e12c89e8c9
Document version and how to extract sources in thirdparty/README.md. Drop unnecessary CMake and Premake files. Simplify SCsub, drop unused one.
440 lines
9.3 KiB
Common Lisp
440 lines
9.3 KiB
Common Lisp
|
|
#define SHAPE_CONVEX_HULL 3
|
|
#define SHAPE_PLANE 4
|
|
#define SHAPE_CONCAVE_TRIMESH 5
|
|
#define SHAPE_COMPOUND_OF_CONVEX_HULLS 6
|
|
#define SHAPE_SPHERE 7
|
|
|
|
|
|
typedef struct
|
|
{
|
|
float4 m_from;
|
|
float4 m_to;
|
|
} b3RayInfo;
|
|
|
|
typedef struct
|
|
{
|
|
float m_hitFraction;
|
|
int m_hitResult0;
|
|
int m_hitResult1;
|
|
int m_hitResult2;
|
|
float4 m_hitPoint;
|
|
float4 m_hitNormal;
|
|
} b3RayHit;
|
|
|
|
typedef struct
|
|
{
|
|
float4 m_pos;
|
|
float4 m_quat;
|
|
float4 m_linVel;
|
|
float4 m_angVel;
|
|
|
|
unsigned int m_collidableIdx;
|
|
float m_invMass;
|
|
float m_restituitionCoeff;
|
|
float m_frictionCoeff;
|
|
} Body;
|
|
|
|
typedef struct Collidable
|
|
{
|
|
union {
|
|
int m_numChildShapes;
|
|
int m_bvhIndex;
|
|
};
|
|
float m_radius;
|
|
int m_shapeType;
|
|
int m_shapeIndex;
|
|
} Collidable;
|
|
|
|
|
|
typedef struct
|
|
{
|
|
float4 m_localCenter;
|
|
float4 m_extents;
|
|
float4 mC;
|
|
float4 mE;
|
|
|
|
float m_radius;
|
|
int m_faceOffset;
|
|
int m_numFaces;
|
|
int m_numVertices;
|
|
|
|
int m_vertexOffset;
|
|
int m_uniqueEdgesOffset;
|
|
int m_numUniqueEdges;
|
|
int m_unused;
|
|
|
|
} ConvexPolyhedronCL;
|
|
|
|
typedef struct
|
|
{
|
|
float4 m_plane;
|
|
int m_indexOffset;
|
|
int m_numIndices;
|
|
} b3GpuFace;
|
|
|
|
|
|
|
|
///////////////////////////////////////
|
|
// Quaternion
|
|
///////////////////////////////////////
|
|
|
|
typedef float4 Quaternion;
|
|
|
|
__inline
|
|
Quaternion qtMul(Quaternion a, Quaternion b);
|
|
|
|
__inline
|
|
Quaternion qtNormalize(Quaternion in);
|
|
|
|
|
|
__inline
|
|
Quaternion qtInvert(Quaternion q);
|
|
|
|
|
|
__inline
|
|
float dot3F4(float4 a, float4 b)
|
|
{
|
|
float4 a1 = (float4)(a.xyz,0.f);
|
|
float4 b1 = (float4)(b.xyz,0.f);
|
|
return dot(a1, b1);
|
|
}
|
|
|
|
|
|
__inline
|
|
Quaternion qtMul(Quaternion a, Quaternion b)
|
|
{
|
|
Quaternion ans;
|
|
ans = cross( a, b );
|
|
ans += a.w*b+b.w*a;
|
|
// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z);
|
|
ans.w = a.w*b.w - dot3F4(a, b);
|
|
return ans;
|
|
}
|
|
|
|
__inline
|
|
Quaternion qtNormalize(Quaternion in)
|
|
{
|
|
return fast_normalize(in);
|
|
// in /= length( in );
|
|
// return in;
|
|
}
|
|
__inline
|
|
float4 qtRotate(Quaternion q, float4 vec)
|
|
{
|
|
Quaternion qInv = qtInvert( q );
|
|
float4 vcpy = vec;
|
|
vcpy.w = 0.f;
|
|
float4 out = qtMul(q,vcpy);
|
|
out = qtMul(out,qInv);
|
|
return out;
|
|
}
|
|
|
|
__inline
|
|
Quaternion qtInvert(Quaternion q)
