godot/tests/core/math/test_aabb.h

486 lines
22 KiB
C++

/**************************************************************************/
/* test_aabb.h */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#ifndef TEST_AABB_H
#define TEST_AABB_H
#include "core/math/aabb.h"
#include "tests/test_macros.h"
namespace TestAABB {
TEST_CASE("[AABB] Constructor methods") {
const AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
const AABB aabb_copy = AABB(aabb);
CHECK_MESSAGE(
aabb == aabb_copy,
"AABBs created with the same dimensions but by different methods should be equal.");
}
TEST_CASE("[AABB] String conversion") {
CHECK_MESSAGE(
String(AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6))) == "[P: (-1.5, 2, -2.5), S: (4, 5, 6)]",
"The string representation should match the expected value.");
}
TEST_CASE("[AABB] Basic getters") {
const AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
CHECK_MESSAGE(
aabb.get_position().is_equal_approx(Vector3(-1.5, 2, -2.5)),
"get_position() should return the expected value.");
CHECK_MESSAGE(
aabb.get_size().is_equal_approx(Vector3(4, 5, 6)),
"get_size() should return the expected value.");
CHECK_MESSAGE(
aabb.get_end().is_equal_approx(Vector3(2.5, 7, 3.5)),
"get_end() should return the expected value.");
CHECK_MESSAGE(
aabb.get_center().is_equal_approx(Vector3(0.5, 4.5, 0.5)),
"get_center() should return the expected value.");
}
TEST_CASE("[AABB] Basic setters") {
AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
aabb.set_end(Vector3(100, 0, 100));
CHECK_MESSAGE(
aabb.is_equal_approx(AABB(Vector3(-1.5, 2, -2.5), Vector3(101.5, -2, 102.5))),
"set_end() should result in the expected AABB.");
aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
aabb.set_position(Vector3(-1000, -2000, -3000));
CHECK_MESSAGE(
aabb.is_equal_approx(AABB(Vector3(-1000, -2000, -3000), Vector3(4, 5, 6))),
"set_position() should result in the expected AABB.");
aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
aabb.set_size(Vector3(0, 0, -50));
CHECK_MESSAGE(
aabb.is_equal_approx(AABB(Vector3(-1.5, 2, -2.5), Vector3(0, 0, -50))),
"set_size() should result in the expected AABB.");
}
TEST_CASE("[AABB] Volume getters") {
AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
CHECK_MESSAGE(
aabb.get_volume() == doctest::Approx(120),
"get_volume() should return the expected value with positive size.");
CHECK_MESSAGE(
aabb.has_volume(),
"Non-empty volumetric AABB should have a volume.");
aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(-4, 5, 6));
CHECK_MESSAGE(
aabb.get_volume() == doctest::Approx(-120),
"get_volume() should return the expected value with negative size (1 component).");
aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(-4, -5, 6));
CHECK_MESSAGE(
aabb.get_volume() == doctest::Approx(120),
"get_volume() should return the expected value with negative size (2 components).");
aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(-4, -5, -6));
CHECK_MESSAGE(
aabb.get_volume() == doctest::Approx(-120),
"get_volume() should return the expected value with negative size (3 components).");
aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 0, 6));
CHECK_MESSAGE(
!aabb.has_volume(),
"Non-empty flat AABB should not have a volume.");
CHECK_MESSAGE(
!AABB().has_volume(),
"Empty AABB should not have a volume.");
}
TEST_CASE("[AABB] Surface getters") {
AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
CHECK_MESSAGE(
aabb.has_surface(),
"Non-empty volumetric AABB should have an surface.");
aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 0, 6));
CHECK_MESSAGE(
aabb.has_surface(),
"Non-empty flat AABB should have a surface.");
aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 0, 0));
CHECK_MESSAGE(
aabb.has_surface(),
"Non-empty linear AABB should have a surface.");
CHECK_MESSAGE(
!AABB().has_surface(),
"Empty AABB should not have an surface.");
}
TEST_CASE("[AABB] Intersection") {
const AABB aabb_big = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
AABB aabb_small = AABB(Vector3(-1.5, 2, -2.5), Vector3(1, 1, 1));
CHECK_MESSAGE(
aabb_big.intersects(aabb_small),
"intersects() with fully contained AABB (touching the edge) should return the expected result.");
aabb_small = AABB(Vector3(0.5, 1.5, -2), Vector3(1, 1, 1));
CHECK_MESSAGE(
aabb_big.intersects(aabb_small),
"intersects() with partially contained AABB (overflowing on Y axis) should return the expected result.");
aabb_small = AABB(Vector3(10, -10, -10), Vector3(1, 1, 1));
CHECK_MESSAGE(
!aabb_big.intersects(aabb_small),
"intersects() with non-contained AABB should return the expected result.");
aabb_small = AABB(Vector3(-1.5, 2, -2.5), Vector3(1, 1, 1));
CHECK_MESSAGE(
aabb_big.intersection(aabb_small).is_equal_approx(aabb_small),
"intersection() with fully contained AABB (touching the edge) should return the expected result.");
aabb_small = AABB(Vector3(0.5, 1.5, -2), Vector3(1, 1, 1));
CHECK_MESSAGE(
aabb_big.intersection(aabb_small).is_equal_approx(AABB(Vector3(0.5, 2, -2), Vector3(1, 0.5, 1))),
"intersection() with partially contained AABB (overflowing on Y axis) should return the expected result.");
aabb_small = AABB(Vector3(10, -10, -10), Vector3(1, 1, 1));
CHECK_MESSAGE(
aabb_big.intersection(aabb_small).is_equal_approx(AABB()),
"intersection() with non-contained AABB should return the expected result.");
CHECK_MESSAGE(
aabb_big.intersects_plane(Plane(Vector3(0, 1, 0), 4)),
"intersects_plane() should return the expected result.");
CHECK_MESSAGE(
aabb_big.intersects_plane(Plane(Vector3(0, -1, 0), -4)),
"intersects_plane() should return the expected result.");
CHECK_MESSAGE(
!aabb_big.intersects_plane(Plane(Vector3(0, 1, 0), 200)),
"intersects_plane() should return the expected result.");
CHECK_MESSAGE(
aabb_big.intersects_segment(Vector3(1, 3, 0), Vector3(0, 3, 0)),
"intersects_segment() should return the expected result.");
CHECK_MESSAGE(
aabb_big.intersects_segment(Vector3(0, 3, 0), Vector3(0, -300, 0)),
"intersects_segment() should return the expected result.");
CHECK_MESSAGE(
aabb_big.intersects_segment(Vector3(-50, 3, -50), Vector3(50, 3, 50)),
"intersects_segment() should return the expected result.");
CHECK_MESSAGE(
!aabb_big.intersects_segment(Vector3(-50, 25, -50), Vector3(50, 25, 50)),
"intersects_segment() should return the expected result.");
CHECK_MESSAGE(
aabb_big.intersects_segment(Vector3(0, 3, 0), Vector3(0, 3, 0)),
"intersects_segment() should return the expected result with segment of length 0.");
CHECK_MESSAGE(
!aabb_big.intersects_segment(Vector3(0, 300, 0), Vector3(0, 300, 0)),
"intersects_segment() should return the expected result with segment of length 0.");
CHECK_MESSAGE( // Simple ray intersection test.
aabb_big.intersects_ray(Vector3(-100, 3, 0), Vector3(1, 0, 0)),
"intersects_ray() should return true when ray points directly to AABB from outside.");
CHECK_MESSAGE( // Ray parallel to an edge.
!aabb_big.intersects_ray(Vector3(10, 10, 0), Vector3(0, 1, 0)),
"intersects_ray() should return false for ray parallel and outside of AABB.");
CHECK_MESSAGE( // Ray origin inside aabb.
aabb_big.intersects_ray(Vector3(1, 1, 1), Vector3(0, 1, 0)),
"intersects_ray() should return true for rays originating inside the AABB.");
CHECK_MESSAGE( // Ray pointing away from aabb.
