e12c89e8c9
Document version and how to extract sources in thirdparty/README.md. Drop unnecessary CMake and Premake files. Simplify SCsub, drop unused one.
243 lines
8.5 KiB
C++
243 lines
8.5 KiB
C++
/*
|
|
Bullet Continuous Collision Detection and Physics Library
|
|
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
#include "btConvex2dConvex2dAlgorithm.h"
|
|
|
|
//#include <stdio.h>
|
|
#include "BulletCollision/NarrowPhaseCollision/btDiscreteCollisionDetectorInterface.h"
|
|
#include "BulletCollision/BroadphaseCollision/btBroadphaseInterface.h"
|
|
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
|
|
#include "BulletCollision/CollisionShapes/btConvexShape.h"
|
|
#include "BulletCollision/CollisionShapes/btCapsuleShape.h"
|
|
|
|
|
|
#include "BulletCollision/NarrowPhaseCollision/btGjkPairDetector.h"
|
|
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
|
|
#include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
|
|
#include "BulletCollision/CollisionShapes/btBoxShape.h"
|
|
#include "BulletCollision/CollisionDispatch/btManifoldResult.h"
|
|
|
|
#include "BulletCollision/NarrowPhaseCollision/btConvexPenetrationDepthSolver.h"
|
|
#include "BulletCollision/NarrowPhaseCollision/btContinuousConvexCollision.h"
|
|
#include "BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.h"
|
|
#include "BulletCollision/NarrowPhaseCollision/btGjkConvexCast.h"
|
|
|
|
|
|
|
|
#include "BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.h"
|
|
#include "BulletCollision/CollisionShapes/btSphereShape.h"
|
|
|
|
#include "BulletCollision/NarrowPhaseCollision/btMinkowskiPenetrationDepthSolver.h"
|
|
|
|
#include "BulletCollision/NarrowPhaseCollision/btGjkEpa2.h"
|
|
#include "BulletCollision/NarrowPhaseCollision/btGjkEpaPenetrationDepthSolver.h"
|
|
#include "BulletCollision/CollisionDispatch/btCollisionObjectWrapper.h"
|
|
|
|
btConvex2dConvex2dAlgorithm::CreateFunc::CreateFunc(btSimplexSolverInterface* simplexSolver, btConvexPenetrationDepthSolver* pdSolver)
|
|
{
|
|
m_simplexSolver = simplexSolver;
|
|
m_pdSolver = pdSolver;
|
|
}
|
|
|
|
btConvex2dConvex2dAlgorithm::CreateFunc::~CreateFunc()
|
|
{
|
|
}
|
|
|
|
btConvex2dConvex2dAlgorithm::btConvex2dConvex2dAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap,btSimplexSolverInterface* simplexSolver, btConvexPenetrationDepthSolver* pdSolver,int /* numPerturbationIterations */, int /* minimumPointsPerturbationThreshold */)
|
|
: btActivatingCollisionAlgorithm(ci,body0Wrap,body1Wrap),
|
|
m_simplexSolver(simplexSolver),
|
|
m_pdSolver(pdSolver),
|
|
m_ownManifold (false),
|
|
m_manifoldPtr(mf),
|
|
m_lowLevelOfDetail(false)
|
|
{
|
|
(void)body0Wrap;
|
|
(void)body1Wrap;
|
|
}
|
|
|
|
|
|
|
|
|
|
btConvex2dConvex2dAlgorithm::~btConvex2dConvex2dAlgorithm()
|
|
{
|
|
if (m_ownManifold)
|
|
{
|
|
if (m_manifoldPtr)
|
|
m_dispatcher->releaseManifold(m_manifoldPtr);
|
|
}
|
|
}
|
|
|
|
void btConvex2dConvex2dAlgorithm ::setLowLevelOfDetail(bool useLowLevel)
|
|
{
|
|
m_lowLevelOfDetail = useLowLevel;
|
|
}
|
|
|
|
|
|
|
|
extern btScalar gContactBreakingThreshold;
|
|
|
|
|
|
//
|
|
// Convex-Convex collision algorithm
|
|
//
|
|
void btConvex2dConvex2dAlgorithm ::processCollision (const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
|
|
{
|
|
|
|
if (!m_manifoldPtr)
|
|
{
|
|
//swapped?
