600f2a8d5d
Fix issue #51897 (horizon occlusion causing black blob), fix ver. SP1
2327 lines
59 KiB
GLSL
2327 lines
59 KiB
GLSL
/* clang-format off */
|
|
[vertex]
|
|
|
|
#ifdef USE_GLES_OVER_GL
|
|
#define lowp
|
|
#define mediump
|
|
#define highp
|
|
#else
|
|
// Default to high precision variables for the vertex shader.
|
|
// Note that the fragment shader however may default to mediump on mobile for performance,
|
|
// and thus shared uniforms should use a specifier to be consistent in both shaders.
|
|
precision highp float;
|
|
precision highp int;
|
|
#endif
|
|
|
|
#if defined(ENSURE_CORRECT_NORMALS)
|
|
#define INVERSE_USED
|
|
#endif
|
|
|
|
/* clang-format on */
|
|
#include "stdlib.glsl"
|
|
/* clang-format off */
|
|
|
|
#define SHADER_IS_SRGB true
|
|
|
|
#define M_PI 3.14159265359
|
|
|
|
//
|
|
// attributes
|
|
//
|
|
|
|
attribute highp vec4 vertex_attrib; // attrib:0
|
|
/* clang-format on */
|
|
#ifdef ENABLE_OCTAHEDRAL_COMPRESSION
|
|
attribute vec4 normal_tangent_attrib; // attrib:1
|
|
#else
|
|
attribute vec3 normal_attrib; // attrib:1
|
|
#endif
|
|
|
|
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
|
|
#ifdef ENABLE_OCTAHEDRAL_COMPRESSION
|
|
// packed into normal_attrib zw component
|
|
#else
|
|
attribute vec4 tangent_attrib; // attrib:2
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(ENABLE_COLOR_INTERP)
|
|
attribute vec4 color_attrib; // attrib:3
|
|
#endif
|
|
|
|
#if defined(ENABLE_UV_INTERP)
|
|
attribute vec2 uv_attrib; // attrib:4
|
|
#endif
|
|
|
|
#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
|
|
attribute vec2 uv2_attrib; // attrib:5
|
|
#endif
|
|
|
|
#ifdef USE_SKELETON
|
|
|
|
#ifdef USE_SKELETON_SOFTWARE
|
|
|
|
attribute highp vec4 bone_transform_row_0; // attrib:13
|
|
attribute highp vec4 bone_transform_row_1; // attrib:14
|
|
attribute highp vec4 bone_transform_row_2; // attrib:15
|
|
|
|
#else
|
|
|
|
attribute vec4 bone_ids; // attrib:6
|
|
attribute highp vec4 bone_weights; // attrib:7
|
|
|
|
uniform highp sampler2D bone_transforms; // texunit:-1
|
|
uniform ivec2 skeleton_texture_size;
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#ifdef USE_INSTANCING
|
|
|
|
attribute highp vec4 instance_xform_row_0; // attrib:8
|
|
attribute highp vec4 instance_xform_row_1; // attrib:9
|
|
attribute highp vec4 instance_xform_row_2; // attrib:10
|
|
|
|
attribute highp vec4 instance_color; // attrib:11
|
|
attribute highp vec4 instance_custom_data; // attrib:12
|
|
|
|
#endif
|
|
|
|
//
|
|
// uniforms
|
|
//
|
|
|
|
uniform highp mat4 camera_matrix;
|
|
uniform highp mat4 camera_inverse_matrix;
|
|
uniform highp mat4 projection_matrix;
|
|
uniform highp mat4 projection_inverse_matrix;
|
|
|
|
uniform highp mat4 world_transform;
|
|
|
|
uniform highp float time;
|
|
|
|
uniform highp vec2 viewport_size;
|
|
|
|
#ifdef RENDER_DEPTH
|
|
uniform float light_bias;
|
|
uniform float light_normal_bias;
|
|
#endif
|
|
|
|
uniform highp int view_index;
|
|
|
|
#ifdef ENABLE_OCTAHEDRAL_COMPRESSION
|
|
vec3 oct_to_vec3(vec2 e) {
|
|
vec3 v = vec3(e.xy, 1.0 - abs(e.x) - abs(e.y));
|
|
float t = max(-v.z, 0.0);
|
|
v.xy += t * -sign(v.xy);
|
|
return normalize(v);
|
|
}
|
|
#endif
|
|
|
|
//
|
|
// varyings
|
|
//
|
|
|
|
#if defined(RENDER_DEPTH) && defined(USE_RGBA_SHADOWS)
|
|
varying highp vec4 position_interp;
|
|
#endif
|
|
|
|
varying highp vec3 vertex_interp;
|
|
varying vec3 normal_interp;
|
|
|
|
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
|
|
varying vec3 tangent_interp;
|
|
varying vec3 binormal_interp;
|
|
#endif
|
|
|
|
#if defined(ENABLE_COLOR_INTERP)
|
|
varying vec4 color_interp;
|
|
#endif
|
|
|
|
#if defined(ENABLE_UV_INTERP)
|
|
varying vec2 uv_interp;
|
|
#endif
|
|
|
|
#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
|
|
varying vec2 uv2_interp;
|
|
#endif
|
|
|
|
/* clang-format off */
|
|
|
|
VERTEX_SHADER_GLOBALS
|
|
|
|
/* clang-format on */
|
|
|
|
#ifdef RENDER_DEPTH_DUAL_PARABOLOID
|
|
|
|
varying highp float dp_clip;
|
|
uniform highp float shadow_dual_paraboloid_render_zfar;
|
|
uniform highp float shadow_dual_paraboloid_render_side;
|
|
|
|
#endif
|
|
|
|
#if defined(USE_SHADOW) && defined(USE_LIGHTING)
|
|
|
|
uniform highp mat4 light_shadow_matrix;
|
|
varying highp vec4 shadow_coord;
|
|
|
|
#if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4)
|
|
uniform highp mat4 light_shadow_matrix2;
|
|
varying highp vec4 shadow_coord2;
|
|
#endif
|
|
|
|
#if defined(LIGHT_USE_PSSM4)
|
|
|
|
uniform highp mat4 light_shadow_matrix3;
|
|
uniform highp mat4 light_shadow_matrix4;
|
|
varying highp vec4 shadow_coord3;
|
|
varying highp vec4 shadow_coord4;
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#if defined(USE_VERTEX_LIGHTING) && defined(USE_LIGHTING)
|
|
|
|
varying highp vec3 diffuse_interp;
|
|
varying highp vec3 specular_interp;
|
|
|
|
// general for all lights
|
|
uniform highp vec4 light_color;
|
|
uniform highp vec4 shadow_color;
|
|
uniform highp float light_specular;
|
|
|
|
// directional
|
|
uniform highp vec3 light_direction;
|
|
|
|
// omni
|
|
uniform highp vec3 light_position;
|
|
|
|
uniform highp float light_range;
|
|
uniform highp float light_attenuation;
|
|
|
|
// spot
|
|
uniform highp float light_spot_attenuation;
|
|
uniform highp float light_spot_range;
|
|
uniform highp float light_spot_angle;
|
|
|
|
void light_compute(
|
|
vec3 N,
|
|
vec3 L,
|
|
vec3 V,
|
|
vec3 light_color,
|
|
vec3 attenuation,
|
|
float roughness) {
|
|
//this makes lights behave closer to linear, but then addition of lights looks bad
|
|
//better left disabled
|
|
|
|
//#define SRGB_APPROX(m_var) m_var = pow(m_var,0.4545454545);
|
|
/*
|
|
#define SRGB_APPROX(m_var) {\
|
|
float S1 = sqrt(m_var);\
|
|
float S2 = sqrt(S1);\
|
|
float S3 = sqrt(S2);\
|
|
m_var = 0.662002687 * S1 + 0.684122060 * S2 - 0.323583601 * S3 - 0.0225411470 * m_var;\
|
|
}
|
|
*/
|
|
#define SRGB_APPROX(m_var)
|
|
|
|
float NdotL = dot(N, L);
|
|
float cNdotL = max(NdotL, 0.0); // clamped NdotL
|
|
float NdotV = dot(N, V);
|
|
float cNdotV = max(NdotV, 0.0);
|
|
|
|
#if defined(DIFFUSE_OREN_NAYAR)
|
|
vec3 diffuse_brdf_NL;
|
|
#else
|
|
float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance
|
|
#endif
|
|
|
|
#if defined(DIFFUSE_LAMBERT_WRAP)
|
|
// energy conserving lambert wrap shader
|
|
diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness)));
|
|
|
|
#elif defined(DIFFUSE_OREN_NAYAR)
|
|
|
|
{
|
|
// see http://mimosa-pudica.net/improved-oren-nayar.html
|
|
float LdotV = dot(L, V);
|
|
|
|
float s = LdotV - NdotL * NdotV;
|
|
float t = mix(1.0, max(NdotL, NdotV), step(0.0, s));
|
|
|
|
float sigma2 = roughness * roughness; // TODO: this needs checking
|
|
vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13));
|
|
float B = 0.45 * sigma2 / (sigma2 + 0.09);
|
|
|
|
diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI);
|
|
}
|
|
#else
|
|
// lambert by default for everything else
|
|
diffuse_brdf_NL = cNdotL * (1.0 / M_PI);
|
|
#endif
|
|
|
|
SRGB_APPROX(diffuse_brdf_NL)
|
|
|
|
diffuse_interp += light_color * diffuse_brdf_NL * attenuation;
|
|
|
|
if (roughness > 0.0) {
|
|
// D
|
|
float specular_brdf_NL = 0.0;
|
|
|
|
#if !defined(SPECULAR_DISABLED)
|
|
//normalized blinn always unless disabled
|
|
vec3 H = normalize(V + L);
|
|
float cNdotH = max(dot(N, H), 0.0);
|
|
float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
|
|
float blinn = pow(cNdotH, shininess);
|
|
blinn *= (shininess + 2.0) * (1.0 / (8.0 * M_PI));
|
|
specular_brdf_NL = blinn;
|
|
#endif
|
|
|
|
SRGB_APPROX(specular_brdf_NL)
|
|
specular_interp += specular_brdf_NL * light_color * attenuation;
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef USE_VERTEX_LIGHTING
|
|
|
|
#ifdef USE_REFLECTION_PROBE1
|
|
|
|
uniform highp mat4 refprobe1_local_matrix;
|
|
varying mediump vec4 refprobe1_reflection_normal_blend;
|
|
uniform highp vec3 refprobe1_box_extents;
|
|
|
|
#ifndef USE_LIGHTMAP
|
|
varying mediump vec3 refprobe1_ambient_normal;
|
|
#endif
|
|
|
|
#endif //reflection probe1
|
|
|
|
#ifdef USE_REFLECTION_PROBE2
|
|
|
|
uniform highp mat4 refprobe2_local_matrix;
|
|
varying mediump vec4 refprobe2_reflection_normal_blend;
|
|
uniform highp vec3 refprobe2_box_extents;
|
|
|
|
#ifndef USE_LIGHTMAP
|
|
varying mediump vec3 refprobe2_ambient_normal;
|
|
#endif
|
|
|
|
#endif //reflection probe2
|
|
|
|
#endif //vertex lighting for refprobes
|
|
|
|
#if defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED)
|
|
|
|
varying vec4 fog_interp;
|
|
|
|
uniform mediump vec4 fog_color_base;
|
|
#ifdef LIGHT_MODE_DIRECTIONAL
|
|
uniform mediump vec4 fog_sun_color_amount;
|
|
#endif
|
|
|
|
uniform bool fog_transmit_enabled;
|
|
uniform mediump float fog_transmit_curve;
|
|
|
|
#ifdef FOG_DEPTH_ENABLED
|
|
uniform highp float fog_depth_begin;
|
|
uniform mediump float fog_depth_curve;
|
|
uniform mediump float fog_max_distance;
|
|
#endif
|
|
|
|
#ifdef FOG_HEIGHT_ENABLED
|
|
uniform highp float fog_height_min;
|
|
uniform highp float fog_height_max;
|
|
uniform mediump float fog_height_curve;
|
|
#endif
|
|
|
|
#endif //fog
|
|
|
|
void main() {
|
|
highp vec4 vertex = vertex_attrib;
|
|
|
|
mat4 world_matrix = world_transform;
|
|
|
|
#ifdef USE_INSTANCING
|
|
{
|
|
highp mat4 m = mat4(
|
|
instance_xform_row_0,
|
|
instance_xform_row_1,
|
|
instance_xform_row_2,
|
|
vec4(0.0, 0.0, 0.0, 1.0));
|
|
world_matrix = world_matrix * transpose(m);
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef ENABLE_OCTAHEDRAL_COMPRESSION
|
|
vec3 normal = oct_to_vec3(normal_tangent_attrib.xy);
|
|
#else
|
|
vec3 normal = normal_attrib;
|
|
#endif
|
|
|
|
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
|
|
#ifdef ENABLE_OCTAHEDRAL_COMPRESSION
|
|
vec3 tangent = oct_to_vec3(vec2(normal_tangent_attrib.z, abs(normal_tangent_attrib.w) * 2.0 - 1.0));
|
|
float binormalf = sign(normal_tangent_attrib.w);
|
|
#else
|
|
vec3 tangent = tangent_attrib.xyz;
|
|
float binormalf = tangent_attrib.a;
|
|
#endif
|
|
