bf05309af7
As requested by reduz, an import of thekla_atlas into thirdparty/
432 lines
12 KiB
C++
432 lines
12 KiB
C++
// This code is in the public domain -- Ignacio Castaño <castano@gmail.com>
|
|
|
|
#include "Sphere.h"
|
|
#include "Vector.inl"
|
|
#include "Box.inl"
|
|
|
|
#include <float.h> // FLT_MAX
|
|
|
|
using namespace nv;
|
|
|
|
const float radiusEpsilon = 1e-4f;
|
|
|
|
Sphere::Sphere(Vector3::Arg p0, Vector3::Arg p1)
|
|
{
|
|
if (p0 == p1) *this = Sphere(p0);
|
|
else {
|
|
center = (p0 + p1) * 0.5f;
|
|
radius = length(p0 - center) + radiusEpsilon;
|
|
|
|
float d0 = length(p0 - center);
|
|
float d1 = length(p1 - center);
|
|
nvDebugCheck(equal(d0, radius - radiusEpsilon));
|
|
nvDebugCheck(equal(d1, radius - radiusEpsilon));
|
|
}
|
|
}
|
|
|
|
Sphere::Sphere(Vector3::Arg p0, Vector3::Arg p1, Vector3::Arg p2)
|
|
{
|
|
if (p0 == p1 || p0 == p2) *this = Sphere(p1, p2);
|
|
else if (p1 == p2) *this = Sphere(p0, p2);
|
|
else {
|
|
Vector3 a = p1 - p0;
|
|
Vector3 b = p2 - p0;
|
|
Vector3 c = cross(a, b);
|
|
|
|
float denominator = 2.0f * lengthSquared(c);
|
|
|
|
if (!isZero(denominator)) {
|
|
Vector3 d = (lengthSquared(b) * cross(c, a) + lengthSquared(a) * cross(b, c)) / denominator;
|
|
|
|
center = p0 + d;
|
|
radius = length(d) + radiusEpsilon;
|
|
|
|
float d0 = length(p0 - center);
|
|
float d1 = length(p1 - center);
|
|
float d2 = length(p2 - center);
|
|
nvDebugCheck(equal(d0, radius - radiusEpsilon));
|
|
nvDebugCheck(equal(d1, radius - radiusEpsilon));
|
|
nvDebugCheck(equal(d2, radius - radiusEpsilon));
|
|
}
|
|
else {
|
|
// @@ This is a specialization of the code below, but really, the only thing we need to do here is to find the two most distant points.
|
|
// Compute all possible spheres, invalidate those that do not contain the four points, keep the smallest.
|
|
Sphere s0(p1, p2);
|
|
float d0 = distanceSquared(s0, p0);
|
|
if (d0 > 0) s0.radius = NV_FLOAT_MAX;
|
|
|
|
Sphere s1(p0, p2);
|
|
float d1 = distanceSquared(s1, p1);
|
|
if (d1 > 0) s1.radius = NV_FLOAT_MAX;
|
|
|
|
Sphere s2(p0, p1);
|
|
float d2 = distanceSquared(s2, p2);
|
|
if (d2 > 0) s1.radius = NV_FLOAT_MAX;
|
|
|
|
if (s0.radius < s1.radius && s0.radius < s2.radius) {
|
|
center = s0.center;
|
|
radius = s0.radius;
|
|
}
|
|
else if (s1.radius < s2.radius) {
|
|
center = s1.center;
|
|
radius = s1.radius;
|
|
}
|
|
else {
|
|
center = s2.center;
|
|
radius = s2.radius;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Sphere::Sphere(Vector3::Arg p0, Vector3::Arg p1, Vector3::Arg p2, Vector3::Arg p3)
|
|
{
|
|
if (p0 == p1 || p0 == p2 || p0 == p3) *this = Sphere(p1, p2, p3);
|
|
else if (p1 == p2 || p1 == p3) *this = Sphere(p0, p2, p3);
|
|
else if (p2 == p3) *this = Sphere(p0, p1, p2);
|
|
else {
|
|
// @@ This only works if the points are not coplanar!
|
|
Vector3 a = p1 - p0;
|
|
Vector3 b = p2 - p0;
|
|
Vector3 c = p3 - p0;
|
|
|
|
float denominator = 2.0f * dot(c, cross(a, b)); // triple product.