|
|
{
|
|
return (Quaternion)(-q.xyz, q.w);
|
|
}
|
|
|
|
__inline
|
|
float4 qtInvRotate(const Quaternion q, float4 vec)
|
|
{
|
|
return qtRotate( qtInvert( q ), vec );
|
|
}
|
|
|
|
|
|
|
|
void trInverse(float4 translationIn, Quaternion orientationIn,
|
|
float4* translationOut, Quaternion* orientationOut)
|
|
{
|
|
*orientationOut = qtInvert(orientationIn);
|
|
*translationOut = qtRotate(*orientationOut, -translationIn);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool rayConvex(float4 rayFromLocal, float4 rayToLocal, int numFaces, int faceOffset,
|
|
__global const b3GpuFace* faces, float* hitFraction, float4* hitNormal)
|
|
{
|
|
rayFromLocal.w = 0.f;
|
|
rayToLocal.w = 0.f;
|
|
bool result = true;
|
|
|
|
float exitFraction = hitFraction[0];
|
|
float enterFraction = -0.3f;
|
|
float4 curHitNormal = (float4)(0,0,0,0);
|
|
for (int i=0;i<numFaces && result;i++)
|
|
{
|
|
b3GpuFace face = faces[faceOffset+i];
|
|
float fromPlaneDist = dot(rayFromLocal,face.m_plane)+face.m_plane.w;
|
|
float toPlaneDist = dot(rayToLocal,face.m_plane)+face.m_plane.w;
|
|
if (fromPlaneDist<0.f)
|
|
{
|
|
if (toPlaneDist >= 0.f)
|
|
{
|
|
float fraction = fromPlaneDist / (fromPlaneDist-toPlaneDist);
|
|
if (exitFraction>fraction)
|
|
{
|
|
exitFraction = fraction;
|
|
}
|
|
}
|
|
} else
|
|
{
|
|
if (toPlaneDist<0.f)
|
|
{
|
|
float fraction = fromPlaneDist / (fromPlaneDist-toPlaneDist);
|
|
if (enterFraction <= fraction)
|
|
{
|
|
enterFraction = fraction;
|
|
curHitNormal = face.m_plane;
|
|
curHitNormal.w = 0.f;
|
|
}
|
|
} else
|
|
{
|
|
result = false;
|
|
}
|
|
}
|
|
if (exitFraction <= enterFraction)
|
|
result = false;
|
|
}
|
|
|
|
if (enterFraction < 0.f)
|
|
{
|
|
result = false;
|
|
}
|
|
|
|
if (result)
|
|
{
|
|
hitFraction[0] = enterFraction;
|
|
hitNormal[0] = curHitNormal;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bool sphere_intersect(float4 spherePos, float radius, float4 rayFrom, float4 rayTo, float* hitFraction)
|
|
{
|
|
float4 rs = rayFrom - spherePos;
|
|
rs.w = 0.f;
|
|
float4 rayDir = rayTo-rayFrom;
|
|
rayDir.w = 0.f;
|
|
float A = dot(rayDir,rayDir);
|
|
float B = dot(rs, rayDir);
|
|
float C = dot(rs, rs) - (radius * radius);
|
|
|
|
float D = B * B - A*C;
|
|
|
|
if (D > 0.0f)
|
|
{
|
|
float t = (-B - sqrt(D))/A;
|
|
|
|
if ( (t >= 0.0f) && (t < (*hitFraction)) )
|
|
{
|
|
*hitFraction = t;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
float4 setInterpolate3(float4 from, float4 to, float t)
|
|
{
|
|
float s = 1.0f - t;
|
|
float4 result;
|
|
result = s * from + t * to;
|
|
result.w = 0.f;
|
|
return result;
|
|
}
|
|
|
|
__kernel void rayCastKernel(
|
|
int numRays,
|
|
const __global b3RayInfo* rays,
|
|