vec3 binormal = normalize(cross(normal, tangent) * binormalf);
|
|
#endif
|
|
|
|
#if defined(ENABLE_COLOR_INTERP)
|
|
color_interp = color_attrib;
|
|
#ifdef USE_INSTANCING
|
|
color_interp *= instance_color;
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(ENABLE_UV_INTERP)
|
|
uv_interp = uv_attrib;
|
|
#endif
|
|
|
|
#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
|
|
uv2_interp = uv2_attrib;
|
|
#endif
|
|
|
|
#if defined(OVERRIDE_POSITION)
|
|
highp vec4 position;
|
|
#endif
|
|
|
|
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
|
|
vertex = world_matrix * vertex;
|
|
#if defined(ENSURE_CORRECT_NORMALS)
|
|
mat3 normal_matrix = mat3(transpose(inverse(world_matrix)));
|
|
normal = normal_matrix * normal;
|
|
#else
|
|
normal = normalize((world_matrix * vec4(normal, 0.0)).xyz);
|
|
#endif
|
|
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
|
|
|
|
tangent = normalize((world_matrix * vec4(tangent, 0.0)).xyz);
|
|
binormal = normalize((world_matrix * vec4(binormal, 0.0)).xyz);
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef USE_SKELETON
|
|
|
|
highp mat4 bone_transform = mat4(0.0);
|
|
|
|
#ifdef USE_SKELETON_SOFTWARE
|
|
// passing the transform as attributes
|
|
|
|
bone_transform[0] = vec4(bone_transform_row_0.x, bone_transform_row_1.x, bone_transform_row_2.x, 0.0);
|
|
bone_transform[1] = vec4(bone_transform_row_0.y, bone_transform_row_1.y, bone_transform_row_2.y, 0.0);
|
|
bone_transform[2] = vec4(bone_transform_row_0.z, bone_transform_row_1.z, bone_transform_row_2.z, 0.0);
|
|
bone_transform[3] = vec4(bone_transform_row_0.w, bone_transform_row_1.w, bone_transform_row_2.w, 1.0);
|
|
|
|
#else
|
|
// look up transform from the "pose texture"
|
|
{
|
|
for (int i = 0; i < 4; i++) {
|
|
ivec2 tex_ofs = ivec2(int(bone_ids[i]) * 3, 0);
|
|
|
|
highp mat4 b = mat4(
|
|
texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(0, 0)),
|
|
texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(1, 0)),
|
|
texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(2, 0)),
|
|
vec4(0.0, 0.0, 0.0, 1.0));
|
|
|
|
bone_transform += transpose(b) * bone_weights[i];
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
world_matrix = world_matrix * bone_transform;
|
|
|
|
#endif
|
|
|
|
#ifdef USE_INSTANCING
|
|
vec4 instance_custom = instance_custom_data;
|
|
#else
|
|
vec4 instance_custom = vec4(0.0);
|
|
|
|
#endif
|
|
|
|
mat4 local_projection_matrix = projection_matrix;
|
|
|
|
mat4 modelview = camera_inverse_matrix * world_matrix;
|
|
float roughness = 1.0;
|
|
|
|
#define projection_matrix local_projection_matrix
|
|
#define world_transform world_matrix
|
|
|
|
float point_size = 1.0;
|
|
|
|
{
|
|
/* clang-format off */
|
|
|
|
VERTEX_SHADER_CODE
|
|
|
|
/* clang-format on */
|
|
}
|
|
|
|
gl_PointSize = point_size;
|
|
vec4 outvec = vertex;
|
|
|
|
// use local coordinates
|
|
#if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED)
|
|
vertex = modelview * vertex;
|
|
#if defined(ENSURE_CORRECT_NORMALS)
|
|
mat3 normal_matrix = mat3(transpose(inverse(modelview)));
|
|
normal = normal_matrix * normal;
|
|
#else
|
|
normal = normalize((modelview * vec4(normal, 0.0)).xyz);
|
|
#endif
|
|
|
|
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
|
|
tangent = normalize((modelview * vec4(tangent, 0.0)).xyz);
|
|
binormal = normalize((modelview * vec4(binormal, 0.0)).xyz);
|
|
#endif
|
|
#endif
|
|
|
|
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
|
|
vertex = camera_inverse_matrix * vertex;
|
|
normal = normalize((camera_inverse_matrix * vec4(normal, 0.0)).xyz);
|
|
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
|
|
tangent = normalize((camera_inverse_matrix * vec4(tangent, 0.0)).xyz);
|
|
binormal = normalize((camera_inverse_matrix * vec4(binormal, 0.0)).xyz);
|
|
#endif
|
|
#endif
|
|
|
|
vertex_interp = vertex.xyz;
|
|
normal_interp = normal;
|
|
|
|
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
|
|
tangent_interp = tangent;
|
|
binormal_interp = binormal;
|
|
#endif
|
|
|
|
#ifdef RENDER_DEPTH
|
|
|
|
#ifdef RENDER_DEPTH_DUAL_PARABOLOID
|
|
|
|
vertex_interp.z *= shadow_dual_paraboloid_render_side;
|
|
normal_interp.z *= shadow_dual_paraboloid_render_side;
|
|
|
|
dp_clip = vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias
|
|
|
|
//for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges
|
|
|
|
highp vec3 vtx = vertex_interp + normalize(vertex_interp) * light_bias;
|
|
highp float distance = length(vtx);
|
|
vtx = normalize(vtx);
|
|
vtx.xy /= 1.0 - vtx.z;
|
|
vtx.z = (distance / shadow_dual_paraboloid_render_zfar);
|
|
vtx.z = vtx.z * 2.0 - 1.0;
|
|
|
|
vertex_interp = vtx;
|
|
|
|
#else
|
|
float z_ofs = light_bias;
|
|
z_ofs += (1.0 - abs(normal_interp.z)) * light_normal_bias;
|
|
|
|
vertex_interp.z -= z_ofs;
|
|
#endif //dual parabolloid
|
|
|
|
#endif //depth
|
|
|
|
//vertex lighting
|
|
#if defined(USE_VERTEX_LIGHTING) && defined(USE_LIGHTING)
|
|
//vertex shaded version of lighting (more limited)
|
|
vec3 L;
|
|
vec3 light_att;
|
|
|
|
#ifdef LIGHT_MODE_OMNI
|
|
vec3 light_vec = light_position - vertex_interp;
|
|
float light_length = length(light_vec);
|
|
|
|
float normalized_distance = light_length / light_range;
|
|
|
|
if (normalized_distance < 1.0) {
|
|
float omni_attenuation = pow(1.0 - normalized_distance, light_attenuation);
|
|
|
|
vec3 attenuation = vec3(omni_attenuation);
|
|
light_att = vec3(omni_attenuation);
|
|
} else {
|
|
light_att = vec3(0.0);
|
|
}
|
|
|
|
L = normalize(light_vec);
|
|
|
|
#endif
|
|
|
|
#ifdef LIGHT_MODE_SPOT
|
|
|
|
vec3 light_rel_vec = light_position - vertex_interp;
|
|
float light_length = length(light_rel_vec);
|
|
float normalized_distance = light_length / light_range;
|
|
|
|
if (normalized_distance < 1.0) {
|
|
float spot_attenuation = pow(1.0 - normalized_distance, light_attenuation);
|
|
vec3 spot_dir = light_direction;
|
|
|
|
float spot_cutoff = light_spot_angle;
|
|
|
|
float angle = dot(-normalize(light_rel_vec), spot_dir);
|
|
|
|
if (angle > spot_cutoff) {
|
|
float scos = max(angle, spot_cutoff);
|
|
float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_cutoff));
|
|
|
|
spot_attenuation *= 1.0 - pow(spot_rim, light_spot_attenuation);
|
|
|
|
light_att = vec3(spot_attenuation);
|
|
} else {
|
|
light_att = vec3(0.0);
|
|
}
|
|
} else {
|
|
light_att = vec3(0.0);
|
|
}
|
|
|
|
L = normalize(light_rel_vec);
|
|
|
|
#endif
|
|
|
|
#ifdef LIGHT_MODE_DIRECTIONAL
|
|
vec3 light_vec = -light_direction;
|
|
light_att = vec3(1.0); //no base attenuation
|
|
L = normalize(light_vec);
|
|
#endif
|
|
|
|
diffuse_interp = vec3(0.0);
|
|
specular_interp = vec3(0.0);
|
|
light_compute(normal_interp, L, -normalize(vertex_interp), light_color.rgb, light_att, roughness);
|
|
|
|
#endif
|
|
|
|
//shadows (for both vertex and fragment)
|
|
#if defined(USE_SHADOW) && defined(USE_LIGHTING)
|
|
|
|
vec4 vi4 = vec4(vertex_interp, 1.0);
|
|
shadow_coord = light_shadow_matrix * vi4;
|
|
|
|
#if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4)
|
|
shadow_coord2 = light_shadow_matrix2 * vi4;
|
|
#endif
|
|
|
|
#if defined(LIGHT_USE_PSSM4)
|
|
shadow_coord3 = light_shadow_matrix3 * vi4;
|
|
shadow_coord4 = light_shadow_matrix4 * vi4;
|
|
|
|
#endif
|
|
|
|
#endif //use shadow and use lighting
|
|
|
|
#ifdef USE_VERTEX_LIGHTING
|
|
|
|
#ifdef USE_REFLECTION_PROBE1
|
|
{
|
|
vec3 ref_normal = normalize(reflect(vertex_interp, normal_interp));
|
|
vec3 local_pos = (refprobe1_local_matrix * vec4(vertex_interp, 1.0)).xyz;
|
|
vec3 inner_pos = abs(local_pos / refprobe1_box_extents);
|
|
float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z));
|
|
|
|
{
|
|
vec3 local_ref_vec = (refprobe1_local_matrix * vec4(ref_normal, 0.0)).xyz;
|
|
refprobe1_reflection_normal_blend.xyz = local_ref_vec;
|
|
refprobe1_reflection_normal_blend.a = blend;
|
|
}
|
|
#ifndef USE_LIGHTMAP
|
|
|
|
refprobe1_ambient_normal = (refprobe1_local_matrix * vec4(normal_interp, 0.0)).xyz;
|
|
#endif
|
|
}
|
|
|
|
#endif //USE_REFLECTION_PROBE1
|
|
|
|
#ifdef USE_REFLECTION_PROBE2
|
|
{
|
|
vec3 ref_normal = normalize(reflect(vertex_interp, normal_interp));
|
|
vec3 local_pos = (refprobe2_local_matrix * vec4(vertex_interp, 1.0)).xyz;
|
|
vec3 inner_pos = abs(local_pos / refprobe2_box_extents);
|
|
float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z));
|
|
|
|
{
|
|
vec3 local_ref_vec = (refprobe2_local_matrix * vec4(ref_normal, 0.0)).xyz;
|
|
refprobe2_reflection_normal_blend.xyz = local_ref_vec;
|
|
refprobe2_reflection_normal_blend.a = blend;
|
|
}
|
|
#ifndef USE_LIGHTMAP
|
|
|
|
refprobe2_ambient_normal = (refprobe2_local_matrix * vec4(normal_interp, 0.0)).xyz;
|
|
#endif
|
|
}
|
|
|
|
#endif //USE_REFLECTION_PROBE2
|
|
|
|
#if defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED)
|
|
|
|
float fog_amount = 0.0;
|
|
|
|
#ifdef LIGHT_MODE_DIRECTIONAL
|
|
|
|
vec3 fog_color = mix(fog_color_base.rgb, fog_sun_color_amount.rgb, fog_sun_color_amount.a * pow(max(dot(normalize(vertex_interp), light_direction), 0.0), 8.0));
|
|
#else
|
|
vec3 fog_color = fog_color_base.rgb;
|
|
#endif
|
|
|
|
#ifdef FOG_DEPTH_ENABLED
|
|
|
|
{
|
|
float fog_z = smoothstep(fog_depth_begin, fog_max_distance, length(vertex));
|
|
|
|
fog_amount = pow(fog_z, fog_depth_curve) * fog_color_base.a;
|
|
}
|
|
#endif
|
|
|
|
#ifdef FOG_HEIGHT_ENABLED
|
|
{
|
|
float y = (camera_matrix * vec4(vertex_interp, 1.0)).y;
|
|
fog_amount = max(fog_amount, pow(smoothstep(fog_height_min, fog_height_max, y), fog_height_curve));
|
|
}
|
|
#endif
|
|
fog_interp = vec4(fog_color, fog_amount);
|
|
|
|
#endif //fog
|
|
|
|
#endif //use vertex lighting
|
|
|
|
#if defined(OVERRIDE_POSITION)
|
|
gl_Position = position;
|
|
#else
|
|
gl_Position = projection_matrix * vec4(vertex_interp, 1.0);
|
|
#endif
|
|
|
|
#if defined(RENDER_DEPTH) && defined(USE_RGBA_SHADOWS)
|
|
position_interp = gl_Position;
|
|
#endif
|
|
}
|
|
|
|
/* clang-format off */
|
|
[fragment]
|
|
|
|
// texture2DLodEXT and textureCubeLodEXT are fragment shader specific.