!aabb_big.intersects_ray(Vector3(-10, 0, 0), Vector3(-1, 0, 0)),
"intersects_ray() should return false when ray points away from AABB.");
CHECK_MESSAGE( // Ray along a diagonal of aabb.
aabb_big.intersects_ray(Vector3(0, 0, 0), Vector3(1, 1, 1)),
"intersects_ray() should return true for rays along the AABB diagonal.");
CHECK_MESSAGE( // Ray originating at aabb edge.
aabb_big.intersects_ray(aabb_big.position, Vector3(-1, 0, 0)),
"intersects_ray() should return true for rays starting on AABB's edge.");
CHECK_MESSAGE( // Ray with zero direction inside.
aabb_big.intersects_ray(Vector3(-1, 3, -2), Vector3(0, 0, 0)),
"intersects_ray() should return true because its inside.");
CHECK_MESSAGE( // Ray with zero direction outside.
!aabb_big.intersects_ray(Vector3(-1000, 3, -2), Vector3(0, 0, 0)),
"intersects_ray() should return false for being outside.");
// Finding ray intersections.
const AABB aabb_simple = AABB(Vector3(), Vector3(1, 1, 1));
bool inside = false;
Vector3 intersection_point;
Vector3 intersection_normal;
// Borders.
aabb_simple.find_intersects_ray(Vector3(0.5, 0, 0.5), Vector3(0, 1, 0), inside, &intersection_point, &intersection_normal);
CHECK_MESSAGE(inside == false, "find_intersects_ray() should return outside on borders.");
CHECK_MESSAGE(intersection_point.is_equal_approx(Vector3(0.5, 0, 0.5)), "find_intersects_ray() border intersection point incorrect.");
CHECK_MESSAGE(intersection_normal.is_equal_approx(Vector3(0, -1, 0)), "find_intersects_ray() border intersection normal incorrect.");
aabb_simple.find_intersects_ray(Vector3(0.5, 1, 0.5), Vector3(0, -1, 0), inside, &intersection_point, &intersection_normal);
CHECK_MESSAGE(inside == false, "find_intersects_ray() should return outside on borders.");
CHECK_MESSAGE(intersection_point.is_equal_approx(Vector3(0.5, 1, 0.5)), "find_intersects_ray() border intersection point incorrect.");
CHECK_MESSAGE(intersection_normal.is_equal_approx(Vector3(0, 1, 0)), "find_intersects_ray() border intersection normal incorrect.");
// Inside.
aabb_simple.find_intersects_ray(Vector3(0.5, 0.1, 0.5), Vector3(0, 1, 0), inside, &intersection_point, &intersection_normal);
CHECK_MESSAGE(inside == true, "find_intersects_ray() should return inside when inside.");
CHECK_MESSAGE(intersection_point.is_equal_approx(Vector3(0.5, 0, 0.5)), "find_intersects_ray() inside backtracking intersection point incorrect.");
CHECK_MESSAGE(intersection_normal.is_equal_approx(Vector3(0, -1, 0)), "find_intersects_ray() inside intersection normal incorrect.");
// Zero sized AABB.
