e12c89e8c9
Document version and how to extract sources in thirdparty/README.md. Drop unnecessary CMake and Premake files. Simplify SCsub, drop unused one.
719 lines
21 KiB
C++
719 lines
21 KiB
C++
/*
|
|
* Box-Box collision detection re-distributed under the ZLib license with permission from Russell L. Smith
|
|
* Original version is from Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith.
|
|
* All rights reserved. Email: russ@q12.org Web: www.q12.org
|
|
Bullet Continuous Collision Detection and Physics Library
|
|
Bullet is Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
///ODE box-box collision detection is adapted to work with Bullet
|
|
|
|
#include "btBoxBoxDetector.h"
|
|
#include "BulletCollision/CollisionShapes/btBoxShape.h"
|
|
|
|
#include <float.h>
|
|
#include <string.h>
|
|
|
|
btBoxBoxDetector::btBoxBoxDetector(const btBoxShape* box1,const btBoxShape* box2)
|
|
: m_box1(box1),
|
|
m_box2(box2)
|
|
{
|
|
|
|
}
|
|
|
|
|
|
// given two boxes (p1,R1,side1) and (p2,R2,side2), collide them together and
|
|
// generate contact points. this returns 0 if there is no contact otherwise
|
|
// it returns the number of contacts generated.
|
|
// `normal' returns the contact normal.
|
|
// `depth' returns the maximum penetration depth along that normal.
|
|
// `return_code' returns a number indicating the type of contact that was
|
|
// detected:
|
|
// 1,2,3 = box 2 intersects with a face of box 1
|
|
// 4,5,6 = box 1 intersects with a face of box 2
|
|
// 7..15 = edge-edge contact
|
|
// `maxc' is the maximum number of contacts allowed to be generated, i.e.
|
|
// the size of the `contact' array.
|
|
// `contact' and `skip' are the contact array information provided to the
|
|
// collision functions. this function only fills in the position and depth
|
|
// fields.
|
|
struct dContactGeom;
|
|
#define dDOTpq(a,b,p,q) ((a)[0]*(b)[0] + (a)[p]*(b)[q] + (a)[2*(p)]*(b)[2*(q)])
|
|
#define dInfinity FLT_MAX
|
|
|
|
|
|
/*PURE_INLINE btScalar dDOT (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,1,1); }
|
|
PURE_INLINE btScalar dDOT13 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,1,3); }
|
|
PURE_INLINE btScalar dDOT31 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,3,1); }
|
|
PURE_INLINE btScalar dDOT33 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,3,3); }
|
|
*/
|
|
static btScalar dDOT (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,1,1); }
|
|
static btScalar dDOT44 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,4,4); }
|
|
static btScalar dDOT41 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,4,1); }
|
|
static btScalar dDOT14 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,1,4); }
|
|
#define dMULTIPLYOP1_331(A,op,B,C) \
|
|
{\
|
|
(A)[0] op dDOT41((B),(C)); \
|
|
(A)[1] op dDOT41((B+1),(C)); \
|
|
(A)[2] op dDOT41((B+2),(C)); \
|
|
}
|
|
|
|
#define dMULTIPLYOP0_331(A,op,B,C) \
|
|
{ \
|
|
(A)[0] op dDOT((B),(C)); \
|
|
(A)[1] op dDOT((B+4),(C)); \
|
|
(A)[2] op dDOT((B+8),(C)); \
|
|
}
|
|
|
|
#define dMULTIPLY1_331(A,B,C) dMULTIPLYOP1_331(A,=,B,C)
|
|
#define dMULTIPLY0_331(A,B,C) dMULTIPLYOP0_331(A,=,B,C)
|
|
|
|
typedef btScalar dMatrix3[4*3];
|
|
|
|
void dLineClosestApproach (const btVector3& pa, const btVector3& ua,
|
|
const btVector3& pb, const btVector3& ub,
|
|
btScalar *alpha, btScalar *beta);
|
|
void dLineClosestApproach (const btVector3& pa, const btVector3& ua,
|
|
const btVector3& pb, const btVector3& ub,
|
|
btScalar *alpha, btScalar *beta)
|
|
{
|
|
btVector3 p;
|
|
p[0] = pb[0] - pa[0];
|
|
p[1] = pb[1] - pa[1];
|
|
p[2] = pb[2] - pa[2];
|
|
btScalar uaub = dDOT(ua,ub);
|
|
btScalar q1 = dDOT(ua,p);
|
|
btScalar q2 = -dDOT(ub,p);
|
|
btScalar d = 1-uaub*uaub;
|
|
if (d <= btScalar(0.0001f)) {
|
|
// @@@ this needs to be made more robust
|
|
*alpha = 0;
|
|
*beta = 0;
|
|
}
|
|
else {
|
|
d = 1.f/d;
|
|
*alpha = (q1 + uaub*q2)*d;
|
|
*beta = (uaub*q1 + q2)*d;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// find all the intersection points between the 2D rectangle with vertices
|
|
// at (+/-h[0],+/-h[1]) and the 2D quadrilateral with vertices (p[0],p[1]),
|
|
// (p[2],p[3]),(p[4],p[5]),(p[6],p[7]).