__global b3RayHit* hitResults,
|
|
const int numBodies,
|
|
__global Body* bodies,
|
|
__global Collidable* collidables,
|
|
__global const b3GpuFace* faces,
|
|
__global const ConvexPolyhedronCL* convexShapes )
|
|
{
|
|
|
|
int i = get_global_id(0);
|
|
if (i>=numRays)
|
|
return;
|
|
|
|
hitResults[i].m_hitFraction = 1.f;
|
|
|
|
float4 rayFrom = rays[i].m_from;
|
|
float4 rayTo = rays[i].m_to;
|
|
float hitFraction = 1.f;
|
|
float4 hitPoint;
|
|
float4 hitNormal;
|
|
int hitBodyIndex= -1;
|
|
|
|
int cachedCollidableIndex = -1;
|
|
Collidable cachedCollidable;
|
|
|
|
for (int b=0;b<numBodies;b++)
|
|
{
|
|
if (hitResults[i].m_hitResult2==b)
|
|
continue;
|
|
Body body = bodies[b];
|
|
float4 pos = body.m_pos;
|
|
float4 orn = body.m_quat;
|
|
if (cachedCollidableIndex != body.m_collidableIdx)
|
|
{
|
|
cachedCollidableIndex = body.m_collidableIdx;
|
|
cachedCollidable = collidables[cachedCollidableIndex];
|
|
}
|
|
if (cachedCollidable.m_shapeType == SHAPE_CONVEX_HULL)
|
|
{
|
|
|
|
float4 invPos = (float4)(0,0,0,0);
|
|
float4 invOrn = (float4)(0,0,0,0);
|
|
float4 rayFromLocal = (float4)(0,0,0,0);
|
|
float4 rayToLocal = (float4)(0,0,0,0);
|
|
invOrn = qtInvert(orn);
|
|
invPos = qtRotate(invOrn, -pos);
|
|
rayFromLocal = qtRotate( invOrn, rayFrom ) + invPos;
|
|
rayToLocal = qtRotate( invOrn, rayTo) + invPos;
|
|
rayFromLocal.w = 0.f;
|
|
rayToLocal.w = 0.f;
|
|
int numFaces = convexShapes[cachedCollidable.m_shapeIndex].m_numFaces;
|
|
int faceOffset = convexShapes[cachedCollidable.m_shapeIndex].m_faceOffset;
|
|
if (numFaces)
|
|
{
|
|
if (rayConvex(rayFromLocal, rayToLocal, numFaces, faceOffset,faces, &hitFraction, &hitNormal))
|
|
{
|
|
hitBodyIndex = b;
|
|
|
|
}
|
|
}
|
|
}
|
|
if (cachedCollidable.m_shapeType == SHAPE_SPHERE)
|
|
{
|
|
float radius = cachedCollidable.m_radius;
|
|
|
|
if (sphere_intersect(pos, radius, rayFrom, rayTo, &hitFraction))
|
|
{
|
|
hitBodyIndex = b;
|
|
hitNormal = (float4) (hitPoint-bodies[b].m_pos);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (hitBodyIndex>=0)
|
|
{
|
|
hitPoint = setInterpolate3(rayFrom, rayTo,hitFraction);
|
|
hitResults[i].m_hitFraction = hitFraction;
|
|
hitResults[i].m_hitPoint = hitPoint;
|
|
hitResults[i].m_hitNormal = normalize(hitNormal);
|
|
hitResults[i].m_hitResult0 = hitBodyIndex;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
__kernel void findRayRigidPairIndexRanges(__global int2* rayRigidPairs,
|
|
__global int* out_firstRayRigidPairIndexPerRay,
|
|
__global int* out_numRayRigidPairsPerRay,
|
|
int numRayRigidPairs)
|
|
{
|
|
int rayRigidPairIndex = get_global_id(0);
|
|
if (rayRigidPairIndex >= numRayRigidPairs) return;
|
|
|
|
int rayIndex = rayRigidPairs[rayRigidPairIndex].x;