|
|
|
|
if (!isZero(denominator)) {
|
|
Vector3 d = (lengthSquared(c) * cross(a, b) + lengthSquared(b) * cross(c, a) + lengthSquared(a) * cross(b, c)) / denominator;
|
|
|
|
center = p0 + d;
|
|
radius = length(d) + radiusEpsilon;
|
|
|
|
float d0 = length(p0 - center);
|
|
float d1 = length(p1 - center);
|
|
float d2 = length(p2 - center);
|
|
float d3 = length(p3 - center);
|
|
nvDebugCheck(equal(d0, radius - radiusEpsilon));
|
|
nvDebugCheck(equal(d1, radius - radiusEpsilon));
|
|
nvDebugCheck(equal(d2, radius - radiusEpsilon));
|
|
nvDebugCheck(equal(d3, radius - radiusEpsilon));
|
|
}
|
|
else {
|
|
// Compute all possible spheres, invalidate those that do not contain the four points, keep the smallest.
|
|
Sphere s0(p1, p2, p3);
|
|
float d0 = distanceSquared(s0, p0);
|
|
if (d0 > 0) s0.radius = NV_FLOAT_MAX;
|
|
|
|
Sphere s1(p0, p2, p3);
|
|
float d1 = distanceSquared(s1, p1);
|
|
if (d1 > 0) s1.radius = NV_FLOAT_MAX;
|
|
|
|
Sphere s2(p0, p1, p3);
|
|
float d2 = distanceSquared(s2, p2);
|
|
if (d2 > 0) s2.radius = NV_FLOAT_MAX;
|
|
|
|
Sphere s3(p0, p1, p2);
|
|
float d3 = distanceSquared(s3, p3);
|
|
if (d3 > 0) s2.radius = NV_FLOAT_MAX;
|
|
|
|
if (s0.radius < s1.radius && s0.radius < s2.radius && s0.radius < s3.radius) {
|
|
center = s0.center;
|
|
radius = s0.radius;
|
|
}
|
|
else if (s1.radius < s2.radius && s1.radius < s3.radius) {
|
|
center = s1.center;
|
|
radius = s1.radius;
|
|
}
|
|
else if (s1.radius < s3.radius) {
|
|
center = s2.center;
|
|
radius = s2.radius;
|
|
}
|
|
else {
|
|
center = s3.center;
|
|
radius = s3.radius;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
float nv::distanceSquared(const Sphere & sphere, const Vector3 & point)
|
|
{
|
|
return lengthSquared(sphere.center - point) - square(sphere.radius);
|
|
}
|
|
|
|
|
|
|
|
// Implementation of "MiniBall" based on:
|
|
// http://www.flipcode.com/archives/Smallest_Enclosing_Spheres.shtml
|
|
|
|
static Sphere recurseMini(const Vector3 *P[], uint p, uint b = 0)
|
|
{
|
|
Sphere MB;
|
|
|
|
switch(b)
|
|
{
|
|
case 0:
|
|
MB = Sphere(*P[0]);
|
|
break;
|
|
case 1:
|
|
MB = Sphere(*P[-1]);
|
|
break;
|
|
case 2:
|
|
MB = Sphere(*P[-1], *P[-2]);
|
|
break;
|
|
case 3:
|
|
MB = Sphere(*P[-1], *P[-2], *P[-3]);
|
|
break;
|
|
case 4:
|
|
MB = Sphere(*P[-1], *P[-2], *P[-3], *P[-4]);
|
|
return MB;
|
|
}
|
|
|
|
for (uint i = 0; i < p; i++)
|
|
{
|
|
if (distanceSquared(MB, *P[i]) > 0) // Signed square distance to sphere
|
|
{
|
|
for (uint j = i; j > 0; j--)
|
|
{
|
|
swap(P[j], P[j-1]);
|
|
}
|
|
|
|
MB = recurseMini(P + 1, i, b + 1);
|
|
}
|
|
}
|
|
|
|
return MB;
|
|
}
|
|
|
|
static bool allInside(const Sphere & sphere, const Vector3 * pointArray, const uint pointCount) {
|
|
for (uint i = 0; i < pointCount; i++) {
|
|
if (distanceSquared(sphere, pointArray[i]) >= NV_EPSILON) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
Sphere nv::miniBall(const Vector3 * pointArray, const uint pointCount)
|
|
{
|
|
nvDebugCheck(pointArray != NULL);
|
|
nvDebugCheck(pointCount > 0);
|
|
|
|
const Vector3 **L = new const Vector3*[pointCount];
|
|
|
|
for (uint i = 0; i < pointCount; i++) {
|
|