|
|
//
|
|
// the intersection points are returned as x,y pairs in the 'ret' array.
|
|
// the number of intersection points is returned by the function (this will
|
|
// be in the range 0 to 8).
|
|
|
|
static int intersectRectQuad2 (btScalar h[2], btScalar p[8], btScalar ret[16])
|
|
{
|
|
// q (and r) contain nq (and nr) coordinate points for the current (and
|
|
// chopped) polygons
|
|
int nq=4,nr=0;
|
|
btScalar buffer[16];
|
|
btScalar *q = p;
|
|
btScalar *r = ret;
|
|
for (int dir=0; dir <= 1; dir++) {
|
|
// direction notation: xy[0] = x axis, xy[1] = y axis
|
|
for (int sign=-1; sign <= 1; sign += 2) {
|
|
// chop q along the line xy[dir] = sign*h[dir]
|
|
btScalar *pq = q;
|
|
btScalar *pr = r;
|
|
nr = 0;
|
|
for (int i=nq; i > 0; i--) {
|
|
// go through all points in q and all lines between adjacent points
|
|
if (sign*pq[dir] < h[dir]) {
|
|
// this point is inside the chopping line
|
|
pr[0] = pq[0];
|
|
pr[1] = pq[1];
|
|
pr += 2;
|
|
nr++;
|
|
if (nr & 8) {
|
|
q = r;
|
|
goto done;
|
|
}
|
|
}
|
|
btScalar *nextq = (i > 1) ? pq+2 : q;
|
|
if ((sign*pq[dir] < h[dir]) ^ (sign*nextq[dir] < h[dir])) {
|
|
// this line crosses the chopping line
|
|
pr[1-dir] = pq[1-dir] + (nextq[1-dir]-pq[1-dir]) /
|
|
(nextq[dir]-pq[dir]) * (sign*h[dir]-pq[dir]);
|
|
pr[dir] = sign*h[dir];
|
|
pr += 2;
|
|
nr++;
|
|
if (nr & 8) {
|
|
q = r;
|
|
goto done;
|
|
}
|
|
}
|
|
pq += 2;
|
|
}
|
|
q = r;
|
|
r = (q==ret) ? buffer : ret;
|
|
nq = nr;
|
|
}
|
|
}
|
|
done:
|
|
if (q != ret) memcpy (ret,q,nr*2*sizeof(btScalar));
|
|
return nr;
|
|
}
|
|
|
|
|
|
#define M__PI 3.14159265f
|
|
|
|
// given n points in the plane (array p, of size 2*n), generate m points that
|
|
// best represent the whole set. the definition of 'best' here is not
|
|
// predetermined - the idea is to select points that give good box-box
|
|
// collision detection behavior. the chosen point indexes are returned in the
|
|
// array iret (of size m). 'i0' is always the first entry in the array.
|
|
// n must be in the range [1..8]. m must be in the range [1..n]. i0 must be
|
|
// in the range [0..n-1].
