}
|
|
};
|
|
static int UnsignedRand(int range=RAND_MAX-1) { return(rand()%(range+1)); }
|
|
static btScalar UnitRand() { return(UnsignedRand(16384)/(btScalar)16384); }
|
|
static void OutputTime(const char* name,btClock& c,unsigned count=0)
|
|
{
|
|
const unsigned long us=c.getTimeMicroseconds();
|
|
const unsigned long ms=(us+500)/1000;
|
|
const btScalar sec=us/(btScalar)(1000*1000);
|
|
if(count>0)
|
|
printf("%s : %u us (%u ms), %.2f/s\r\n",name,us,ms,count/sec);
|
|
else
|
|
printf("%s : %u us (%u ms)\r\n",name,us,ms);
|
|
}
|
|
};
|
|
|
|
void btDbvtBroadphase::benchmark(btBroadphaseInterface* pbi)
|
|
{
|
|
static const btBroadphaseBenchmark::Experiment experiments[]=
|
|
{
|
|
{"1024o.10%",1024,10,0,8192,(btScalar)0.005,(btScalar)100},
|
|
/*{"4096o.10%",4096,10,0,8192,(btScalar)0.005,(btScalar)100},
|
|
{"8192o.10%",8192,10,0,8192,(btScalar)0.005,(btScalar)100},*/
|
|
};
|
|
static const int nexperiments=sizeof(experiments)/sizeof(experiments[0]);
|
|
btAlignedObjectArray<btBroadphaseBenchmark::Object*> objects;
|
|
btClock wallclock;
|
|
/* Begin */
|
|
for(int iexp=0;iexp<nexperiments;++iexp)
|
|
{
|
|
const btBroadphaseBenchmark::Experiment& experiment=experiments[iexp];
|
|
const int object_count=experiment.object_count;
|
|
const int update_count=(object_count*experiment.update_count)/100;
|
|
const int spawn_count=(object_count*experiment.spawn_count)/100;
|
|
const btScalar speed=experiment.speed;
|
|
const btScalar amplitude=experiment.amplitude;
|
|
printf("Experiment #%u '%s':\r\n",iexp,experiment.name);
|
|
printf("\tObjects: %u\r\n",object_count);
|
|
printf("\tUpdate: %u\r\n",update_count);
|
|
printf("\tSpawn: %u\r\n",spawn_count);
|
|
printf("\tSpeed: %f\r\n",speed);
|
|
printf("\tAmplitude: %f\r\n",amplitude);
|
|
srand(180673);
|
|
/* Create objects */
|
|
wallclock.reset();
|
|
objects.reserve(object_count);
|
|
for(int i=0;i<object_count;++i)
|
|
{
|
|
btBroadphaseBenchmark::Object* po=new btBroadphaseBenchmark::Object();
|
|
po->center[0]=btBroadphaseBenchmark::UnitRand()*50;
|
|
po->center[1]=btBroadphaseBenchmark::UnitRand()*50;
|
|
po->center[2]=btBroadphaseBenchmark::UnitRand()*50;
|
|
po->extents[0]=btBroadphaseBenchmark::UnitRand()*2+2;
|
|
po->extents[1]=btBroadphaseBenchmark::UnitRand()*2+2;
|
|
po->extents[2]=btBroadphaseBenchmark::UnitRand()*2+2;
|
|
po->time=btBroadphaseBenchmark::UnitRand()*2000;
|
|
po->proxy=pbi->createProxy(po->center-po->extents,po->center+po->extents,0,po,1,1,0,0);
|
|
objects.push_back(po);
|
|
}
|
|
btBroadphaseBenchmark::OutputTime("\tInitialization",wallclock);
|
|
/* First update */
|
|
wallclock.reset();
|
|
for(int i=0;i<objects.size();++i)
|
|
{
|
|
objects[i]->update(speed,amplitude,pbi);
|
|
}
|
|
btBroadphaseBenchmark::OutputTime("\tFirst update",wallclock);
|
|
/* Updates */
|
|
wallclock.reset();
|
|
for(int i=0;i<experiment.iterations;++i)
|
|
{
|
|
for(int j=0;j<update_count;++j)
|
|
{
|
|
objects[j]->update(speed,amplitude,pbi);
|
|
}
|
|
pbi->calculateOverlappingPairs(0);
|
|
}
|
|
btBroadphaseBenchmark::OutputTime("\tUpdate",wallclock,experiment.iterations);
|
|
/* Clean up */
|
|
wallclock.reset();
|
|
for(int i=0;i<objects.size();++i)
|
|
{
|
|
pbi->destroyProxy(objects[i]->proxy,0);
|
|
delete objects[i];
|
|
}
|
|
objects.resize(0);
|
|
btBroadphaseBenchmark::OutputTime("\tRelease",wallclock);
|
|
}
|
|
|
|
}
|
|
#else
|
|
void btDbvtBroadphase::benchmark(btBroadphaseInterface*)
|
|
{}
|
|
#endif
|
|
|
|
#if DBVT_BP_PROFILE
|
|
#undef SPC
|
|
#endif
|
|
|