const AABB aabb_zero = AABB(Vector3(), Vector3(1, 0, 1));
aabb_zero.find_intersects_ray(Vector3(0.5, 0, 0.5), Vector3(0, 1, 0), inside, &intersection_point, &intersection_normal);
CHECK_MESSAGE(inside == false, "find_intersects_ray() should return outside on borders of zero sized AABB.");
CHECK_MESSAGE(intersection_point.is_equal_approx(Vector3(0.5, 0, 0.5)), "find_intersects_ray() border intersection point incorrect for zero sized AABB.");
CHECK_MESSAGE(intersection_normal.is_equal_approx(Vector3(0, -1, 0)), "find_intersects_ray() border intersection normal incorrect for zero sized AABB.");
aabb_zero.find_intersects_ray(Vector3(0.5, 0, 0.5), Vector3(0, -1, 0), inside, &intersection_point, &intersection_normal);
CHECK_MESSAGE(inside == false, "find_intersects_ray() should return outside on borders of zero sized AABB.");
CHECK_MESSAGE(intersection_point.is_equal_approx(Vector3(0.5, 0, 0.5)), "find_intersects_ray() border intersection point incorrect for zero sized AABB.");
CHECK_MESSAGE(intersection_normal.is_equal_approx(Vector3(0, 1, 0)), "find_intersects_ray() border intersection normal incorrect for zero sized AABB.");
aabb_zero.find_intersects_ray(Vector3(0.5, -1, 0.5), Vector3(0, 1, 0), inside, &intersection_point, &intersection_normal);
CHECK_MESSAGE(inside == false, "find_intersects_ray() should return outside on borders of zero sized AABB.");
CHECK_MESSAGE(intersection_point.is_equal_approx(Vector3(0.5, 0, 0.5)), "find_intersects_ray() border intersection point incorrect for zero sized AABB.");
CHECK_MESSAGE(intersection_normal.is_equal_approx(Vector3(0, -1, 0)), "find_intersects_ray() border intersection normal incorrect for zero sized AABB.");
}
TEST_CASE("[AABB] Merging") {
const AABB aabb_big = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
AABB aabb_small = AABB(Vector3(-1.5, 2, -2.5), Vector3(1, 1, 1));
CHECK_MESSAGE(
aabb_big.merge(aabb_small).is_equal_approx(aabb_big),
"merge() with fully contained AABB (touching the edge) should return the expected result.");
aabb_small = AABB(Vector3(0.5, 1.5, -2), Vector3(1, 1, 1));
CHECK_MESSAGE(
aabb_big.merge(aabb_small).is_equal_approx(AABB(Vector3(-1.5, 1.5, -2.5), Vector3(4, 5.5, 6))),
"merge() with partially contained AABB (overflowing on Y axis) should return the expected result.");
aabb_small = AABB(Vector3(10, -10, -10), Vector3(1, 1, 1));
CHECK_MESSAGE(
aabb_big.merge(aabb_small).is_equal_approx(AABB(Vector3(-1.5, -10, -10), Vector3(12.5, 17, 13.5))),
"merge() with non-contained AABB should return the expected result.");
}
TEST_CASE("[AABB] Encloses") {
const AABB aabb_big = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
CHECK_MESSAGE(
aabb_big.encloses(aabb_big),
"encloses() with itself should return the expected result.");
AABB aabb_small = AABB(Vector3(-1.5, 2, -2.5), Vector3(1, 1, 1));
CHECK_MESSAGE(
aabb_big.encloses(aabb_small),
"encloses() with fully contained AABB (touching the edge) should return the expected result.");
aabb_small = AABB(Vector3(1.5, 6, 2.5), Vector3(1, 1, 1));
CHECK_MESSAGE(
aabb_big.encloses(aabb_small),
"encloses() with fully contained AABB (touching the edge) should return the expected result.");
aabb_small = AABB(Vector3(0.5, 1.5, -2), Vector3(1, 1, 1));
CHECK_MESSAGE(
!aabb_big.encloses(aabb_small),
"encloses() with partially contained AABB (overflowing on Y axis) should return the expected result.");
