e12c89e8c9
Document version and how to extract sources in thirdparty/README.md. Drop unnecessary CMake and Premake files. Simplify SCsub, drop unused one.
381 lines
10 KiB
C++
381 lines
10 KiB
C++
#ifndef GIM_TRI_COLLISION_H_INCLUDED
|
|
#define GIM_TRI_COLLISION_H_INCLUDED
|
|
|
|
/*! \file gim_tri_collision.h
|
|
\author Francisco Leon Najera
|
|
*/
|
|
/*
|
|
-----------------------------------------------------------------------------
|
|
This source file is part of GIMPACT Library.
|
|
|
|
For the latest info, see http://gimpact.sourceforge.net/
|
|
|
|
Copyright (c) 2006 Francisco Leon Najera. C.C. 80087371.
|
|
email: projectileman@yahoo.com
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of EITHER:
|
|
(1) The GNU Lesser General Public License as published by the Free
|
|
Software Foundation; either version 2.1 of the License, or (at
|
|
your option) any later version. The text of the GNU Lesser
|
|
General Public License is included with this library in the
|
|
file GIMPACT-LICENSE-LGPL.TXT.
|
|
(2) The BSD-style license that is included with this library in
|
|
the file GIMPACT-LICENSE-BSD.TXT.
|
|
(3) The zlib/libpng license that is included with this library in
|
|
the file GIMPACT-LICENSE-ZLIB.TXT.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files
|
|
GIMPACT-LICENSE-LGPL.TXT, GIMPACT-LICENSE-ZLIB.TXT and GIMPACT-LICENSE-BSD.TXT for more details.
|
|
|
|
-----------------------------------------------------------------------------
|
|
*/
|
|
|
|
#include "gim_box_collision.h"
|
|
#include "gim_clip_polygon.h"
|
|
|
|
|
|
|
|
#ifndef MAX_TRI_CLIPPING
|
|
#define MAX_TRI_CLIPPING 16
|
|
#endif
|
|
|
|
//! Structure for collision
|
|
struct GIM_TRIANGLE_CONTACT_DATA
|
|
{
|
|
GREAL m_penetration_depth;
|
|
GUINT m_point_count;
|
|
btVector4 m_separating_normal;
|
|
btVector3 m_points[MAX_TRI_CLIPPING];
|
|
|
|
SIMD_FORCE_INLINE void copy_from(const GIM_TRIANGLE_CONTACT_DATA& other)
|
|
{
|
|
m_penetration_depth = other.m_penetration_depth;
|
|
m_separating_normal = other.m_separating_normal;
|
|
m_point_count = other.m_point_count;
|
|
GUINT i = m_point_count;
|
|
while(i--)
|
|
{
|
|
m_points[i] = other.m_points[i];
|
|
}
|
|
}
|
|
|
|
GIM_TRIANGLE_CONTACT_DATA()
|
|
{
|
|
}
|
|
|
|
GIM_TRIANGLE_CONTACT_DATA(const GIM_TRIANGLE_CONTACT_DATA& other)
|
|
{
|
|
copy_from(other);
|
|
}
|
|
|
|
|
|
|
|
|
|
//! classify points that are closer
|
|
template<typename DISTANCE_FUNC,typename CLASS_PLANE>
|
|
SIMD_FORCE_INLINE void mergepoints_generic(const CLASS_PLANE & plane,
|
|
GREAL margin, const btVector3 * points, GUINT point_count, DISTANCE_FUNC distance_func)
|
|
{
|
|
m_point_count = 0;
|
|
m_penetration_depth= -1000.0f;
|
|
|
|
GUINT point_indices[MAX_TRI_CLIPPING];
|
|
|
|
GUINT _k;
|
|
|
|
for(_k=0;_k<point_count;_k++)
|
|
{
|
|
GREAL _dist = -distance_func(plane,points[_k]) + margin;
|
|
|
|
if(_dist>=0.0f)
|
|
{
|
|
if(_dist>m_penetration_depth)
|
|
{
|
|
m_penetration_depth = _dist;
|
|
point_indices[0] = _k;
|
|
m_point_count=1;
|
|
}
|
|
else if((_dist+G_EPSILON)>=m_penetration_depth)
|
|
{
|
|
point_indices[m_point_count] = _k;
|
|
m_point_count++;
|
|
}
|
|
}
|
|
}
|
|
|
|
for( _k=0;_k<m_point_count;_k++)
|
|
{
|
|
m_points[_k] = points[point_indices[_k]];
|
|
}
|
|
}
|
|
|
|
//! classify points that are closer
|
|
SIMD_FORCE_INLINE void merge_points(const btVector4 & plane, GREAL margin,
|
|
const btVector3 * points, GUINT point_count)
|
|
{
|
|
m_separating_normal = plane;
|
|
mergepoints_generic(plane, margin, points, point_count, DISTANCE_PLANE_3D_FUNC());
|
|
}
|
|
};
|
|
|
|
|
|