|
|
|
|
void cullPoints2 (int n, btScalar p[], int m, int i0, int iret[]);
|
|
void cullPoints2 (int n, btScalar p[], int m, int i0, int iret[])
|
|
{
|
|
// compute the centroid of the polygon in cx,cy
|
|
int i,j;
|
|
btScalar a,cx,cy,q;
|
|
if (n==1) {
|
|
cx = p[0];
|
|
cy = p[1];
|
|
}
|
|
else if (n==2) {
|
|
cx = btScalar(0.5)*(p[0] + p[2]);
|
|
cy = btScalar(0.5)*(p[1] + p[3]);
|
|
}
|
|
else {
|
|
a = 0;
|
|
cx = 0;
|
|
cy = 0;
|
|
for (i=0; i<(n-1); i++) {
|
|
q = p[i*2]*p[i*2+3] - p[i*2+2]*p[i*2+1];
|
|
a += q;
|
|
cx += q*(p[i*2]+p[i*2+2]);
|
|
cy += q*(p[i*2+1]+p[i*2+3]);
|
|
}
|
|
q = p[n*2-2]*p[1] - p[0]*p[n*2-1];
|
|
if (btFabs(a+q) > SIMD_EPSILON)
|
|
{
|
|
a = 1.f/(btScalar(3.0)*(a+q));
|
|
} else
|
|
{
|
|
a=BT_LARGE_FLOAT;
|
|
}
|
|
cx = a*(cx + q*(p[n*2-2]+p[0]));
|
|
cy = a*(cy + q*(p[n*2-1]+p[1]));
|
|
}
|
|
|
|
// compute the angle of each point w.r.t. the centroid
|
|
btScalar A[8];
|
|
for (i=0; i<n; i++) A[i] = btAtan2(p[i*2+1]-cy,p[i*2]-cx);
|
|
|
|
// search for points that have angles closest to A[i0] + i*(2*pi/m).
|
|
int avail[8];
|
|
for (i=0; i<n; i++) avail[i] = 1;
|
|
avail[i0] = 0;
|
|
iret[0] = i0;
|
|
iret++;
|
|
for (j=1; j<m; j++) {
|
|
a = btScalar(j)*(2*M__PI/m) + A[i0];
|
|
if (a > M__PI) a -= 2*M__PI;
|
|
btScalar maxdiff=1e9,diff;
|
|
|
|
*iret = i0; // iret is not allowed to keep this value, but it sometimes does, when diff=#QNAN0
|
|
|
|
for (i=0; i<n; i++) {
|
|
if (avail[i]) {
|
|
diff = btFabs (A[i]-a);
|
|
if (diff > M__PI) diff = 2*M__PI - diff;
|
|
if (diff < maxdiff) {
|
|
maxdiff = diff;
|
|
*iret = i;
|
|
}
|
|
}
|
|
}
|
|
#if defined(DEBUG) || defined (_DEBUG)
|
|
btAssert (*iret != i0); // ensure iret got set
|
|
#endif
|
|
avail[*iret] = 0;
|
|
iret++;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
int dBoxBox2 (const btVector3& p1, const dMatrix3 R1,
|
|
const btVector3& side1, const btVector3& p2,
|
|
const dMatrix3 R2, const btVector3& side2,
|
|
btVector3& normal, btScalar *depth, int *return_code,
|
|
int maxc, dContactGeom * /*contact*/, int /*skip*/,btDiscreteCollisionDetectorInterface::Result& output);
|
|
int dBoxBox2 (const btVector3& p1, const dMatrix3 R1,
|
|
const btVector3& side1, const btVector3& p2,
|
|
const dMatrix3 R2, const btVector3& side2,
|
|
btVector3& normal, btScalar *depth, int *return_code,
|
|
int maxc, dContactGeom * /*contact*/, int /*skip*/,btDiscreteCollisionDetectorInterface::Result& output)
|
|
{
|
|
const btScalar fudge_factor = btScalar(1.05);
|
|
btVector3 p,pp,normalC(0.f,0.f,0.f);
|
|