L[i] = &pointArray[i];
|
|
}
|
|
|
|
Sphere sphere = recurseMini(L, pointCount);
|
|
|
|
delete [] L;
|
|
|
|
nvDebugCheck(allInside(sphere, pointArray, pointCount));
|
|
|
|
return sphere;
|
|
}
|
|
|
|
|
|
// Approximate bounding sphere, based on "An Efficient Bounding Sphere" by Jack Ritter, from "Graphics Gems"
|
|
Sphere nv::approximateSphere_Ritter(const Vector3 * pointArray, const uint pointCount)
|
|
{
|
|
nvDebugCheck(pointArray != NULL);
|
|
nvDebugCheck(pointCount > 0);
|
|
|
|
Vector3 xmin, xmax, ymin, ymax, zmin, zmax;
|
|
|
|
xmin = xmax = ymin = ymax = zmin = zmax = pointArray[0];
|
|
|
|
// FIRST PASS: find 6 minima/maxima points
|
|
xmin.x = ymin.y = zmin.z = FLT_MAX;
|
|
xmax.x = ymax.y = zmax.z = -FLT_MAX;
|
|
|
|
for (uint i = 0; i < pointCount; i++)
|
|
{
|
|
const Vector3 & p = pointArray[i];
|
|
if (p.x < xmin.x) xmin = p;
|
|
if (p.x > xmax.x) xmax = p;
|
|
if (p.y < ymin.y) ymin = p;
|
|
if (p.y > ymax.y) ymax = p;
|
|
if (p.z < zmin.z) zmin = p;
|
|
if (p.z > zmax.z) zmax = p;
|
|
}
|
|
|
|
float xspan = lengthSquared(xmax - xmin);
|
|
float yspan = lengthSquared(ymax - ymin);
|
|
float zspan = lengthSquared(zmax - zmin);
|
|
|
|
// Set points dia1 & dia2 to the maximally separated pair.
|
|
Vector3 dia1 = xmin;
|
|
Vector3 dia2 = xmax;
|
|
float maxspan = xspan;
|
|
if (yspan > maxspan) {
|
|
maxspan = yspan;
|
|
dia1 = ymin;
|
|
dia2 = ymax;
|
|
}
|
|
if (zspan > maxspan) {
|
|
dia1 = zmin;
|
|
dia2 = zmax;
|
|
}
|
|
|
|
// |dia1-dia2| is a diameter of initial sphere
|
|
|
|
// calc initial center
|
|
Sphere sphere;
|
|
sphere.center = (dia1 + dia2) / 2.0f;
|
|
|
|
// calculate initial radius**2 and radius
|
|
float rad_sq = lengthSquared(dia2 - sphere.center);
|
|
sphere.radius = sqrtf(rad_sq);
|
|
|
|
|
|
// SECOND PASS: increment current sphere
|
|
for (uint i = 0; i < pointCount; i++)
|
|
{
|
|
const Vector3 & p = pointArray[i];
|
|
|
|
float old_to_p_sq = lengthSquared(p - sphere.center);
|
|
|
|
if (old_to_p_sq > rad_sq) // do r**2 test first
|
|
{
|
|
// this point is outside of current sphere
|
|
float old_to_p = sqrtf(old_to_p_sq);
|
|
|
|
// calc radius of new sphere
|
|
sphere.radius = (sphere.radius + old_to_p) / 2.0f;
|
|
rad_sq = sphere.radius * sphere.radius; // for next r**2 compare
|
|
|
|
float old_to_new = old_to_p - sphere.radius;
|
|
|
|
// calc center of new sphere
|
|
sphere.center = (sphere.radius * sphere.center + old_to_new * p) / old_to_p;
|
|
}
|
|
}
|
|
|
|
nvDebugCheck(allInside(sphere, pointArray, pointCount));
|
|
|
|
return sphere;
|
|
}
|
|
|
|
|
|
static float computeSphereRadius(const Vector3 & center, const Vector3 * pointArray, const uint pointCount) {
|
|
|
|
float maxRadius2 = 0;
|
|
|
|
for (uint i = 0; i < pointCount; i++)
|
|
{
|
|
const Vector3 & p = pointArray[i];
|
|
|
|
float r2 = lengthSquared(center - p);
|
|
|
|
if (r2 > maxRadius2) {
|
|
maxRadius2 = r2;
|
|
}
|
|
}
|
|
|
|
return sqrtf(maxRadius2) + radiusEpsilon;
|
|
}
|
|
|
|
|
|
Sphere nv::approximateSphere_AABB(const Vector3 * pointArray, const uint pointCount)
|
|
{
|
|
nvDebugCheck(pointArray != NULL);
|
|
nvDebugCheck(pointCount > 0);
|
|
|
|
Box box;
|
|