|
|
// Do not copy these defines in the vertex section.
|
|
#ifndef USE_GLES_OVER_GL
|
|
#ifdef GL_EXT_shader_texture_lod
|
|
#extension GL_EXT_shader_texture_lod : enable
|
|
#define texture2DLod(img, coord, lod) texture2DLodEXT(img, coord, lod)
|
|
#define textureCubeLod(img, coord, lod) textureCubeLodEXT(img, coord, lod)
|
|
#endif
|
|
#endif // !USE_GLES_OVER_GL
|
|
|
|
#ifdef GL_ARB_shader_texture_lod
|
|
#extension GL_ARB_shader_texture_lod : enable
|
|
#endif
|
|
|
|
#if !defined(GL_EXT_shader_texture_lod) && !defined(GL_ARB_shader_texture_lod)
|
|
#define texture2DLod(img, coord, lod) texture2D(img, coord, lod)
|
|
#define textureCubeLod(img, coord, lod) textureCube(img, coord, lod)
|
|
#endif
|
|
|
|
#ifdef USE_GLES_OVER_GL
|
|
#define lowp
|
|
#define mediump
|
|
#define highp
|
|
#else
|
|
// On mobile devices we want to default to medium precision to increase performance in the fragment shader.
|
|
#if defined(USE_HIGHP_PRECISION)
|
|
precision highp float;
|
|
precision highp int;
|
|
#else
|
|
precision mediump float;
|
|
precision mediump int;
|
|
#endif
|
|
#endif
|
|
|
|
#include "stdlib.glsl"
|
|
|
|
#define M_PI 3.14159265359
|
|
#define SHADER_IS_SRGB true
|
|
|
|
//
|
|
// uniforms
|
|
//
|
|
|
|
uniform highp mat4 camera_matrix;
|
|
/* clang-format on */
|
|
uniform highp mat4 camera_inverse_matrix;
|
|
uniform highp mat4 projection_matrix;
|
|
uniform highp mat4 projection_inverse_matrix;
|
|
|
|
uniform highp mat4 world_transform;
|
|
|
|
uniform highp float time;
|
|
uniform highp int view_index;
|
|
|
|
uniform highp vec2 viewport_size;
|
|
|
|
#if defined(SCREEN_UV_USED)
|
|
uniform vec2 screen_pixel_size;
|
|
#endif
|
|
|
|
#if defined(SCREEN_TEXTURE_USED)
|
|
uniform highp sampler2D screen_texture; //texunit:-4
|
|
#endif
|
|
#if defined(DEPTH_TEXTURE_USED)
|
|
uniform highp sampler2D depth_texture; //texunit:-4
|
|
#endif
|
|
|
|
#ifdef USE_REFLECTION_PROBE1
|
|
|
|
#ifdef USE_VERTEX_LIGHTING
|
|
|
|
varying mediump vec4 refprobe1_reflection_normal_blend;
|
|
#ifndef USE_LIGHTMAP
|
|
varying mediump vec3 refprobe1_ambient_normal;
|
|
#endif
|
|
|
|
#else
|
|
|
|
uniform bool refprobe1_use_box_project;
|
|
uniform highp vec3 refprobe1_box_extents;
|
|
uniform vec3 refprobe1_box_offset;
|
|
uniform highp mat4 refprobe1_local_matrix;
|
|
|
|
#endif //use vertex lighting
|
|
|
|
uniform bool refprobe1_exterior;
|
|
|
|
uniform highp samplerCube reflection_probe1; //texunit:-5
|
|
|
|
uniform float refprobe1_intensity;
|
|
uniform vec4 refprobe1_ambient;
|
|
|
|
#endif //USE_REFLECTION_PROBE1
|
|
|
|
#ifdef USE_REFLECTION_PROBE2
|
|
|
|
#ifdef USE_VERTEX_LIGHTING
|
|
|
|
varying mediump vec4 refprobe2_reflection_normal_blend;
|
|
#ifndef USE_LIGHTMAP
|
|
varying mediump vec3 refprobe2_ambient_normal;
|
|
#endif
|
|
|
|
#else
|
|
|
|
uniform bool refprobe2_use_box_project;
|
|
uniform highp vec3 refprobe2_box_extents;
|
|
uniform vec3 refprobe2_box_offset;
|
|
uniform highp mat4 refprobe2_local_matrix;
|
|
|
|
#endif //use vertex lighting
|
|
|
|
uniform bool refprobe2_exterior;
|
|
|
|
uniform highp samplerCube reflection_probe2; //texunit:-6
|
|
|
|
uniform float refprobe2_intensity;
|
|
uniform vec4 refprobe2_ambient;
|
|
|
|
#endif //USE_REFLECTION_PROBE2
|
|
|
|
#define RADIANCE_MAX_LOD 6.0
|
|
|
|
#if defined(USE_REFLECTION_PROBE1) || defined(USE_REFLECTION_PROBE2)
|
|
|
|
void reflection_process(samplerCube reflection_map,
|
|
#ifdef USE_VERTEX_LIGHTING
|
|
vec3 ref_normal,
|
|
#ifndef USE_LIGHTMAP
|
|
vec3 amb_normal,
|
|
#endif
|
|
float ref_blend,
|
|
|
|
#else //no vertex lighting
|
|
vec3 normal, vec3 vertex,
|
|
mat4 local_matrix,
|
|
bool use_box_project, vec3 box_extents, vec3 box_offset,
|
|
#endif //vertex lighting
|
|
bool exterior, float intensity, vec4 ref_ambient, float roughness, vec3 ambient, vec3 skybox, inout highp vec4 reflection_accum, inout highp vec4 ambient_accum) {
|
|
|
|
vec4 reflection;
|
|
|
|
#ifdef USE_VERTEX_LIGHTING
|
|
|
|
reflection.rgb = textureCubeLod(reflection_map, ref_normal, roughness * RADIANCE_MAX_LOD).rgb;
|
|
|
|
float blend = ref_blend; //crappier blend formula for vertex
|
|
blend *= blend;
|
|
blend = max(0.0, 1.0 - blend);
|
|
|
|
#else //fragment lighting
|
|
|
|
vec3 local_pos = (local_matrix * vec4(vertex, 1.0)).xyz;
|
|
|
|
if (any(greaterThan(abs(local_pos), box_extents))) { //out of the reflection box
|
|
return;
|
|
}
|
|
|
|
vec3 inner_pos = abs(local_pos / box_extents);
|
|
float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z));
|
|
blend = mix(length(inner_pos), blend, blend);
|
|
blend *= blend;
|
|
blend = max(0.0, 1.0 - blend);
|
|
|
|
//reflect and make local
|
|
vec3 ref_normal = normalize(reflect(vertex, normal));
|
|
ref_normal = (local_matrix * vec4(ref_normal, 0.0)).xyz;
|
|
|
|
if (use_box_project) { //box project
|
|
|
|
vec3 nrdir = normalize(ref_normal);
|
|
vec3 rbmax = (box_extents - local_pos) / nrdir;
|
|
vec3 rbmin = (-box_extents - local_pos) / nrdir;
|
|
|
|
vec3 rbminmax = mix(rbmin, rbmax, vec3(greaterThan(nrdir, vec3(0.0, 0.0, 0.0))));
|
|
|
|
float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z);
|
|
vec3 posonbox = local_pos + nrdir * fa;
|
|
ref_normal = posonbox - box_offset.xyz;
|
|
}
|
|
|
|
reflection.rgb = textureCubeLod(reflection_map, ref_normal, roughness * RADIANCE_MAX_LOD).rgb;
|
|
#endif
|
|
|
|
if (exterior) {
|
|
reflection.rgb = mix(skybox, reflection.rgb, blend);
|
|
}
|
|
reflection.rgb *= intensity;
|
|
reflection.a = blend;
|
|
reflection.rgb *= blend;
|
|
|
|
reflection_accum += reflection;
|
|
|
|
#ifndef USE_LIGHTMAP
|
|
|
|
vec4 ambient_out;
|
|
#ifndef USE_VERTEX_LIGHTING
|
|
|
|
vec3 amb_normal = (local_matrix * vec4(normal, 0.0)).xyz;
|
|
#endif
|
|
|
|
ambient_out.rgb = textureCubeLod(reflection_map, amb_normal, RADIANCE_MAX_LOD).rgb;
|
|
ambient_out.rgb = mix(ref_ambient.rgb, ambient_out.rgb, ref_ambient.a);
|
|
if (exterior) {
|
|
ambient_out.rgb = mix(ambient, ambient_out.rgb, blend);
|
|
}
|
|
|
|
ambient_out.a = blend;
|
|
ambient_out.rgb *= blend;
|
|
ambient_accum += ambient_out;
|
|
|
|
#endif
|
|
}
|
|
|
|
#endif //use refprobe 1 or 2
|
|
|
|
#ifdef USE_LIGHTMAP
|
|
uniform mediump sampler2D lightmap; //texunit:-4
|
|
uniform mediump float lightmap_energy;
|
|
|
|
#if defined(USE_LIGHTMAP_FILTER_BICUBIC)
|
|
uniform mediump vec2 lightmap_texture_size;
|
|
|
|
// w0, w1, w2, and w3 are the four cubic B-spline basis functions
|
|
float w0(float a) {
|
|
return (1.0 / 6.0) * (a * (a * (-a + 3.0) - 3.0) + 1.0);
|
|
}
|
|
|
|
float w1(float a) {
|
|
return (1.0 / 6.0) * (a * a * (3.0 * a - 6.0) + 4.0);
|
|
}
|
|
|
|
float w2(float a) {
|
|
return (1.0 / 6.0) * (a * (a * (-3.0 * a + 3.0) + 3.0) + 1.0);
|
|
}
|
|
|
|
float w3(float a) {
|
|
return (1.0 / 6.0) * (a * a * a);
|
|
}
|
|
|
|
// g0 and g1 are the two amplitude functions
|
|
float g0(float a) {
|
|
return w0(a) + w1(a);
|
|
}
|
|
|
|