const btScalar *normalR = 0;
|
|
btScalar A[3],B[3],R11,R12,R13,R21,R22,R23,R31,R32,R33,
|
|
Q11,Q12,Q13,Q21,Q22,Q23,Q31,Q32,Q33,s,s2,l;
|
|
int i,j,invert_normal,code;
|
|
|
|
// get vector from centers of box 1 to box 2, relative to box 1
|
|
p = p2 - p1;
|
|
dMULTIPLY1_331 (pp,R1,p); // get pp = p relative to body 1
|
|
|
|
// get side lengths / 2
|
|
A[0] = side1[0]*btScalar(0.5);
|
|
A[1] = side1[1]*btScalar(0.5);
|
|
A[2] = side1[2]*btScalar(0.5);
|
|
B[0] = side2[0]*btScalar(0.5);
|
|
B[1] = side2[1]*btScalar(0.5);
|
|
B[2] = side2[2]*btScalar(0.5);
|
|
|
|
// Rij is R1'*R2, i.e. the relative rotation between R1 and R2
|
|
R11 = dDOT44(R1+0,R2+0); R12 = dDOT44(R1+0,R2+1); R13 = dDOT44(R1+0,R2+2);
|
|
R21 = dDOT44(R1+1,R2+0); R22 = dDOT44(R1+1,R2+1); R23 = dDOT44(R1+1,R2+2);
|
|
R31 = dDOT44(R1+2,R2+0); R32 = dDOT44(R1+2,R2+1); R33 = dDOT44(R1+2,R2+2);
|
|
|
|
Q11 = btFabs(R11); Q12 = btFabs(R12); Q13 = btFabs(R13);
|
|
Q21 = btFabs(R21); Q22 = btFabs(R22); Q23 = btFabs(R23);
|
|
Q31 = btFabs(R31); Q32 = btFabs(R32); Q33 = btFabs(R33);
|
|
|
|
// for all 15 possible separating axes:
|
|
// * see if the axis separates the boxes. if so, return 0.
|
|
// * find the depth of the penetration along the separating axis (s2)
|
|
// * if this is the largest depth so far, record it.
|
|
// the normal vector will be set to the separating axis with the smallest
|
|
// depth. note: normalR is set to point to a column of R1 or R2 if that is
|
|
// the smallest depth normal so far. otherwise normalR is 0 and normalC is
|
|
// set to a vector relative to body 1. invert_normal is 1 if the sign of
|
|
// the normal should be flipped.
|
|
|
|
#define TST(expr1,expr2,norm,cc) \
|
|
s2 = btFabs(expr1) - (expr2); \
|
|
if (s2 > 0) return 0; \
|
|
if (s2 > s) { \
|
|
s = s2; \
|
|
normalR = norm; \
|
|
invert_normal = ((expr1) < 0); \
|
|
code = (cc); \
|
|
}
|
|
|
|
s = -dInfinity;
|
|
invert_normal = 0;
|
|
code = 0;
|
|
|
|
// separating axis = u1,u2,u3
|
|
TST (pp[0],(A[0] + B[0]*Q11 + B[1]*Q12 + B[2]*Q13),R1+0,1);
|
|
TST (pp[1],(A[1] + B[0]*Q21 + B[1]*Q22 + B[2]*Q23),R1+1,2);
|
|
TST (pp[2],(A[2] + B[0]*Q31 + B[1]*Q32 + B[2]*Q33),R1+2,3);
|
|
|
|
// separating axis = v1,v2,v3
|
|
TST (dDOT41(R2+0,p),(A[0]*Q11 + A[1]*Q21 + A[2]*Q31 + B[0]),R2+0,4);
|
|
TST (dDOT41(R2+1,p),(A[0]*Q12 + A[1]*Q22 + A[2]*Q32 + B[1]),R2+1,5);
|
|
TST (dDOT41(R2+2,p),(A[0]*Q13 + A[1]*Q23 + A[2]*Q33 + B[2]),R2+2,6);
|
|
|
|
// note: cross product axes need to be scaled when s is computed.
|
|
// normal (n1,n2,n3) is relative to box 1.