aabb_small = AABB(Vector3(10, -10, -10), Vector3(1, 1, 1));
CHECK_MESSAGE(
!aabb_big.encloses(aabb_small),
"encloses() with non-contained AABB should return the expected result.");
}
TEST_CASE("[AABB] Get endpoints") {
const AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
CHECK_MESSAGE(
aabb.get_endpoint(0).is_equal_approx(Vector3(-1.5, 2, -2.5)),
"The endpoint at index 0 should match the expected value.");
CHECK_MESSAGE(
aabb.get_endpoint(1).is_equal_approx(Vector3(-1.5, 2, 3.5)),
"The endpoint at index 1 should match the expected value.");
CHECK_MESSAGE(
aabb.get_endpoint(2).is_equal_approx(Vector3(-1.5, 7, -2.5)),
"The endpoint at index 2 should match the expected value.");
CHECK_MESSAGE(
aabb.get_endpoint(3).is_equal_approx(Vector3(-1.5, 7, 3.5)),
"The endpoint at index 3 should match the expected value.");
CHECK_MESSAGE(
aabb.get_endpoint(4).is_equal_approx(Vector3(2.5, 2, -2.5)),
"The endpoint at index 4 should match the expected value.");
CHECK_MESSAGE(
aabb.get_endpoint(5).is_equal_approx(Vector3(2.5, 2, 3.5)),
"The endpoint at index 5 should match the expected value.");
CHECK_MESSAGE(
aabb.get_endpoint(6).is_equal_approx(Vector3(2.5, 7, -2.5)),
"The endpoint at index 6 should match the expected value.");
CHECK_MESSAGE(
aabb.get_endpoint(7).is_equal_approx(Vector3(2.5, 7, 3.5)),
"The endpoint at index 7 should match the expected value.");
ERR_PRINT_OFF;
CHECK_MESSAGE(
aabb.get_endpoint(8).is_equal_approx(Vector3()),
"The endpoint at invalid index 8 should match the expected value.");
CHECK_MESSAGE(
aabb.get_endpoint(-1).is_equal_approx(Vector3()),
"The endpoint at invalid index -1 should match the expected value.");
ERR_PRINT_ON;
}
TEST_CASE("[AABB] Get longest/shortest axis") {
const AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
CHECK_MESSAGE(
aabb.get_longest_axis() == Vector3(0, 0, 1),
"get_longest_axis() should return the expected value.");
CHECK_MESSAGE(
aabb.get_longest_axis_index() == Vector3::AXIS_Z,
"get_longest_axis_index() should return the expected value.");
CHECK_MESSAGE(
aabb.get_longest_axis_size() == 6,
"get_longest_axis_size() should return the expected value.");
CHECK_MESSAGE(
aabb.get_shortest_axis() == Vector3(1, 0, 0),
"get_shortest_axis() should return the expected value.");
CHECK_MESSAGE(
aabb.get_shortest_axis_index() == Vector3::AXIS_X,
"get_shortest_axis_index() should return the expected value.");
CHECK_MESSAGE(
aabb.get_shortest_axis_size() == 4,
"get_shortest_axis_size() should return the expected value.");
}
TEST_CASE("[AABB] Get support") {
const AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
CHECK_MESSAGE(
aabb.get_support(Vector3(1, 0, 0)).is_equal_approx(Vector3(2.5, 2, -2.5)),
"get_support() should return the expected value.");
CHECK_MESSAGE(
aabb.get_support(Vector3(0.5, 1, 0)).is_equal_approx(Vector3(2.5, 7, -2.5)),
"get_support() should return the expected value.");
CHECK_MESSAGE(
aabb.get_support(Vector3(0.5, 1, -400)).is_equal_approx(Vector3(2.5, 7, -2.5)),
"get_support() should return the expected value.");
CHECK_MESSAGE(
aabb.get_support(Vector3(0, -1, 0)).is_equal_approx(Vector3(-1.5, 2, -2.5)),
"get_support() should return the expected value.");
CHECK_MESSAGE(
aabb.get_support(Vector3(0, -0.1, 0)).is_equal_approx(Vector3(-1.5, 2, -2.5)),
"get_support() should return the expected value.");
CHECK_MESSAGE(
aabb.get_support(Vector3()).is_equal_approx(Vector3(-1.5, 2, -2.5)),