float g1(float a) {
|
|
return w2(a) + w3(a);
|
|
}
|
|
|
|
// h0 and h1 are the two offset functions
|
|
float h0(float a) {
|
|
return -1.0 + w1(a) / (w0(a) + w1(a));
|
|
}
|
|
|
|
float h1(float a) {
|
|
return 1.0 + w3(a) / (w2(a) + w3(a));
|
|
}
|
|
|
|
vec4 texture2D_bicubic(sampler2D tex, vec2 uv) {
|
|
vec2 texel_size = vec2(1.0) / lightmap_texture_size;
|
|
|
|
uv = uv * lightmap_texture_size + vec2(0.5);
|
|
|
|
vec2 iuv = floor(uv);
|
|
vec2 fuv = fract(uv);
|
|
|
|
float g0x = g0(fuv.x);
|
|
float g1x = g1(fuv.x);
|
|
float h0x = h0(fuv.x);
|
|
float h1x = h1(fuv.x);
|
|
float h0y = h0(fuv.y);
|
|
float h1y = h1(fuv.y);
|
|
|
|
vec2 p0 = (vec2(iuv.x + h0x, iuv.y + h0y) - vec2(0.5)) * texel_size;
|
|
vec2 p1 = (vec2(iuv.x + h1x, iuv.y + h0y) - vec2(0.5)) * texel_size;
|
|
vec2 p2 = (vec2(iuv.x + h0x, iuv.y + h1y) - vec2(0.5)) * texel_size;
|
|
vec2 p3 = (vec2(iuv.x + h1x, iuv.y + h1y) - vec2(0.5)) * texel_size;
|
|
|
|
return (g0(fuv.y) * (g0x * texture2D(tex, p0) + g1x * texture2D(tex, p1))) +
|
|
(g1(fuv.y) * (g0x * texture2D(tex, p2) + g1x * texture2D(tex, p3)));
|
|
}
|
|
#endif //USE_LIGHTMAP_FILTER_BICUBIC
|
|
#endif
|
|
|
|
#ifdef USE_LIGHTMAP_CAPTURE
|
|
uniform mediump vec4 lightmap_captures[12];
|
|
#endif
|
|
|
|
#ifdef USE_RADIANCE_MAP
|
|
|
|
uniform samplerCube radiance_map; // texunit:-2
|
|
|
|
uniform mat4 radiance_inverse_xform;
|
|
|
|
#endif
|
|
|
|
uniform vec4 bg_color;
|
|
uniform float bg_energy;
|
|
|
|
uniform float ambient_sky_contribution;
|
|
uniform vec4 ambient_color;
|
|
uniform float ambient_energy;
|
|
|
|
#ifdef USE_LIGHTING
|
|
|
|
uniform highp vec4 shadow_color;
|
|
|
|
#ifdef USE_VERTEX_LIGHTING
|
|
|
|
//get from vertex
|
|
varying highp vec3 diffuse_interp;
|
|
varying highp vec3 specular_interp;
|
|
|
|
uniform highp vec3 light_direction; //may be used by fog, so leave here
|
|
|
|
#else
|
|
//done in fragment
|
|
// general for all lights
|
|
uniform highp vec4 light_color;
|
|
|
|
uniform highp float light_specular;
|
|
|
|
// directional
|
|
uniform highp vec3 light_direction;
|
|
// omni
|
|
uniform highp vec3 light_position;
|
|
|
|
uniform highp float light_attenuation;
|
|
|
|
// spot
|
|
uniform highp float light_spot_attenuation;
|
|
uniform highp float light_spot_range;
|
|
uniform highp float light_spot_angle;
|
|
#endif
|
|
|
|
//this is needed outside above if because dual paraboloid wants it
|
|
uniform highp float light_range;
|
|
|
|
#ifdef USE_SHADOW
|
|
|
|
uniform highp vec2 shadow_pixel_size;
|
|
|
|
#if defined(LIGHT_MODE_OMNI) || defined(LIGHT_MODE_SPOT)
|
|
uniform highp sampler2D light_shadow_atlas; //texunit:-3
|
|
#endif
|
|
|
|
#ifdef LIGHT_MODE_DIRECTIONAL
|
|
uniform highp sampler2D light_directional_shadow; // texunit:-3
|
|
uniform highp vec4 light_split_offsets;
|
|
#endif
|
|
|
|
varying highp vec4 shadow_coord;
|
|
|
|
#if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4)
|
|
varying highp vec4 shadow_coord2;
|
|
#endif
|
|
|
|
#if defined(LIGHT_USE_PSSM4)
|
|
|
|
varying highp vec4 shadow_coord3;
|
|
varying highp vec4 shadow_coord4;
|
|
|
|
#endif
|
|
|
|
uniform vec4 light_clamp;
|
|
|
|
#endif // light shadow
|
|
|
|
// directional shadow
|
|
|
|
#endif
|
|
|
|
//
|
|
// varyings
|
|
//
|
|
|
|
#if defined(RENDER_DEPTH) && defined(USE_RGBA_SHADOWS)
|
|
varying highp vec4 position_interp;
|
|
#endif
|
|
|
|
varying highp vec3 vertex_interp;
|
|
varying vec3 normal_interp;
|
|
|
|
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
|
|
varying vec3 tangent_interp;
|
|
varying vec3 binormal_interp;
|
|
#endif
|
|
|
|
#if defined(ENABLE_COLOR_INTERP)
|
|
varying vec4 color_interp;
|
|
#endif
|
|
|
|
#if defined(ENABLE_UV_INTERP)
|
|
varying vec2 uv_interp;
|
|
#endif
|
|
|
|
#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
|
|
varying vec2 uv2_interp;
|
|
#endif
|
|
|
|
varying vec3 view_interp;
|
|
|
|
vec3 F0(float metallic, float specular, vec3 albedo) {
|
|
float dielectric = 0.16 * specular * specular;
|
|
// use albedo * metallic as colored specular reflectance at 0 angle for metallic materials;
|
|
// see https://google.github.io/filament/Filament.md.html
|
|
return mix(vec3(dielectric), albedo, vec3(metallic));
|
|
}
|
|
|
|
/* clang-format off */
|
|
|
|
FRAGMENT_SHADER_GLOBALS
|
|
|
|
/* clang-format on */
|
|
|
|
#ifdef RENDER_DEPTH_DUAL_PARABOLOID
|
|
|
|
varying highp float dp_clip;
|
|
|
|
#endif
|
|
|
|
#ifdef USE_LIGHTING
|
|
|
|
// This returns the G_GGX function divided by 2 cos_theta_m, where in practice cos_theta_m is either N.L or N.V.
|
|
// We're dividing this factor off because the overall term we'll end up looks like
|
|
// (see, for example, the first unnumbered equation in B. Burley, "Physically Based Shading at Disney", SIGGRAPH 2012):
|
|
//
|
|
// F(L.V) D(N.H) G(N.L) G(N.V) / (4 N.L N.V)
|
|
//
|
|
// We're basically regouping this as
|
|
//
|
|
// F(L.V) D(N.H) [G(N.L)/(2 N.L)] [G(N.V) / (2 N.V)]
|
|
//
|
|
// and thus, this function implements the [G(N.m)/(2 N.m)] part with m = L or V.
|
|
//
|
|
// The contents of the D and G (G1) functions (GGX) are taken from
|
|
// E. Heitz, "Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs", J. Comp. Graph. Tech. 3 (2) (2014).
|
|
// Eqns 71-72 and 85-86 (see also Eqns 43 and 80).
|
|
|
|
/*
|
|
float G_GGX_2cos(float cos_theta_m, float alpha) {
|
|
// Schlick's approximation
|
|
// C. Schlick, "An Inexpensive BRDF Model for Physically-based Rendering", Computer Graphics Forum. 13 (3): 233 (1994)
|
|
// Eq. (19), although see Heitz (2014) the about the problems with his derivation.
|
|
// It nevertheless approximates GGX well with k = alpha/2.
|
|
float k = 0.5 * alpha;
|
|
return 0.5 / (cos_theta_m * (1.0 - k) + k);
|
|
|
|
// float cos2 = cos_theta_m * cos_theta_m;
|
|
// float sin2 = (1.0 - cos2);
|
|
// return 1.0 / (cos_theta_m + sqrt(cos2 + alpha * alpha * sin2));
|
|
}
|
|
*/
|
|
|
|
// This approximates G_GGX_2cos(cos_theta_l, alpha) * G_GGX_2cos(cos_theta_v, alpha)
|
|
// See Filament docs, Specular G section.
|
|
float V_GGX(float cos_theta_l, float cos_theta_v, float alpha) {
|
|
return 0.5 / mix(2.0 * cos_theta_l * cos_theta_v, cos_theta_l + cos_theta_v, alpha);
|
|
}
|
|
|
|
float D_GGX(float cos_theta_m, float alpha) {
|
|
float alpha2 = alpha * alpha;
|
|
float d = 1.0 + (alpha2 - 1.0) * cos_theta_m * cos_theta_m;
|
|
return alpha2 / (M_PI * d * d);
|
|
}
|
|
|
|
/*
|
|
float G_GGX_anisotropic_2cos(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
|
|
float cos2 = cos_theta_m * cos_theta_m;
|
|
float sin2 = (1.0 - cos2);
|
|
float s_x = alpha_x * cos_phi;
|
|
float s_y = alpha_y * sin_phi;
|
|
return 1.0 / max(cos_theta_m + sqrt(cos2 + (s_x * s_x + s_y * s_y) * sin2), 0.001);
|
|
}
|
|
*/
|
|
|
|
// This approximates G_GGX_anisotropic_2cos(cos_theta_l, ...) * G_GGX_anisotropic_2cos(cos_theta_v, ...)
|
|
// See Filament docs, Anisotropic specular BRDF section.