|
|
m_manifoldPtr = m_dispatcher->getNewManifold(body0Wrap->getCollisionObject(),body1Wrap->getCollisionObject());
|
|
m_ownManifold = true;
|
|
}
|
|
resultOut->setPersistentManifold(m_manifoldPtr);
|
|
|
|
//comment-out next line to test multi-contact generation
|
|
//resultOut->getPersistentManifold()->clearManifold();
|
|
|
|
|
|
const btConvexShape* min0 = static_cast<const btConvexShape*>(body0Wrap->getCollisionShape());
|
|
const btConvexShape* min1 = static_cast<const btConvexShape*>(body1Wrap->getCollisionShape());
|
|
|
|
btVector3 normalOnB;
|
|
btVector3 pointOnBWorld;
|
|
|
|
{
|
|
|
|
|
|
btGjkPairDetector::ClosestPointInput input;
|
|
|
|
btGjkPairDetector gjkPairDetector(min0,min1,m_simplexSolver,m_pdSolver);
|
|
//TODO: if (dispatchInfo.m_useContinuous)
|
|
gjkPairDetector.setMinkowskiA(min0);
|
|
gjkPairDetector.setMinkowskiB(min1);
|
|
|
|
{
|
|
input.m_maximumDistanceSquared = min0->getMargin() + min1->getMargin() + m_manifoldPtr->getContactBreakingThreshold();
|
|
input.m_maximumDistanceSquared*= input.m_maximumDistanceSquared;
|
|
}
|
|
|
|
input.m_transformA = body0Wrap->getWorldTransform();
|
|
input.m_transformB = body1Wrap->getWorldTransform();
|
|
|
|
gjkPairDetector.getClosestPoints(input,*resultOut,dispatchInfo.m_debugDraw);
|
|
|
|
btVector3 v0,v1;
|
|
btVector3 sepNormalWorldSpace;
|
|
|
|
}
|
|
|
|
if (m_ownManifold)
|
|
{
|
|
resultOut->refreshContactPoints();
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
btScalar btConvex2dConvex2dAlgorithm::calculateTimeOfImpact(btCollisionObject* col0,btCollisionObject* col1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
|
|
{
|
|
(void)resultOut;
|
|
(void)dispatchInfo;
|
|
///Rather then checking ALL pairs, only calculate TOI when motion exceeds threshold
|
|
|
|
///Linear motion for one of objects needs to exceed m_ccdSquareMotionThreshold
|
|
///col0->m_worldTransform,
|
|
btScalar resultFraction = btScalar(1.);
|
|
|
|
|
|
btScalar squareMot0 = (col0->getInterpolationWorldTransform().getOrigin() - col0->getWorldTransform().getOrigin()).length2();
|
|
btScalar squareMot1 = (col1->getInterpolationWorldTransform().getOrigin() - col1->getWorldTransform().getOrigin()).length2();
|
|
|
|
if (squareMot0 < col0->getCcdSquareMotionThreshold() &&
|
|
squareMot1 < col1->getCcdSquareMotionThreshold())
|
|
return resultFraction;
|
|
|
|
|
|
//An adhoc way of testing the Continuous Collision Detection algorithms
|
|
//One object is approximated as a sphere, to simplify things
|
|
//Starting in penetration should report no time of impact
|
|
//For proper CCD, better accuracy and handling of 'allowed' penetration should be added
|
|
//also the mainloop of the physics should have a kind of toi queue (something like Brian Mirtich's application of Timewarp for Rigidbodies)
|
|
|
|
|
|
/// Convex0 against sphere for Convex1
|
|
{
|
|
btConvexShape* convex0 = static_cast<btConvexShape*>(col0->getCollisionShape());
|
|
|
|
btSphereShape sphere1(col1->getCcdSweptSphereRadius()); //todo: allow non-zero sphere sizes, for better approximation
|
|
btConvexCast::CastResult result;
|
|
btVoronoiSimplexSolver voronoiSimplex;
|
|
//SubsimplexConvexCast ccd0(&sphere,min0,&voronoiSimplex);
|
|
///Simplification, one object is simplified as a sphere
|
|
btGjkConvexCast ccd1( convex0 ,&sphere1,&voronoiSimplex);
|
|
//ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,0);
|
|
if (ccd1.calcTimeOfImpact(col0->getWorldTransform(),col0->getInterpolationWorldTransform(),
|
|
col1->getWorldTransform(),col1->getInterpolationWorldTransform(),result))
|
|
{
|
|
|
|
//store result.m_fraction in both bodies
|
|
|
|
if (col0->getHitFraction()> result.m_fraction)
|
|
col0->setHitFraction( result.m_fraction );
|
|
|
|
if (col1->getHitFraction() > result.m_fraction)
|
|
col1->setHitFraction( result.m_fraction);
|
|
|
|
if (resultFraction > result.m_fraction)
|
|
resultFraction = result.m_fraction;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
/// Sphere (for convex0) against Convex1
|
|
{
|
|
btConvexShape* convex1 = static_cast<btConvexShape*>(col1->getCollisionShape());
|
|
|
|
btSphereShape sphere0(col0->getCcdSweptSphereRadius()); //todo: allow non-zero sphere sizes, for better approximation
|
|
btConvexCast::CastResult result;
|
|
btVoronoiSimplexSolver voronoiSimplex;
|
|
//SubsimplexConvexCast ccd0(&sphere,min0,&voronoiSimplex);
|
|
///Simplification, one object is simplified as a sphere
|
|
btGjkConvexCast ccd1(&sphere0,convex1,&voronoiSimplex);
|
|
//ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,0);
|
|
if (ccd1.calcTimeOfImpact(col0->getWorldTransform(),col0->getInterpolationWorldTransform(),
|
|
col1->getWorldTransform(),col1->getInterpolationWorldTransform(),result))
|
|
{
|
|
|
|
//store result.m_fraction in both bodies
|
|
|
|
if (col0->getHitFraction() > result.m_fraction)
|
|
col0->setHitFraction( result.m_fraction);
|
|
|
|
if (col1->getHitFraction() > result.m_fraction)
|
|
col1->setHitFraction( result.m_fraction);
|
|
|
|
if (resultFraction > result.m_fraction)
|
|
resultFraction = result.m_fraction;
|
|
|
|
}
|
|
}
|
|
|
|
return resultFraction;
|
|
|
|
}
|
|
|