|
|
|
|
atomic_min(&out_firstRayRigidPairIndexPerRay[rayIndex], rayRigidPairIndex);
|
|
atomic_inc(&out_numRayRigidPairsPerRay[rayIndex]);
|
|
}
|
|
|
|
__kernel void rayCastPairsKernel(const __global b3RayInfo* rays,
|
|
__global b3RayHit* hitResults,
|
|
__global int* firstRayRigidPairIndexPerRay,
|
|
__global int* numRayRigidPairsPerRay,
|
|
|
|
__global Body* bodies,
|
|
__global Collidable* collidables,
|
|
__global const b3GpuFace* faces,
|
|
__global const ConvexPolyhedronCL* convexShapes,
|
|
|
|
__global int2* rayRigidPairs,
|
|
int numRays)
|
|
{
|
|
int i = get_global_id(0);
|
|
if (i >= numRays) return;
|
|
|
|
float4 rayFrom = rays[i].m_from;
|
|
float4 rayTo = rays[i].m_to;
|
|
|
|
hitResults[i].m_hitFraction = 1.f;
|
|
|
|
float hitFraction = 1.f;
|
|
float4 hitPoint;
|
|
float4 hitNormal;
|
|
int hitBodyIndex = -1;
|
|
|
|
//
|
|
for(int pair = 0; pair < numRayRigidPairsPerRay[i]; ++pair)
|
|
{
|
|
int rayRigidPairIndex = pair + firstRayRigidPairIndexPerRay[i];
|
|
int b = rayRigidPairs[rayRigidPairIndex].y;
|
|
|
|
if (hitResults[i].m_hitResult2 == b) continue;
|
|
|
|
Body body = bodies[b];
|
|
Collidable rigidCollidable = collidables[body.m_collidableIdx];
|
|
|
|
float4 pos = body.m_pos;
|
|
float4 orn = body.m_quat;
|
|
|
|
if (rigidCollidable.m_shapeType == SHAPE_CONVEX_HULL)
|
|
{
|
|
float4 invPos = (float4)(0,0,0,0);
|
|
float4 invOrn = (float4)(0,0,0,0);
|
|
float4 rayFromLocal = (float4)(0,0,0,0);
|
|
float4 rayToLocal = (float4)(0,0,0,0);
|
|
invOrn = qtInvert(orn);
|
|
invPos = qtRotate(invOrn, -pos);
|
|
rayFromLocal = qtRotate( invOrn, rayFrom ) + invPos;
|
|
rayToLocal = qtRotate( invOrn, rayTo) + invPos;
|
|
rayFromLocal.w = 0.f;
|
|
rayToLocal.w = 0.f;
|
|
int numFaces = convexShapes[rigidCollidable.m_shapeIndex].m_numFaces;
|
|
int faceOffset = convexShapes[rigidCollidable.m_shapeIndex].m_faceOffset;
|
|
|
|
if (numFaces && rayConvex(rayFromLocal, rayToLocal, numFaces, faceOffset,faces, &hitFraction, &hitNormal))
|
|
{
|
|
hitBodyIndex = b;
|
|
hitPoint = setInterpolate3(rayFrom, rayTo, hitFraction);
|
|
}
|
|
}
|
|
|
|
if (rigidCollidable.m_shapeType == SHAPE_SPHERE)
|
|
{
|
|
float radius = rigidCollidable.m_radius;
|
|
|
|
if (sphere_intersect(pos, radius, rayFrom, rayTo, &hitFraction))
|
|
{
|
|
hitBodyIndex = b;
|
|
hitPoint = setInterpolate3(rayFrom, rayTo, hitFraction);
|
|
hitNormal = (float4) (hitPoint - bodies[b].m_pos);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (hitBodyIndex >= 0)
|
|
{
|
|
hitResults[i].m_hitFraction = hitFraction;
|
|
hitResults[i].m_hitPoint = hitPoint;
|
|
hitResults[i].m_hitNormal = normalize(hitNormal);
|
|
hitResults[i].m_hitResult0 = hitBodyIndex;
|
|
}
|
|
|
|
}
|