|
|
float V_GGX_anisotropic(float alpha_x, float alpha_y, float TdotV, float TdotL, float BdotV, float BdotL, float NdotV, float NdotL) {
|
|
float Lambda_V = NdotL * length(vec3(alpha_x * TdotV, alpha_y * BdotV, NdotV));
|
|
float Lambda_L = NdotV * length(vec3(alpha_x * TdotL, alpha_y * BdotL, NdotL));
|
|
return 0.5 / (Lambda_V + Lambda_L);
|
|
}
|
|
|
|
float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi, float NdotH) {
|
|
float alpha2 = alpha_x * alpha_y;
|
|
highp vec3 v = vec3(alpha_y * cos_phi, alpha_x * sin_phi, alpha2 * NdotH);
|
|
highp float v2 = dot(v, v);
|
|
float w2 = alpha2 / v2;
|
|
float D = alpha2 * w2 * w2 * (1.0 / M_PI);
|
|
return D;
|
|
|
|
/* float cos2 = cos_theta_m * cos_theta_m;
|
|
float sin2 = (1.0 - cos2);
|
|
float r_x = cos_phi / alpha_x;
|
|
float r_y = sin_phi / alpha_y;
|
|
float d = cos2 + sin2 * (r_x * r_x + r_y * r_y);
|
|
return 1.0 / max(M_PI * alpha_x * alpha_y * d * d, 0.001); */
|
|
}
|
|
|
|
float SchlickFresnel(float u) {
|
|
float m = 1.0 - u;
|
|
float m2 = m * m;
|
|
return m2 * m2 * m; // pow(m,5)
|
|
}
|
|
|
|
float GTR1(float NdotH, float a) {
|
|
if (a >= 1.0)
|
|
return 1.0 / M_PI;
|
|
float a2 = a * a;
|
|
float t = 1.0 + (a2 - 1.0) * NdotH * NdotH;
|
|
return (a2 - 1.0) / (M_PI * log(a2) * t);
|
|
}
|
|
|
|
void light_compute(
|
|
vec3 N,
|
|
vec3 L,
|
|
vec3 V,
|
|
vec3 B,
|
|
vec3 T,
|
|
vec3 light_color,
|
|
vec3 attenuation,
|
|
vec3 diffuse_color,
|
|
vec3 transmission,
|
|
float specular_blob_intensity,
|
|
float roughness,
|
|
float metallic,
|
|
float specular,
|
|
float rim,
|
|
float rim_tint,
|
|
float clearcoat,
|
|
float clearcoat_gloss,
|
|
float anisotropy,
|
|
inout vec3 diffuse_light,
|
|
inout vec3 specular_light,
|
|
inout float alpha) {
|
|
//this makes lights behave closer to linear, but then addition of lights looks bad
|
|
//better left disabled
|
|
|
|
//#define SRGB_APPROX(m_var) m_var = pow(m_var,0.4545454545);
|
|
/*
|
|
#define SRGB_APPROX(m_var) {\
|
|
float S1 = sqrt(m_var);\
|
|
float S2 = sqrt(S1);\
|
|
float S3 = sqrt(S2);\
|
|
m_var = 0.662002687 * S1 + 0.684122060 * S2 - 0.323583601 * S3 - 0.0225411470 * m_var;\
|
|
}
|
|
*/
|
|
#define SRGB_APPROX(m_var)
|
|
|
|
#if defined(USE_LIGHT_SHADER_CODE)
|
|
// light is written by the light shader
|
|
|
|
vec3 normal = N;
|
|
vec3 albedo = diffuse_color;
|
|
vec3 light = L;
|
|
vec3 view = V;
|
|
|
|
/* clang-format off */
|
|
|
|
LIGHT_SHADER_CODE
|
|
|
|
/* clang-format on */
|
|
|
|
#else
|
|
float NdotL = dot(N, L);
|
|
float cNdotL = max(NdotL, 0.0); // clamped NdotL
|
|
float NdotV = dot(N, V);
|
|
float cNdotV = max(abs(NdotV), 1e-6);
|
|
|
|
/* Make a default specular mode SPECULAR_SCHLICK_GGX. */
|
|
#if !defined(SPECULAR_DISABLED) && !defined(SPECULAR_SCHLICK_GGX) && !defined(SPECULAR_BLINN) && !defined(SPECULAR_PHONG) && !defined(SPECULAR_TOON)
|
|
#define SPECULAR_SCHLICK_GGX
|
|
#endif
|
|
|
|
#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_USE_CLEARCOAT)
|
|
vec3 H = normalize(V + L);
|
|
#endif
|
|
|
|
#if defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_USE_CLEARCOAT)
|
|
float cNdotH = max(dot(N, H), 0.0);
|
|
#endif
|
|
|
|
#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_USE_CLEARCOAT)
|
|
float cLdotH = max(dot(L, H), 0.0);
|
|
#endif
|
|
|
|
if (metallic < 1.0) {
|
|
#if defined(DIFFUSE_OREN_NAYAR)
|
|
vec3 diffuse_brdf_NL;
|
|
#else
|
|
float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance
|
|
#endif
|
|
|
|
#if defined(DIFFUSE_LAMBERT_WRAP)
|
|
// energy conserving lambert wrap shader
|
|
diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness)));
|
|
|
|
#elif defined(DIFFUSE_OREN_NAYAR)
|
|
|
|
{
|
|
// see http://mimosa-pudica.net/improved-oren-nayar.html
|
|
float LdotV = dot(L, V);
|
|
|
|
float s = LdotV - NdotL * NdotV;
|
|
float t = mix(1.0, max(NdotL, NdotV), step(0.0, s));
|
|
|
|
float sigma2 = roughness * roughness; // TODO: this needs checking
|
|
vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13));
|
|
float B = 0.45 * sigma2 / (sigma2 + 0.09);
|
|
|
|
diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI);
|
|
}
|
|
|
|
#elif defined(DIFFUSE_TOON)
|
|
|
|
diffuse_brdf_NL = smoothstep(-roughness, max(roughness, 0.01), NdotL);
|
|
|
|
#elif defined(DIFFUSE_BURLEY)
|
|
|
|
{
|
|
float FD90_minus_1 = 2.0 * cLdotH * cLdotH * roughness - 0.5;
|
|
float FdV = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotV);
|
|
float FdL = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotL);
|
|
diffuse_brdf_NL = (1.0 / M_PI) * FdV * FdL * cNdotL;
|
|
/*
|
|
float energyBias = mix(roughness, 0.0, 0.5);
|
|
float energyFactor = mix(roughness, 1.0, 1.0 / 1.51);
|
|
float fd90 = energyBias + 2.0 * VoH * VoH * roughness;
|
|
float f0 = 1.0;
|
|
float lightScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotL, 5.0);
|
|
float viewScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotV, 5.0);
|
|
|
|
diffuse_brdf_NL = lightScatter * viewScatter * energyFactor;
|
|
*/
|
|
}
|
|
#else
|
|
// lambert
|
|
diffuse_brdf_NL = cNdotL * (1.0 / M_PI);
|
|
#endif
|
|
|
|
SRGB_APPROX(diffuse_brdf_NL)
|
|
|
|
diffuse_light += light_color * diffuse_color * diffuse_brdf_NL * attenuation;
|
|
|
|
#if defined(TRANSMISSION_USED)
|
|
diffuse_light += light_color * diffuse_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * transmission * attenuation;
|
|
#endif
|
|
|
|
#if defined(LIGHT_USE_RIM)
|
|
float rim_light = pow(max(0.0, 1.0 - cNdotV), max(0.0, (1.0 - roughness) * 16.0));
|
|
diffuse_light += rim_light * rim * mix(vec3(1.0), diffuse_color, rim_tint) * light_color;
|
|
#endif
|
|
}
|
|
|
|
if (roughness > 0.0) {
|
|
|
|
#if defined(SPECULAR_SCHLICK_GGX) || defined(SPECULAR_BLINN) || defined(SPECULAR_PHONG)
|
|
vec3 specular_brdf_NL = vec3(0.0);
|
|
#else
|
|
float specular_brdf_NL = 0.0;
|
|
#endif
|
|
|
|
#if defined(SPECULAR_BLINN)
|
|
|
|
//normalized blinn
|
|
float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
|
|
float blinn = pow(cNdotH, shininess);
|
|
blinn *= (shininess + 2.0) * (1.0 / (8.0 * M_PI));
|
|
|
|
specular_brdf_NL = blinn * diffuse_color * specular;
|
|
|
|
#elif defined(SPECULAR_PHONG)
|
|
|
|
vec3 R = normalize(-reflect(L, N));
|
|
float cRdotV = max(0.0, dot(R, V));
|
|
float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
|
|
float phong = pow(cRdotV, shininess);
|
|
phong *= (shininess + 1.0) * (1.0 / (8.0 * M_PI));
|
|
|
|
specular_brdf_NL = phong * diffuse_color * specular;
|
|
|
|
#elif defined(SPECULAR_TOON)
|
|
|
|
vec3 R = normalize(-reflect(L, N));
|
|
float RdotV = dot(R, V);
|
|
float mid = 1.0 - roughness;
|
|
mid *= mid;
|
|
specular_brdf_NL = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid;
|
|
|
|
#elif defined(SPECULAR_DISABLED)
|
|
// none..
|
|
#elif defined(SPECULAR_SCHLICK_GGX)
|
|
// shlick+ggx as default
|
|
|
|
#if defined(LIGHT_USE_ANISOTROPY)
|
|
float alpha_ggx = roughness * roughness;
|
|
float aspect = sqrt(1.0 - anisotropy * 0.9);
|
|
float ax = alpha_ggx / aspect;
|
|
float ay = alpha_ggx * aspect;
|
|
float XdotH = dot(T, H);
|
|
float YdotH = dot(B, H);
|
|
float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH, cNdotH);
|
|
//float G = G_GGX_anisotropic_2cos(cNdotL, ax, ay, XdotH, YdotH) * G_GGX_anisotropic_2cos(cNdotV, ax, ay, XdotH, YdotH);
|
|
float G = V_GGX_anisotropic(ax, ay, dot(T, V), dot(T, L), dot(B, V), dot(B, L), cNdotV, cNdotL);
|
|
|
|
#else
|
|
float alpha_ggx = roughness * roughness;
|
|
float D = D_GGX(cNdotH, alpha_ggx);
|
|
//float G = G_GGX_2cos(cNdotL, alpha_ggx) * G_GGX_2cos(cNdotV, alpha_ggx);
|
|
float G = V_GGX(cNdotL, cNdotV, alpha_ggx);
|
|
#endif
|
|
// F
|
|
vec3 f0 = F0(metallic, specular, diffuse_color);
|
|
float cLdotH5 = SchlickFresnel(cLdotH);
|
|
vec3 F = mix(vec3(cLdotH5), vec3(1.0), f0);
|
|
|
|
specular_brdf_NL = cNdotL * D * F * G;
|
|
|
|
#endif
|
|
|
|
SRGB_APPROX(specular_brdf_NL)
|
|
specular_light += specular_brdf_NL * light_color * specular_blob_intensity * attenuation;
|
|
|
|
#if defined(LIGHT_USE_CLEARCOAT)
|
|
|
|
#if !defined(SPECULAR_SCHLICK_GGX)
|
|
float cLdotH5 = SchlickFresnel(cLdotH);
|
|
#endif
|
|
float Dr = GTR1(cNdotH, mix(.1, .001, clearcoat_gloss));
|
|
float Fr = mix(.04, 1.0, cLdotH5);
|
|
//float Gr = G_GGX_2cos(cNdotL, .25) * G_GGX_2cos(cNdotV, .25);
|
|
float Gr = V_GGX(cNdotL, cNdotV, 0.25);
|
|
|
|
float clearcoat_specular_brdf_NL = 0.25 * clearcoat * Gr * Fr * Dr * cNdotL;
|
|
|
|
specular_light += clearcoat_specular_brdf_NL * light_color * specular_blob_intensity * attenuation;
|
|
#endif
|
|
}
|
|
|
|
#ifdef USE_SHADOW_TO_OPACITY
|
|
alpha = min(alpha, clamp(1.0 - length(attenuation), 0.0, 1.0));
|
|
#endif
|
|
|
|
#endif //defined(USE_LIGHT_SHADER_CODE)
|
|
}
|
|
|
|
#endif
|
|
// shadows
|
|
|
|
#ifdef USE_SHADOW
|
|
|
|
#ifdef USE_RGBA_SHADOWS
|
|
|
|
#define SHADOW_DEPTH(m_val) dot(m_val, vec4(1.0 / (255.0 * 255.0 * 255.0), 1.0 / (255.0 * 255.0), 1.0 / 255.0, 1.0))
|
|
|
|
#else
|
|
|
|
#define SHADOW_DEPTH(m_val) (m_val).r
|
|
|
|
#endif
|
|
|
|
#define SAMPLE_SHADOW_TEXEL(p_shadow, p_pos, p_depth) step(p_depth, SHADOW_DEPTH(texture2D(p_shadow, p_pos)))
|
|
#define SAMPLE_SHADOW_TEXEL_PROJ(p_shadow, p_pos) step(p_pos.z, SHADOW_DEPTH(texture2DProj(p_shadow, p_pos)))
|
|
|
|
float sample_shadow(highp sampler2D shadow, highp vec4 spos) {
|
|
#ifdef SHADOW_MODE_PCF_13
|
|
|
|
// Soft PCF filter adapted from three.js:
|
|
// https://github.com/mrdoob/three.js/blob/0c815022849389cbe6de14a93e1c2fc7e4b21c18/src/renderers/shaders/ShaderChunk/shadowmap_pars_fragment.glsl.js#L148-L182
|
|
// This method actually uses 16 shadow samples. This soft filter isn't needed in GLES3
|
|
// as we can use hardware-based linear filtering instead of emulating it in the shader
|
|
// like we're doing here.