box.clearBounds();
|
|
|
|
for (uint i = 0; i < pointCount; i++) {
|
|
box.addPointToBounds(pointArray[i]);
|
|
}
|
|
|
|
Sphere sphere;
|
|
sphere.center = box.center();
|
|
sphere.radius = computeSphereRadius(sphere.center, pointArray, pointCount);
|
|
|
|
nvDebugCheck(allInside(sphere, pointArray, pointCount));
|
|
|
|
return sphere;
|
|
}
|
|
|
|
|
|
static void computeExtremalPoints(const Vector3 & dir, const Vector3 * pointArray, uint pointCount, Vector3 * minPoint, Vector3 * maxPoint) {
|
|
nvDebugCheck(pointCount > 0);
|
|
|
|
uint mini = 0;
|
|
uint maxi = 0;
|
|
float minDist = FLT_MAX;
|
|
float maxDist = -FLT_MAX;
|
|
|
|
for (uint i = 0; i < pointCount; i++) {
|
|
float d = dot(dir, pointArray[i]);
|
|
|
|
if (d < minDist) {
|
|
minDist = d;
|
|
mini = i;
|
|
}
|
|
if (d > maxDist) {
|
|
maxDist = d;
|
|
maxi = i;
|
|
}
|
|
}
|
|
nvDebugCheck(minDist != FLT_MAX);
|
|
nvDebugCheck(maxDist != -FLT_MAX);
|
|
|
|
*minPoint = pointArray[mini];
|
|
*maxPoint = pointArray[maxi];
|
|
}
|
|
|
|
// EPOS algorithm based on:
|
|
// http://www.ep.liu.se/ecp/034/009/ecp083409.pdf
|
|
Sphere nv::approximateSphere_EPOS6(const Vector3 * pointArray, uint pointCount)
|
|
{
|
|
nvDebugCheck(pointArray != NULL);
|
|
nvDebugCheck(pointCount > 0);
|
|
|
|
Vector3 extremalPoints[6];
|
|
|
|
// Compute 6 extremal points.
|
|
computeExtremalPoints(Vector3(1, 0, 0), pointArray, pointCount, extremalPoints+0, extremalPoints+1);
|
|
computeExtremalPoints(Vector3(0, 1, 0), pointArray, pointCount, extremalPoints+2, extremalPoints+3);
|
|
computeExtremalPoints(Vector3(0, 0, 1), pointArray, pointCount, extremalPoints+4, extremalPoints+5);
|
|
|
|
Sphere sphere = miniBall(extremalPoints, 6);
|
|
sphere.radius = computeSphereRadius(sphere.center, pointArray, pointCount);
|
|
|
|
nvDebugCheck(allInside(sphere, pointArray, pointCount));
|
|
|
|
return sphere;
|
|
}
|
|
|
|
Sphere nv::approximateSphere_EPOS14(const Vector3 * pointArray, uint pointCount)
|
|
{
|
|
nvDebugCheck(pointArray != NULL);
|
|
nvDebugCheck(pointCount > 0);
|
|
|
|
Vector3 extremalPoints[14];
|
|
|
|
// Compute 14 extremal points.
|
|
computeExtremalPoints(Vector3(1, 0, 0), pointArray, pointCount, extremalPoints+0, extremalPoints+1);
|
|
computeExtremalPoints(Vector3(0, 1, 0), pointArray, pointCount, extremalPoints+2, extremalPoints+3);
|
|
computeExtremalPoints(Vector3(0, 0, 1), pointArray, pointCount, extremalPoints+4, extremalPoints+5);
|
|
|
|
float d = sqrtf(1.0f/3.0f);
|
|
|
|
computeExtremalPoints(Vector3(d, d, d), pointArray, pointCount, extremalPoints+6, extremalPoints+7);
|
|
computeExtremalPoints(Vector3(-d, d, d), pointArray, pointCount, extremalPoints+8, extremalPoints+9);
|
|
computeExtremalPoints(Vector3(-d, -d, d), pointArray, pointCount, extremalPoints+10, extremalPoints+11);
|
|
computeExtremalPoints(Vector3(d, -d, d), pointArray, pointCount, extremalPoints+12, extremalPoints+13);
|
|
|
|
|
|
Sphere sphere = miniBall(extremalPoints, 14);
|
|
sphere.radius = computeSphereRadius(sphere.center, pointArray, pointCount);
|
|
|
|
nvDebugCheck(allInside(sphere, pointArray, pointCount));
|
|
|
|
return sphere;
|
|
}
|
|
|
|
|
|
|