|
|
#undef TST
|
|
#define TST(expr1,expr2,n1,n2,n3,cc) \
|
|
s2 = btFabs(expr1) - (expr2); \
|
|
if (s2 > SIMD_EPSILON) return 0; \
|
|
l = btSqrt((n1)*(n1) + (n2)*(n2) + (n3)*(n3)); \
|
|
if (l > SIMD_EPSILON) { \
|
|
s2 /= l; \
|
|
if (s2*fudge_factor > s) { \
|
|
s = s2; \
|
|
normalR = 0; \
|
|
normalC[0] = (n1)/l; normalC[1] = (n2)/l; normalC[2] = (n3)/l; \
|
|
invert_normal = ((expr1) < 0); \
|
|
code = (cc); \
|
|
} \
|
|
}
|
|
|
|
btScalar fudge2 (1.0e-5f);
|
|
|
|
Q11 += fudge2;
|
|
Q12 += fudge2;
|
|
Q13 += fudge2;
|
|
|
|
Q21 += fudge2;
|
|
Q22 += fudge2;
|
|
Q23 += fudge2;
|
|
|
|
Q31 += fudge2;
|
|
Q32 += fudge2;
|
|
Q33 += fudge2;
|
|
|
|
// separating axis = u1 x (v1,v2,v3)
|
|
TST(pp[2]*R21-pp[1]*R31,(A[1]*Q31+A[2]*Q21+B[1]*Q13+B[2]*Q12),0,-R31,R21,7);
|
|
TST(pp[2]*R22-pp[1]*R32,(A[1]*Q32+A[2]*Q22+B[0]*Q13+B[2]*Q11),0,-R32,R22,8);
|
|
TST(pp[2]*R23-pp[1]*R33,(A[1]*Q33+A[2]*Q23+B[0]*Q12+B[1]*Q11),0,-R33,R23,9);
|
|
|
|
// separating axis = u2 x (v1,v2,v3)
|
|
TST(pp[0]*R31-pp[2]*R11,(A[0]*Q31+A[2]*Q11+B[1]*Q23+B[2]*Q22),R31,0,-R11,10);
|
|
TST(pp[0]*R32-pp[2]*R12,(A[0]*Q32+A[2]*Q12+B[0]*Q23+B[2]*Q21),R32,0,-R12,11);
|
|
TST(pp[0]*R33-pp[2]*R13,(A[0]*Q33+A[2]*Q13+B[0]*Q22+B[1]*Q21),R33,0,-R13,12);
|
|
|
|
// separating axis = u3 x (v1,v2,v3)
|
|
TST(pp[1]*R11-pp[0]*R21,(A[0]*Q21+A[1]*Q11+B[1]*Q33+B[2]*Q32),-R21,R11,0,13);
|
|
TST(pp[1]*R12-pp[0]*R22,(A[0]*Q22+A[1]*Q12+B[0]*Q33+B[2]*Q31),-R22,R12,0,14);
|
|
TST(pp[1]*R13-pp[0]*R23,(A[0]*Q23+A[1]*Q13+B[0]*Q32+B[1]*Q31),-R23,R13,0,15);
|
|
|
|
#undef TST
|
|
|
|
if (!code) return 0;
|
|
|
|
// if we get to this point, the boxes interpenetrate. compute the normal
|
|
// in global coordinates.
|
|
if (normalR) {
|
|
normal[0] = normalR[0];
|
|
normal[1] = normalR[4];
|
|
normal[2] = normalR[8];
|
|
}
|
|
else {
|
|
dMULTIPLY0_331 (normal,R1,normalC);
|
|
}
|
|
if (invert_normal) {
|
|
normal[0] = -normal[0];
|
|
normal[1] = -normal[1];
|
|
normal[2] = -normal[2];
|
|
}
|
|
*depth = -s;
|
|
|
|
// compute contact point(s)
|
|
|
|
if (code > 6) {
|
|
// an edge from box 1 touches an edge from box 2.