|
|
spos.xyz /= spos.w;
|
|
vec2 pos = spos.xy;
|
|
float depth = spos.z;
|
|
vec2 f = fract(pos * (1.0 / shadow_pixel_size) + 0.5);
|
|
pos -= f * shadow_pixel_size;
|
|
|
|
return (
|
|
SAMPLE_SHADOW_TEXEL(shadow, pos, depth) +
|
|
SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, 0.0), depth) +
|
|
SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, shadow_pixel_size.y), depth) +
|
|
SAMPLE_SHADOW_TEXEL(shadow, pos + shadow_pixel_size, depth) +
|
|
mix(
|
|
SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, 0.0), depth),
|
|
SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(2.0 * shadow_pixel_size.x, 0.0), depth),
|
|
f.x) +
|
|
mix(
|
|
SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, shadow_pixel_size.y), depth),
|
|
SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(2.0 * shadow_pixel_size.x, shadow_pixel_size.y), depth),
|
|
f.x) +
|
|
mix(
|
|
SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, -shadow_pixel_size.y), depth),
|
|
SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, 2.0 * shadow_pixel_size.y), depth),
|
|
f.y) +
|
|
mix(
|
|
SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, -shadow_pixel_size.y), depth),
|
|
SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, 2.0 * shadow_pixel_size.y), depth),
|
|
f.y) +
|
|
mix(
|
|
mix(SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, -shadow_pixel_size.y), depth),
|
|
SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(2.0 * shadow_pixel_size.x, -shadow_pixel_size.y), depth),
|
|
f.x),
|
|
mix(SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, 2.0 * shadow_pixel_size.y), depth),
|
|
SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(2.0 * shadow_pixel_size.x, 2.0 * shadow_pixel_size.y), depth),
|
|
f.x),
|
|
f.y)) *
|
|
(1.0 / 9.0);
|
|
#endif
|
|
|
|
#ifdef SHADOW_MODE_PCF_5
|
|
|
|
spos.xyz /= spos.w;
|
|
vec2 pos = spos.xy;
|
|
float depth = spos.z;
|
|
|
|
float avg = SAMPLE_SHADOW_TEXEL(shadow, pos, depth);
|
|
avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, 0.0), depth);
|
|
avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, 0.0), depth);
|
|
avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, shadow_pixel_size.y), depth);
|
|
avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, -shadow_pixel_size.y), depth);
|
|
return avg * (1.0 / 5.0);
|
|
|
|
#endif
|
|
|
|
#if !defined(SHADOW_MODE_PCF_5) || !defined(SHADOW_MODE_PCF_13)
|
|
|
|
return SAMPLE_SHADOW_TEXEL_PROJ(shadow, spos);
|
|
#endif
|
|
}
|
|
|
|
#endif
|
|
|
|
#if defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED)
|
|
|
|
#if defined(USE_VERTEX_LIGHTING)
|
|
|
|
varying vec4 fog_interp;
|
|
|
|
#else
|
|
uniform mediump vec4 fog_color_base;
|
|
#ifdef LIGHT_MODE_DIRECTIONAL
|
|
uniform mediump vec4 fog_sun_color_amount;
|
|
#endif
|
|
|
|
uniform bool fog_transmit_enabled;
|
|
uniform mediump float fog_transmit_curve;
|
|
|
|
#ifdef FOG_DEPTH_ENABLED
|
|
uniform highp float fog_depth_begin;
|
|
uniform mediump float fog_depth_curve;
|
|
uniform mediump float fog_max_distance;
|
|
#endif
|
|
|
|
#ifdef FOG_HEIGHT_ENABLED
|
|
uniform highp float fog_height_min;
|
|
uniform highp float fog_height_max;
|
|
uniform mediump float fog_height_curve;
|
|
#endif
|
|
|
|
#endif //vertex lit
|
|
#endif //fog
|
|
|
|
void main() {
|
|
#ifdef RENDER_DEPTH_DUAL_PARABOLOID
|
|
|
|
if (dp_clip > 0.0)
|
|
discard;
|
|
#endif
|
|
highp vec3 vertex = vertex_interp;
|
|
vec3 view = -normalize(vertex_interp);
|
|
vec3 albedo = vec3(1.0);
|
|
vec3 transmission = vec3(0.0);
|
|
float metallic = 0.0;
|
|
float specular = 0.5;
|
|
vec3 emission = vec3(0.0);
|
|
float roughness = 1.0;
|
|
float rim = 0.0;
|
|
float rim_tint = 0.0;
|
|
float clearcoat = 0.0;
|
|
float clearcoat_gloss = 0.0;
|
|
float anisotropy = 0.0;
|
|
vec2 anisotropy_flow = vec2(1.0, 0.0);
|
|
float sss_strength = 0.0; //unused
|
|
// gl_FragDepth is not available in GLES2, so writing to DEPTH is not converted to gl_FragDepth by Godot compiler resulting in a
|
|
// compile error because DEPTH is not a variable.
|
|
float m_DEPTH = 0.0;
|
|
|
|
float alpha = 1.0;
|
|
float side = 1.0;
|
|
|
|
float specular_blob_intensity = 1.0;
|
|
#if defined(SPECULAR_TOON)
|
|
specular_blob_intensity *= specular * 2.0;
|
|
#endif
|
|
|
|
#if defined(ENABLE_AO)
|
|
float ao = 1.0;
|
|
float ao_light_affect = 0.0;
|
|
#endif
|
|
|
|
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
|
|
vec3 binormal = normalize(binormal_interp) * side;
|
|
vec3 tangent = normalize(tangent_interp) * side;
|
|
#else
|
|
vec3 binormal = vec3(0.0);
|
|
vec3 tangent = vec3(0.0);
|
|
#endif
|
|
vec3 normal = normalize(normal_interp) * side;
|
|
|
|
#if defined(ENABLE_NORMALMAP)
|
|
vec3 normalmap = vec3(0.5);
|
|
#endif
|
|
float normaldepth = 1.0;
|
|
|
|
#if defined(ALPHA_SCISSOR_USED)
|
|
float alpha_scissor = 0.5;
|
|
#endif
|
|
|
|
#if defined(SCREEN_UV_USED)
|
|
vec2 screen_uv = gl_FragCoord.xy * screen_pixel_size;
|
|
#endif
|
|
|
|
{
|
|
/* clang-format off */
|
|
|
|
FRAGMENT_SHADER_CODE
|
|
|
|
/* clang-format on */
|
|
}
|
|
|
|
#if defined(ENABLE_NORMALMAP)
|
|
normalmap.xy = normalmap.xy * 2.0 - 1.0;
|
|
normalmap.z = sqrt(max(0.0, 1.0 - dot(normalmap.xy, normalmap.xy)));
|
|
|
|
normal = normalize(mix(normal_interp, tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z, normaldepth)) * side;
|
|
//normal = normalmap;
|
|
#endif
|
|
|
|
normal = normalize(normal);
|
|
|
|
vec3 N = normal;
|
|
|
|
vec3 specular_light = vec3(0.0, 0.0, 0.0);
|
|
vec3 diffuse_light = vec3(0.0, 0.0, 0.0);
|
|
vec3 ambient_light = vec3(0.0, 0.0, 0.0);
|
|
|
|
vec3 eye_position = view;
|
|
|
|
#if !defined(USE_SHADOW_TO_OPACITY)
|
|
|
|
#if defined(ALPHA_SCISSOR_USED)
|
|
if (alpha < alpha_scissor) {
|
|
discard;
|
|
}
|
|
#endif // ALPHA_SCISSOR_USED
|
|
|
|
#ifdef USE_DEPTH_PREPASS
|
|
if (alpha < 0.1) {
|
|
discard;
|
|
}
|
|
#endif // USE_DEPTH_PREPASS
|
|
|
|
#endif // !USE_SHADOW_TO_OPACITY
|
|
|
|
#ifdef BASE_PASS
|
|
|
|
// IBL precalculations
|
|
float ndotv = clamp(dot(normal, eye_position), 0.0, 1.0);
|
|
vec3 f0 = F0(metallic, specular, albedo);
|
|
vec3 F = f0 + (max(vec3(1.0 - roughness), f0) - f0) * pow(1.0 - ndotv, 5.0);
|
|
|
|
#ifdef AMBIENT_LIGHT_DISABLED
|
|
ambient_light = vec3(0.0, 0.0, 0.0);
|
|
#else
|
|
|
|
#ifdef USE_RADIANCE_MAP
|
|
|
|
vec3 ref_vec = reflect(-eye_position, N);
|
|
float horizon = min(1.0 + dot(ref_vec, normal), 1.0);
|
|
ref_vec = normalize((radiance_inverse_xform * vec4(ref_vec, 0.0)).xyz);
|
|
|
|
ref_vec.z *= -1.0;
|
|
|
|
specular_light = textureCubeLod(radiance_map, ref_vec, roughness * RADIANCE_MAX_LOD).xyz * bg_energy;
|
|
specular_light *= horizon * horizon;
|
|
#ifndef USE_LIGHTMAP
|
|
{
|
|
vec3 ambient_dir = normalize((radiance_inverse_xform * vec4(normal, 0.0)).xyz);
|
|
vec3 env_ambient = textureCubeLod(radiance_map, ambient_dir, 4.0).xyz * bg_energy;
|
|
env_ambient *= 1.0 - F;
|
|
|
|
ambient_light = mix(ambient_color.rgb, env_ambient, ambient_sky_contribution);
|
|
}
|
|
#endif
|
|
|
|
#else
|
|
|
|
ambient_light = ambient_color.rgb;
|
|
specular_light = bg_color.rgb * bg_energy;
|
|
|
|
#endif
|
|
#endif // AMBIENT_LIGHT_DISABLED
|
|
ambient_light *= ambient_energy;
|
|
|
|
#if defined(USE_REFLECTION_PROBE1) || defined(USE_REFLECTION_PROBE2)
|
|
|
|
vec4 ambient_accum = vec4(0.0);
|
|
vec4 reflection_accum = vec4(0.0);
|
|
|
|
#ifdef USE_REFLECTION_PROBE1
|
|
|
|
reflection_process(reflection_probe1,
|
|
#ifdef USE_VERTEX_LIGHTING
|
|
refprobe1_reflection_normal_blend.rgb,
|
|
#ifndef USE_LIGHTMAP
|
|
refprobe1_ambient_normal,
|
|
#endif
|
|
refprobe1_reflection_normal_blend.a,
|
|
#else
|
|
normal, vertex_interp, refprobe1_local_matrix,
|
|
refprobe1_use_box_project, refprobe1_box_extents, refprobe1_box_offset,
|
|
#endif
|
|
refprobe1_exterior, refprobe1_intensity, refprobe1_ambient, roughness,
|
|
ambient_light, specular_light, reflection_accum, ambient_accum);
|
|
|
|
#endif // USE_REFLECTION_PROBE1