"get_support() should return the expected value with a null vector.");
}
TEST_CASE("[AABB] Grow") {
const AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
CHECK_MESSAGE(
aabb.grow(0.25).is_equal_approx(AABB(Vector3(-1.75, 1.75, -2.75), Vector3(4.5, 5.5, 6.5))),
"grow() with positive value should return the expected AABB.");
CHECK_MESSAGE(
aabb.grow(-0.25).is_equal_approx(AABB(Vector3(-1.25, 2.25, -2.25), Vector3(3.5, 4.5, 5.5))),
"grow() with negative value should return the expected AABB.");
CHECK_MESSAGE(
aabb.grow(-10).is_equal_approx(AABB(Vector3(8.5, 12, 7.5), Vector3(-16, -15, -14))),
"grow() with large negative value should return the expected AABB.");
}
TEST_CASE("[AABB] Has point") {
const AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
CHECK_MESSAGE(
aabb.has_point(Vector3(-1, 3, 0)),
"has_point() with contained point should return the expected value.");
CHECK_MESSAGE(
aabb.has_point(Vector3(2, 3, 0)),
"has_point() with contained point should return the expected value.");
CHECK_MESSAGE(
!aabb.has_point(Vector3(-20, 0, 0)),
"has_point() with non-contained point should return the expected value.");
CHECK_MESSAGE(
aabb.has_point(Vector3(-1.5, 3, 0)),
"has_point() with positive size should include point on near face (X axis).");
CHECK_MESSAGE(
aabb.has_point(Vector3(2.5, 3, 0)),
"has_point() with positive size should include point on far face (X axis).");
CHECK_MESSAGE(
aabb.has_point(Vector3(0, 2, 0)),
"has_point() with positive size should include point on near face (Y axis).");
CHECK_MESSAGE(
aabb.has_point(Vector3(0, 7, 0)),
"has_point() with positive size should include point on far face (Y axis).");
CHECK_MESSAGE(
aabb.has_point(Vector3(0, 3, -2.5)),
"has_point() with positive size should include point on near face (Z axis).");
CHECK_MESSAGE(
aabb.has_point(Vector3(0, 3, 3.5)),
"has_point() with positive size should include point on far face (Z axis).");
}
TEST_CASE("[AABB] Expanding") {
const AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
CHECK_MESSAGE(
aabb.expand(Vector3(-1, 3, 0)).is_equal_approx(aabb),
"expand() with contained point should return the expected AABB.");
CHECK_MESSAGE(
aabb.expand(Vector3(2, 3, 0)).is_equal_approx(aabb),
"expand() with contained point should return the expected AABB.");
CHECK_MESSAGE(
aabb.expand(Vector3(-1.5, 3, 0)).is_equal_approx(aabb),
"expand() with contained point on negative edge should return the expected AABB.");
CHECK_MESSAGE(
aabb.expand(Vector3(2.5, 3, 0)).is_equal_approx(aabb),
"expand() with contained point on positive edge should return the expected AABB.");
CHECK_MESSAGE(
aabb.expand(Vector3(-20, 0, 0)).is_equal_approx(AABB(Vector3(-20, 0, -2.5), Vector3(22.5, 7, 6))),
"expand() with non-contained point should return the expected AABB.");
}
TEST_CASE("[AABB] Finite number checks") {
const Vector3 x(0, 1, 2);
const Vector3 infinite(NAN, NAN, NAN);
CHECK_MESSAGE(
AABB(x, x).is_finite(),
"AABB with all components finite should be finite");
CHECK_FALSE_MESSAGE(
AABB(infinite, x).is_finite(),
"AABB with one component infinite should not be finite.");
CHECK_FALSE_MESSAGE(
AABB(x, infinite).is_finite(),
"AABB with one component infinite should not be finite.");
CHECK_FALSE_MESSAGE(
AABB(infinite, infinite).is_finite(),
"AABB with two components infinite should not be finite.");
}
} // namespace TestAABB
#endif // TEST_AABB_H