|
|
// find a point pa on the intersecting edge of box 1
|
|
btVector3 pa;
|
|
btScalar sign;
|
|
for (i=0; i<3; i++) pa[i] = p1[i];
|
|
for (j=0; j<3; j++) {
|
|
sign = (dDOT14(normal,R1+j) > 0) ? btScalar(1.0) : btScalar(-1.0);
|
|
for (i=0; i<3; i++) pa[i] += sign * A[j] * R1[i*4+j];
|
|
}
|
|
|
|
// find a point pb on the intersecting edge of box 2
|
|
btVector3 pb;
|
|
for (i=0; i<3; i++) pb[i] = p2[i];
|
|
for (j=0; j<3; j++) {
|
|
sign = (dDOT14(normal,R2+j) > 0) ? btScalar(-1.0) : btScalar(1.0);
|
|
for (i=0; i<3; i++) pb[i] += sign * B[j] * R2[i*4+j];
|
|
}
|
|
|
|
btScalar alpha,beta;
|
|
btVector3 ua,ub;
|
|
for (i=0; i<3; i++) ua[i] = R1[((code)-7)/3 + i*4];
|
|
for (i=0; i<3; i++) ub[i] = R2[((code)-7)%3 + i*4];
|
|
|
|
dLineClosestApproach (pa,ua,pb,ub,&alpha,&beta);
|
|
for (i=0; i<3; i++) pa[i] += ua[i]*alpha;
|
|
for (i=0; i<3; i++) pb[i] += ub[i]*beta;
|
|
|
|
{
|
|
|
|
//contact[0].pos[i] = btScalar(0.5)*(pa[i]+pb[i]);
|
|
//contact[0].depth = *depth;
|
|
btVector3 pointInWorld;
|
|
|
|
#ifdef USE_CENTER_POINT
|
|
for (i=0; i<3; i++)
|
|
pointInWorld[i] = (pa[i]+pb[i])*btScalar(0.5);
|
|
output.addContactPoint(-normal,pointInWorld,-*depth);
|
|
#else
|
|
output.addContactPoint(-normal,pb,-*depth);
|
|
|
|
#endif //
|
|
*return_code = code;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
// okay, we have a face-something intersection (because the separating
|
|
// axis is perpendicular to a face). define face 'a' to be the reference
|
|
// face (i.e. the normal vector is perpendicular to this) and face 'b' to be
|
|
// the incident face (the closest face of the other box).
|
|
|
|
const btScalar *Ra,*Rb,*pa,*pb,*Sa,*Sb;
|
|
if (code <= 3) {
|
|
Ra = R1;
|
|
Rb = R2;
|
|
pa = p1;
|
|
pb = p2;
|
|
Sa = A;
|
|
Sb = B;
|
|
}
|
|
else {
|
|
Ra = R2;
|
|
Rb = R1;
|
|
pa = p2;
|
|
pb = p1;
|
|
Sa = B;
|
|
Sb = A;
|
|
}
|
|
|
|
// nr = normal vector of reference face dotted with axes of incident box.
|
|
// anr = absolute values of nr.
|
|
btVector3 normal2,nr,anr;
|
|
if (code <= 3) {
|
|
normal2[0] = normal[0];
|
|
normal2[1] = normal[1];
|
|
normal2[2] = normal[2];
|
|
}
|
|
else {
|
|
normal2[0] = -normal[0];
|
|
normal2[1] = -normal[1];
|
|
normal2[2] = -normal[2];
|
|
}
|
|
dMULTIPLY1_331 (nr,Rb,normal2);
|
|
anr[0] = btFabs (nr[0]);
|
|
anr[1] = btFabs (nr[1]);
|
|
anr[2] = btFabs (nr[2]);
|
|
|
|
// find the largest compontent of anr: this corresponds to the normal
|
|
// for the indident face. the other axis numbers of the indicent face
|
|
// are stored in a1,a2.