|
|
|
|
#ifdef USE_REFLECTION_PROBE2
|
|
|
|
reflection_process(reflection_probe2,
|
|
#ifdef USE_VERTEX_LIGHTING
|
|
refprobe2_reflection_normal_blend.rgb,
|
|
#ifndef USE_LIGHTMAP
|
|
refprobe2_ambient_normal,
|
|
#endif
|
|
refprobe2_reflection_normal_blend.a,
|
|
#else
|
|
normal, vertex_interp, refprobe2_local_matrix,
|
|
refprobe2_use_box_project, refprobe2_box_extents, refprobe2_box_offset,
|
|
#endif
|
|
refprobe2_exterior, refprobe2_intensity, refprobe2_ambient, roughness,
|
|
ambient_light, specular_light, reflection_accum, ambient_accum);
|
|
|
|
#endif // USE_REFLECTION_PROBE2
|
|
|
|
if (reflection_accum.a > 0.0) {
|
|
specular_light = reflection_accum.rgb / reflection_accum.a;
|
|
}
|
|
|
|
#ifndef USE_LIGHTMAP
|
|
if (ambient_accum.a > 0.0) {
|
|
ambient_light = ambient_accum.rgb / ambient_accum.a;
|
|
}
|
|
#endif
|
|
|
|
#endif // defined(USE_REFLECTION_PROBE1) || defined(USE_REFLECTION_PROBE2)
|
|
|
|
// environment BRDF approximation
|
|
{
|
|
#if defined(DIFFUSE_TOON)
|
|
//simplify for toon, as
|
|
specular_light *= specular * metallic * albedo * 2.0;
|
|
#else
|
|
|
|
// scales the specular reflections, needs to be be computed before lighting happens,
|
|
// but after environment and reflection probes are added
|
|
//TODO: this curve is not really designed for gammaspace, should be adjusted
|
|
const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);
|
|
const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04);
|
|
vec4 r = roughness * c0 + c1;
|
|
float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y;
|
|
vec2 env = vec2(-1.04, 1.04) * a004 + r.zw;
|
|
specular_light *= env.x * F + env.y;
|
|
|
|
#endif
|
|
}
|
|
|
|
#ifdef USE_LIGHTMAP
|
|
//ambient light will come entirely from lightmap is lightmap is used
|
|
#if defined(USE_LIGHTMAP_FILTER_BICUBIC)
|
|
ambient_light = texture2D_bicubic(lightmap, uv2_interp).rgb * lightmap_energy;
|
|
#else
|
|
ambient_light = texture2D(lightmap, uv2_interp).rgb * lightmap_energy;
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef USE_LIGHTMAP_CAPTURE
|
|
{
|
|
vec3 cone_dirs[12];
|
|
cone_dirs[0] = vec3(0.0, 0.0, 1.0);
|
|
cone_dirs[1] = vec3(0.866025, 0.0, 0.5);
|
|
cone_dirs[2] = vec3(0.267617, 0.823639, 0.5);
|
|
cone_dirs[3] = vec3(-0.700629, 0.509037, 0.5);
|
|
cone_dirs[4] = vec3(-0.700629, -0.509037, 0.5);
|
|
cone_dirs[5] = vec3(0.267617, -0.823639, 0.5);
|
|
cone_dirs[6] = vec3(0.0, 0.0, -1.0);
|
|
cone_dirs[7] = vec3(0.866025, 0.0, -0.5);
|
|
cone_dirs[8] = vec3(0.267617, 0.823639, -0.5);
|
|
cone_dirs[9] = vec3(-0.700629, 0.509037, -0.5);
|
|
cone_dirs[10] = vec3(-0.700629, -0.509037, -0.5);
|
|
cone_dirs[11] = vec3(0.267617, -0.823639, -0.5);
|
|
|
|
vec3 local_normal = normalize(camera_matrix * vec4(normal, 0.0)).xyz;
|
|
vec4 captured = vec4(0.0);
|
|
float sum = 0.0;
|
|
for (int i = 0; i < 12; i++) {
|
|
float amount = max(0.0, dot(local_normal, cone_dirs[i])); //not correct, but creates a nice wrap around effect
|
|
captured += lightmap_captures[i] * amount;
|
|
sum += amount;
|
|
}
|
|
|
|
captured /= sum;
|
|
|
|
// Alpha channel is used to indicate if dynamic objects keep the environment lighting
|
|
if (lightmap_captures[0].a > 0.5) {
|
|
ambient_light += captured.rgb;
|
|
} else {
|
|
ambient_light = captured.rgb;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#endif //BASE PASS
|
|
|
|
//
|
|
// Lighting
|
|
//
|
|
#ifdef USE_LIGHTING
|
|
|
|
#ifndef USE_VERTEX_LIGHTING
|
|
vec3 L;
|
|
#endif
|
|
vec3 light_att = vec3(1.0);
|
|
|
|
#ifdef LIGHT_MODE_OMNI
|
|
|
|
#ifndef USE_VERTEX_LIGHTING
|
|
vec3 light_vec = light_position - vertex;
|
|
float light_length = length(light_vec);
|
|
|
|
float normalized_distance = light_length / light_range;
|
|
if (normalized_distance < 1.0) {
|
|
float omni_attenuation = pow(1.0 - normalized_distance, light_attenuation);
|
|
|
|
light_att = vec3(omni_attenuation);
|
|
} else {
|
|
light_att = vec3(0.0);
|
|
}
|
|
L = normalize(light_vec);
|
|
|
|
#endif
|
|
|
|
#if !defined(SHADOWS_DISABLED)
|
|
|
|
#ifdef USE_SHADOW
|
|
{
|
|
highp vec4 splane = shadow_coord;
|
|
float shadow_len = length(splane.xyz);
|
|
|
|
splane.xyz = normalize(splane.xyz);
|
|
|
|
vec4 clamp_rect = light_clamp;
|
|
|
|
if (splane.z >= 0.0) {
|
|
splane.z += 1.0;
|
|
|
|
clamp_rect.y += clamp_rect.w;
|
|
} else {
|
|
splane.z = 1.0 - splane.z;
|
|
}
|
|
|
|
splane.xy /= splane.z;
|
|
splane.xy = splane.xy * 0.5 + 0.5;
|
|
splane.z = shadow_len / light_range;
|
|
|
|
splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw;
|
|
splane.w = 1.0;
|
|
|
|
float shadow = sample_shadow(light_shadow_atlas, splane);
|
|
|
|
light_att *= mix(shadow_color.rgb, vec3(1.0), shadow);
|
|
}
|
|
#endif
|
|
|
|
#endif //SHADOWS_DISABLED
|
|
|
|
#endif //type omni
|
|
|
|
#ifdef LIGHT_MODE_DIRECTIONAL
|
|
|
|
#ifndef USE_VERTEX_LIGHTING
|
|
vec3 light_vec = -light_direction;
|
|
L = normalize(light_vec);
|
|
#endif
|
|
float depth_z = -vertex.z;
|
|
|
|
#if !defined(SHADOWS_DISABLED)
|
|
|
|
#ifdef USE_SHADOW
|
|
|
|
#ifdef USE_VERTEX_LIGHTING
|
|
//compute shadows in a mobile friendly way
|
|
|
|
#ifdef LIGHT_USE_PSSM4
|
|
//take advantage of prefetch
|
|
float shadow1 = sample_shadow(light_directional_shadow, shadow_coord);
|
|
float shadow2 = sample_shadow(light_directional_shadow, shadow_coord2);
|
|
float shadow3 = sample_shadow(light_directional_shadow, shadow_coord3);
|
|
float shadow4 = sample_shadow(light_directional_shadow, shadow_coord4);
|
|
|
|
if (depth_z < light_split_offsets.w) {
|
|
float pssm_fade = 0.0;
|
|
float shadow_att = 1.0;
|
|
#ifdef LIGHT_USE_PSSM_BLEND
|
|
float shadow_att2 = 1.0;
|
|
float pssm_blend = 0.0;
|
|
bool use_blend = true;
|
|
#endif
|
|
if (depth_z < light_split_offsets.y) {
|
|
if (depth_z < light_split_offsets.x) {
|
|
shadow_att = shadow1;
|
|
|
|
#ifdef LIGHT_USE_PSSM_BLEND
|
|
shadow_att2 = shadow2;
|
|
|
|
pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
|
|
#endif
|
|
} else {
|
|
shadow_att = shadow2;
|
|
|
|
#ifdef LIGHT_USE_PSSM_BLEND
|
|
shadow_att2 = shadow3;
|
|
|
|
pssm_blend = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
|
|
#endif
|
|
}
|
|
} else {
|
|
if (depth_z < light_split_offsets.z) {
|
|
shadow_att = shadow3;
|
|
|
|
#if defined(LIGHT_USE_PSSM_BLEND)
|
|
shadow_att2 = shadow4;
|
|
pssm_blend = smoothstep(light_split_offsets.y, light_split_offsets.z, depth_z);
|
|
#endif
|
|
|
|
} else {
|
|
shadow_att = shadow4;
|
|
pssm_fade = smoothstep(light_split_offsets.z, light_split_offsets.w, depth_z);
|
|
|
|
#if defined(LIGHT_USE_PSSM_BLEND)
|
|
use_blend = false;
|
|
#endif
|
|
}
|
|
}
|
|
#if defined(LIGHT_USE_PSSM_BLEND)
|
|
if (use_blend) {
|
|
shadow_att = mix(shadow_att, shadow_att2, pssm_blend);
|
|
}
|
|
#endif
|
|
light_att *= mix(shadow_color.rgb, vec3(1.0), shadow_att);
|
|
}
|
|
|
|
#endif //LIGHT_USE_PSSM4
|
|
|
|
#ifdef LIGHT_USE_PSSM2
|
|
|
|
//take advantage of prefetch
|
|
float shadow1 = sample_shadow(light_directional_shadow, shadow_coord);
|
|
float shadow2 = sample_shadow(light_directional_shadow, shadow_coord2);
|
|
|
|
if (depth_z < light_split_offsets.y) {
|
|
float shadow_att = 1.0;
|
|
float pssm_fade = 0.0;
|
|
|
|
#ifdef LIGHT_USE_PSSM_BLEND
|
|
float shadow_att2 = 1.0;
|
|
float pssm_blend = 0.0;
|
|
bool use_blend = true;
|
|
#endif
|
|
if (depth_z < light_split_offsets.x) {
|
|
float pssm_fade = 0.0;
|
|
shadow_att = shadow1;
|
|
|
|
#ifdef LIGHT_USE_PSSM_BLEND
|
|
shadow_att2 = shadow2;
|
|
pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
|
|
#endif
|
|
} else {
|
|
shadow_att = shadow2;
|
|
pssm_fade = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
|
|
#ifdef LIGHT_USE_PSSM_BLEND
|
|
use_blend = false;
|
|
#endif
|
|
}
|
|
#ifdef LIGHT_USE_PSSM_BLEND
|
|
if (use_blend) {
|
|
shadow_att = mix(shadow_att, shadow_att2, pssm_blend);
|
|
}
|
|
#endif
|
|
light_att *= mix(shadow_color.rgb, vec3(1.0), shadow_att);
|
|
}
|
|
|
|
#endif //LIGHT_USE_PSSM2
|
|
|
|
#if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2)
|
|
|
|
light_att *= mix(shadow_color.rgb, vec3(1.0), sample_shadow(light_directional_shadow, shadow_coord));
|
|
#endif //orthogonal
|
|
|
|
#else //fragment version of pssm
|
|
|
|
{
|
|
#ifdef LIGHT_USE_PSSM4
|
|
if (depth_z < light_split_offsets.w) {
|
|
#elif defined(LIGHT_USE_PSSM2)
|
|
if (depth_z < light_split_offsets.y) {
|
|
#else
|
|
if (depth_z < light_split_offsets.x) {
|
|
#endif //pssm2
|
|
|
|
highp vec4 pssm_coord;
|
|
float pssm_fade = 0.0;
|
|
|
|
#ifdef LIGHT_USE_PSSM_BLEND
|
|
float pssm_blend;
|
|
highp vec4 pssm_coord2;
|
|
bool use_blend = true;
|
|
#endif
|
|
|
|
#ifdef LIGHT_USE_PSSM4
|
|
|
|
if (depth_z < light_split_offsets.y) {
|
|
if (depth_z < light_split_offsets.x) {
|
|
pssm_coord = shadow_coord;
|
|
|
|
#ifdef LIGHT_USE_PSSM_BLEND
|
|
pssm_coord2 = shadow_coord2;
|
|
|
|
pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
|
|
#endif
|
|
} else {
|
|
pssm_coord = shadow_coord2;
|
|
|
|
#ifdef LIGHT_USE_PSSM_BLEND
|
|
pssm_coord2 = shadow_coord3;
|
|
|
|
pssm_blend = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
|
|
#endif
|
|
}
|
|
} else {
|
|
if (depth_z < light_split_offsets.z) {
|
|
pssm_coord = shadow_coord3;
|
|
|
|
#if defined(LIGHT_USE_PSSM_BLEND)
|
|
pssm_coord2 = shadow_coord4;
|
|
pssm_blend = smoothstep(light_split_offsets.y, light_split_offsets.z, depth_z);
|
|
#endif
|
|
|
|
} else {
|
|
pssm_coord = shadow_coord4;
|
|
pssm_fade = smoothstep(light_split_offsets.z, light_split_offsets.w, depth_z);
|
|
|
|
#if defined(LIGHT_USE_PSSM_BLEND)
|
|
use_blend = false;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#endif // LIGHT_USE_PSSM4
|
|
|
|
#ifdef LIGHT_USE_PSSM2
|
|
if (depth_z < light_split_offsets.x) {
|
|
pssm_coord = shadow_coord;
|
|
|
|
#ifdef LIGHT_USE_PSSM_BLEND
|
|
pssm_coord2 = shadow_coord2;
|
|
pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
|
|
#endif
|
|
} else {
|
|
pssm_coord = shadow_coord2;
|
|
pssm_fade = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
|
|
#ifdef LIGHT_USE_PSSM_BLEND
|
|
use_blend = false;
|
|
#endif
|
|
}
|
|
|
|
#endif // LIGHT_USE_PSSM2
|
|
|
|
#if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2)
|
|
{
|
|
pssm_coord = shadow_coord;
|
|
}
|
|
#endif
|
|
|
|
float shadow = sample_shadow(light_directional_shadow, pssm_coord);
|
|
|
|
#ifdef LIGHT_USE_PSSM_BLEND
|
|
if (use_blend) {
|
|
shadow = mix(shadow, sample_shadow(light_directional_shadow, pssm_coord2), pssm_blend);
|
|
}
|
|
#endif
|
|
|
|
light_att *= mix(shadow_color.rgb, vec3(1.0), shadow);
|
|
}
|
|
}
|
|
#endif //use vertex lighting
|
|
|
|
#endif //use shadow
|
|
|
|
#endif // SHADOWS_DISABLED
|
|
|
|
#endif
|
|
|
|
#ifdef LIGHT_MODE_SPOT
|
|
|
|
light_att = vec3(1.0);
|
|
|
|
#ifndef USE_VERTEX_LIGHTING
|
|
|
|
vec3 light_rel_vec = light_position - vertex;
|
|
float light_length = length(light_rel_vec);
|
|
float normalized_distance = light_length / light_range;
|
|
|
|
if (normalized_distance < 1.0) {
|
|
float spot_attenuation = pow(1.0 - normalized_distance, light_attenuation);
|
|
vec3 spot_dir = light_direction;
|
|
|
|
float spot_cutoff = light_spot_angle;
|
|
float angle = dot(-normalize(light_rel_vec), spot_dir);
|
|
|
|
if (angle > spot_cutoff) {
|
|
float scos = max(angle, spot_cutoff);
|
|
float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_cutoff));
|
|
spot_attenuation *= 1.0 - pow(spot_rim, light_spot_attenuation);
|
|
|
|
light_att = vec3(spot_attenuation);
|
|
} else {
|
|
light_att = vec3(0.0);
|
|
}
|
|
} else {
|
|
light_att = vec3(0.0);
|
|
}
|
|
|
|
L = normalize(light_rel_vec);
|
|
|
|
#endif
|
|
|
|
#if !defined(SHADOWS_DISABLED)
|
|
|
|
#ifdef USE_SHADOW
|
|
{
|
|
highp vec4 splane = shadow_coord;
|
|
|
|
float shadow = sample_shadow(light_shadow_atlas, splane);
|
|
light_att *= mix(shadow_color.rgb, vec3(1.0), shadow);
|
|
}
|
|
#endif
|
|
|
|
#endif // SHADOWS_DISABLED
|
|
|
|
#endif // LIGHT_MODE_SPOT
|
|
|
|
#ifdef USE_VERTEX_LIGHTING
|
|
//vertex lighting
|
|
specular_light += specular_interp * albedo * specular * specular_blob_intensity * light_att;
|
|
diffuse_light += diffuse_interp * albedo * light_att;
|
|
|
|
#else
|
|
//fragment lighting
|
|
light_compute(
|
|
normal,
|
|
L,
|
|
eye_position,
|
|
binormal,
|
|
tangent,
|
|
light_color.xyz,
|
|
light_att,
|
|
albedo,
|
|
transmission,
|
|
specular_blob_intensity * light_specular,
|
|
roughness,
|
|
metallic,
|
|
specular,
|
|
rim,
|
|
rim_tint,
|
|
clearcoat,
|
|
clearcoat_gloss,
|
|
anisotropy,
|
|
diffuse_light,
|
|
specular_light,
|
|
alpha);
|
|
|
|
#endif //vertex lighting
|
|
|
|
#endif //USE_LIGHTING
|
|
//compute and merge
|
|
|
|
#ifdef USE_SHADOW_TO_OPACITY
|
|
|
|
alpha = min(alpha, clamp(length(ambient_light), 0.0, 1.0));
|
|
|
|
#if defined(ALPHA_SCISSOR_USED)
|
|
if (alpha < alpha_scissor) {
|
|
discard;
|
|
}
|
|
#endif // ALPHA_SCISSOR_USED
|
|
|
|
#ifdef USE_DEPTH_PREPASS
|
|
if (alpha < 0.1) {
|
|
discard;
|
|
}
|
|
#endif // USE_DEPTH_PREPASS
|
|
|
|
#endif // !USE_SHADOW_TO_OPACITY
|
|
|
|
#ifndef RENDER_DEPTH
|
|
|
|
#ifdef SHADELESS
|
|
|
|
gl_FragColor = vec4(albedo, alpha);
|
|
#else
|
|
|
|
ambient_light *= albedo;
|
|
|
|
#if defined(ENABLE_AO)
|
|
ambient_light *= ao;
|
|
ao_light_affect = mix(1.0, ao, ao_light_affect);
|
|
specular_light *= ao_light_affect;
|
|
diffuse_light *= ao_light_affect;
|
|
#endif
|
|
|
|
diffuse_light *= 1.0 - metallic;
|
|
ambient_light *= 1.0 - metallic;
|
|
|
|
gl_FragColor = vec4(ambient_light + diffuse_light + specular_light, alpha);
|
|
|
|
//add emission if in base pass
|
|
#ifdef BASE_PASS
|
|
gl_FragColor.rgb += emission;
|
|
#endif
|
|
// gl_FragColor = vec4(normal, 1.0);
|
|
|
|
//apply fog
|
|
#if defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED)
|
|
|
|
#if defined(USE_VERTEX_LIGHTING)
|
|
|
|
#if defined(BASE_PASS)
|
|
gl_FragColor.rgb = mix(gl_FragColor.rgb, fog_interp.rgb, fog_interp.a);
|
|
#else
|
|
gl_FragColor.rgb *= (1.0 - fog_interp.a);
|
|
#endif // BASE_PASS
|
|
|
|
#else //pixel based fog
|
|
float fog_amount = 0.0;
|
|
|
|
#ifdef LIGHT_MODE_DIRECTIONAL
|
|
|
|
vec3 fog_color = mix(fog_color_base.rgb, fog_sun_color_amount.rgb, fog_sun_color_amount.a * pow(max(dot(eye_position, light_direction), 0.0), 8.0));
|
|
#else
|
|
vec3 fog_color = fog_color_base.rgb;
|
|
#endif
|
|
|
|
#ifdef FOG_DEPTH_ENABLED
|
|
|
|
{
|
|
float fog_z = smoothstep(fog_depth_begin, fog_max_distance, length(vertex));
|
|
|
|
fog_amount = pow(fog_z, fog_depth_curve) * fog_color_base.a;
|
|
|
|
if (fog_transmit_enabled) {
|
|
vec3 total_light = gl_FragColor.rgb;
|
|
float transmit = pow(fog_z, fog_transmit_curve);
|
|
fog_color = mix(max(total_light, fog_color), fog_color, transmit);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef FOG_HEIGHT_ENABLED
|
|
{
|
|
float y = (camera_matrix * vec4(vertex, 1.0)).y;
|
|
fog_amount = max(fog_amount, pow(smoothstep(fog_height_min, fog_height_max, y), fog_height_curve));
|
|
}
|
|
#endif
|
|
|
|
#if defined(BASE_PASS)
|
|
gl_FragColor.rgb = mix(gl_FragColor.rgb, fog_color, fog_amount);
|
|
#else
|
|
gl_FragColor.rgb *= (1.0 - fog_amount);
|
|
#endif // BASE_PASS
|
|
|
|
#endif //use vertex lit
|
|
|
|
#endif // defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED)
|
|
|
|
#endif //unshaded
|
|
|
|
#ifdef OUTPUT_LINEAR
|
|
// sRGB -> linear
|
|
gl_FragColor.rgb = mix(pow((gl_FragColor.rgb + vec3(0.055)) * (1.0 / (1.0 + 0.055)), vec3(2.4)), gl_FragColor.rgb * (1.0 / 12.92), vec3(lessThan(gl_FragColor.rgb, vec3(0.04045))));
|
|
#endif
|
|
|
|
#else // not RENDER_DEPTH
|
|
//depth render
|
|
#ifdef USE_RGBA_SHADOWS
|
|
|
|
highp float depth = ((position_interp.z / position_interp.w) + 1.0) * 0.5 + 0.0; // bias
|
|
highp vec4 comp = fract(depth * vec4(255.0 * 255.0 * 255.0, 255.0 * 255.0, 255.0, 1.0));
|
|
comp -= comp.xxyz * vec4(0.0, 1.0 / 255.0, 1.0 / 255.0, 1.0 / 255.0);
|
|
gl_FragColor = comp;
|
|
|
|
#endif
|
|
#endif
|
|
}
|