|
|
int lanr,a1,a2;
|
|
if (anr[1] > anr[0]) {
|
|
if (anr[1] > anr[2]) {
|
|
a1 = 0;
|
|
lanr = 1;
|
|
a2 = 2;
|
|
}
|
|
else {
|
|
a1 = 0;
|
|
a2 = 1;
|
|
lanr = 2;
|
|
}
|
|
}
|
|
else {
|
|
if (anr[0] > anr[2]) {
|
|
lanr = 0;
|
|
a1 = 1;
|
|
a2 = 2;
|
|
}
|
|
else {
|
|
a1 = 0;
|
|
a2 = 1;
|
|
lanr = 2;
|
|
}
|
|
}
|
|
|
|
// compute center point of incident face, in reference-face coordinates
|
|
btVector3 center;
|
|
if (nr[lanr] < 0) {
|
|
for (i=0; i<3; i++) center[i] = pb[i] - pa[i] + Sb[lanr] * Rb[i*4+lanr];
|
|
}
|
|
else {
|
|
for (i=0; i<3; i++) center[i] = pb[i] - pa[i] - Sb[lanr] * Rb[i*4+lanr];
|
|
}
|
|
|
|
// find the normal and non-normal axis numbers of the reference box
|
|
int codeN,code1,code2;
|
|
if (code <= 3) codeN = code-1; else codeN = code-4;
|
|
if (codeN==0) {
|
|
code1 = 1;
|
|
code2 = 2;
|
|
}
|
|
else if (codeN==1) {
|
|
code1 = 0;
|
|
code2 = 2;
|
|
}
|
|
else {
|
|
code1 = 0;
|
|
code2 = 1;
|
|
}
|
|
|
|
// find the four corners of the incident face, in reference-face coordinates
|
|
btScalar quad[8]; // 2D coordinate of incident face (x,y pairs)
|
|
btScalar c1,c2,m11,m12,m21,m22;
|
|
c1 = dDOT14 (center,Ra+code1);
|
|
c2 = dDOT14 (center,Ra+code2);
|
|
// optimize this? - we have already computed this data above, but it is not
|
|
// stored in an easy-to-index format. for now it's quicker just to recompute
|
|
// the four dot products.
|
|
m11 = dDOT44 (Ra+code1,Rb+a1);
|
|
m12 = dDOT44 (Ra+code1,Rb+a2);
|
|
m21 = dDOT44 (Ra+code2,Rb+a1);
|
|
m22 = dDOT44 (Ra+code2,Rb+a2);
|
|
{
|
|
btScalar k1 = m11*Sb[a1];
|
|
btScalar k2 = m21*Sb[a1];
|
|
btScalar k3 = m12*Sb[a2];
|
|
btScalar k4 = m22*Sb[a2];
|
|
quad[0] = c1 - k1 - k3;
|
|
quad[1] = c2 - k2 - k4;
|
|
quad[2] = c1 - k1 + k3;
|
|
quad[3] = c2 - k2 + k4;
|
|
quad[4] = c1 + k1 + k3;
|
|
quad[5] = c2 + k2 + k4;
|
|
quad[6] = c1 + k1 - k3;
|
|
quad[7] = c2 + k2 - k4;
|
|
}
|
|
|
|
// find the size of the reference face
|
|
btScalar rect[2];
|
|
rect[0] = Sa[code1];
|
|
rect[1] = Sa[code2];
|
|
|
|
// intersect the incident and reference faces
|
|
btScalar ret[16];
|
|
int n = intersectRectQuad2 (rect,quad,ret);
|
|
if (n < 1) return 0; // this should never happen
|
|
|
|
// convert the intersection points into reference-face coordinates,
|
|
// and compute the contact position and depth for each point. only keep
|
|
// those points that have a positive (penetrating) depth. delete points in
|
|
// the 'ret' array as necessary so that 'point' and 'ret' correspond.
|
|
btScalar point[3*8]; // penetrating contact points
|
|
btScalar dep[8]; // depths for those points
|
|
btScalar det1 = 1.f/(m11*m22 - m12*m21);
|
|
m11 *= det1;
|
|
m12 *= det1;
|
|
m21 *= det1;
|
|
m22 *= det1;
|
|
int cnum = 0; // number of penetrating contact points found
|
|
for (j=0; j < n; j++) {
|
|
btScalar k1 = m22*(ret[j*2]-c1) - m12*(ret[j*2+1]-c2);
|
|
btScalar k2 = -m21*(ret[j*2]-c1) + m11*(ret[j*2+1]-c2);
|
|
for (i=0; i<3; i++) point[cnum*3+i] =
|
|
center[i] + k1*Rb[i*4+a1] + k2*Rb[i*4+a2];
|
|
dep[cnum] = Sa[codeN] - dDOT(normal2,point+cnum*3);
|
|
if (dep[cnum] >= 0) {
|
|
ret[cnum*2] = ret[j*2];
|
|
ret[cnum*2+1] = ret[j*2+1];
|
|
cnum++;
|
|
}
|
|
}
|
|
if (cnum < 1) return 0; // this should never happen
|
|
|
|
// we can't generate more contacts than we actually have
|
|
if (maxc > cnum) maxc = cnum;
|
|
if (maxc < 1) maxc = 1;
|
|
|
|
if (cnum <= maxc) {
|
|
|
|
if (code<4)
|
|
{
|
|
// we have less contacts than we need, so we use them all
|
|
for (j=0; j < cnum; j++)
|
|
{
|
|
btVector3 pointInWorld;
|
|
for (i=0; i<3; i++)
|
|
pointInWorld[i] = point[j*3+i] + pa[i];
|
|
output.addContactPoint(-normal,pointInWorld,-dep[j]);
|
|
|
|
}
|
|
} else
|
|
{
|
|
// we have less contacts than we need, so we use them all
|
|
for (j=0; j < cnum; j++)
|
|
{
|
|
btVector3 pointInWorld;
|
|
for (i=0; i<3; i++)
|
|
pointInWorld[i] = point[j*3+i] + pa[i]-normal[i]*dep[j];
|
|
//pointInWorld[i] = point[j*3+i] + pa[i];
|
|
output.addContactPoint(-normal,pointInWorld,-dep[j]);
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
// we have more contacts than are wanted, some of them must be culled.
|
|
// find the deepest point, it is always the first contact.
|
|
int i1 = 0;
|
|
btScalar maxdepth = dep[0];
|
|
for (i=1; i<cnum; i++) {
|
|
if (dep[i] > maxdepth) {
|
|
maxdepth = dep[i];
|
|
i1 = i;
|
|
}
|
|
}
|
|
|
|
int iret[8];
|
|
cullPoints2 (cnum,ret,maxc,i1,iret);
|
|
|
|
for (j=0; j < maxc; j++) {
|
|
// dContactGeom *con = CONTACT(contact,skip*j);
|
|
// for (i=0; i<3; i++) con->pos[i] = point[iret[j]*3+i] + pa[i];
|
|
// con->depth = dep[iret[j]];
|
|
|
|
btVector3 posInWorld;
|
|
for (i=0; i<3; i++)
|
|
posInWorld[i] = point[iret[j]*3+i] + pa[i];
|
|
if (code<4)
|
|
{
|
|
output.addContactPoint(-normal,posInWorld,-dep[iret[j]]);
|
|
} else
|
|
{
|
|
output.addContactPoint(-normal,posInWorld-normal*dep[iret[j]],-dep[iret[j]]);
|
|
}
|
|
}
|
|
cnum = maxc;
|
|
}
|
|
|
|
*return_code = code;
|
|
return cnum;
|
|
}
|
|
|
|
void btBoxBoxDetector::getClosestPoints(const ClosestPointInput& input,Result& output,class btIDebugDraw* /*debugDraw*/,bool /*swapResults*/)
|
|
{
|
|
|
|
const btTransform& transformA = input.m_transformA;
|
|
const btTransform& transformB = input.m_transformB;
|
|
|
|
int skip = 0;
|
|
dContactGeom *contact = 0;
|
|
|
|
dMatrix3 R1;
|
|
dMatrix3 R2;
|
|
|
|
for (int j=0;j<3;j++)
|
|
{
|
|
R1[0+4*j] = transformA.getBasis()[j].x();
|
|
R2[0+4*j] = transformB.getBasis()[j].x();
|
|
|
|
R1[1+4*j] = transformA.getBasis()[j].y();
|
|
R2[1+4*j] = transformB.getBasis()[j].y();
|
|
|
|
|
|
R1[2+4*j] = transformA.getBasis()[j].z();
|
|
R2[2+4*j] = transformB.getBasis()[j].z();
|
|
|
|
}
|
|
|
|
|
|
|
|
btVector3 normal;
|
|
btScalar depth;
|
|
int return_code;
|
|
int maxc = 4;
|
|
|
|
|
|
dBoxBox2 (transformA.getOrigin(),
|
|
R1,
|
|
2.f*m_box1->getHalfExtentsWithMargin(),
|
|
transformB.getOrigin(),
|
|
R2,
|
|
2.f*m_box2->getHalfExtentsWithMargin(),
|
|
normal, &depth, &return_code,
|
|
maxc, contact, skip,
|
|
output
|
|
);
|
|
|
|
}
|