//! Class for colliding triangles
|
|
class GIM_TRIANGLE
|
|
{
|
|
public:
|
|
btScalar m_margin;
|
|
btVector3 m_vertices[3];
|
|
|
|
GIM_TRIANGLE():m_margin(0.1f)
|
|
{
|
|
}
|
|
|
|
SIMD_FORCE_INLINE GIM_AABB get_box() const
|
|
{
|
|
return GIM_AABB(m_vertices[0],m_vertices[1],m_vertices[2],m_margin);
|
|
}
|
|
|
|
SIMD_FORCE_INLINE void get_normal(btVector3 &normal) const
|
|
{
|
|
TRIANGLE_NORMAL(m_vertices[0],m_vertices[1],m_vertices[2],normal);
|
|
}
|
|
|
|
SIMD_FORCE_INLINE void get_plane(btVector4 &plane) const
|
|
{
|
|
TRIANGLE_PLANE(m_vertices[0],m_vertices[1],m_vertices[2],plane);;
|
|
}
|
|
|
|
SIMD_FORCE_INLINE void apply_transform(const btTransform & trans)
|
|
{
|
|
m_vertices[0] = trans(m_vertices[0]);
|
|
m_vertices[1] = trans(m_vertices[1]);
|
|
m_vertices[2] = trans(m_vertices[2]);
|
|
}
|
|
|
|
SIMD_FORCE_INLINE void get_edge_plane(GUINT edge_index,const btVector3 &triangle_normal,btVector4 &plane) const
|
|
{
|
|
const btVector3 & e0 = m_vertices[edge_index];
|
|
const btVector3 & e1 = m_vertices[(edge_index+1)%3];
|
|
EDGE_PLANE(e0,e1,triangle_normal,plane);
|
|
}
|
|
|
|
//! Gets the relative transformation of this triangle
|
|
/*!
|
|
The transformation is oriented to the triangle normal , and aligned to the 1st edge of this triangle. The position corresponds to vertice 0:
|
|
- triangle normal corresponds to Z axis.
|
|
- 1st normalized edge corresponds to X axis,
|
|
|
|
*/
|
|
SIMD_FORCE_INLINE void get_triangle_transform(btTransform & triangle_transform) const
|
|
{
|
|
btMatrix3x3 & matrix = triangle_transform.getBasis();
|
|
|
|
btVector3 zaxis;
|
|
get_normal(zaxis);
|
|
MAT_SET_Z(matrix,zaxis);
|
|
|
|
btVector3 xaxis = m_vertices[1] - m_vertices[0];
|
|
VEC_NORMALIZE(xaxis);
|
|
MAT_SET_X(matrix,xaxis);
|
|
|
|
//y axis
|
|
xaxis = zaxis.cross(xaxis);
|
|
MAT_SET_Y(matrix,xaxis);
|
|
|
|
triangle_transform.setOrigin(m_vertices[0]);
|
|
}
|
|
|
|
|
|
//! Test triangles by finding separating axis
|
|
/*!
|
|
\param other Triangle for collide
|
|
\param contact_data Structure for holding contact points, normal and penetration depth; The normal is pointing toward this triangle from the other triangle
|
|
*/
|
|
bool collide_triangle_hard_test(
|
|
const GIM_TRIANGLE & other,
|
|
GIM_TRIANGLE_CONTACT_DATA & contact_data) const;
|
|
|
|
//! Test boxes before doing hard test
|
|
/*!
|
|
\param other Triangle for collide
|
|
\param contact_data Structure for holding contact points, normal and penetration depth; The normal is pointing toward this triangle from the other triangle
|
|
\
|
|
*/
|
|
SIMD_FORCE_INLINE bool collide_triangle(
|
|
const GIM_TRIANGLE & other,
|
|
GIM_TRIANGLE_CONTACT_DATA & contact_data) const
|
|
{
|
|
//test box collisioin
|
|
GIM_AABB boxu(m_vertices[0],m_vertices[1],m_vertices[2],m_margin);
|
|
GIM_AABB boxv(other.m_vertices[0],other.m_vertices[1],other.m_vertices[2],other.m_margin);
|
|
if(!boxu.has_collision(boxv)) return false;
|
|
|
|
//do hard test
|
|
return collide_triangle_hard_test(other,contact_data);
|
|
}
|
|
|
|
/*!
|
|
|
|
Solve the System for u,v parameters:
|
|
|
|
u*axe1[i1] + v*axe2[i1] = vecproj[i1]
|
|
u*axe1[i2] + v*axe2[i2] = vecproj[i2]
|
|
|
|
sustitute:
|
|
v = (vecproj[i2] - u*axe1[i2])/axe2[i2]
|
|
|
|
then the first equation in terms of 'u':
|
|
|
|
--> u*axe1[i1] + ((vecproj[i2] - u*axe1[i2])/axe2[i2])*axe2[i1] = vecproj[i1]
|
|
|
|
--> u*axe1[i1] + vecproj[i2]*axe2[i1]/axe2[i2] - u*axe1[i2]*axe2[i1]/axe2[i2] = vecproj[i1]
|
|
|
|
--> u*(axe1[i1] - axe1[i2]*axe2[i1]/axe2[i2]) = vecproj[i1] - vecproj[i2]*axe2[i1]/axe2[i2]
|
|
|
|
--> u*((axe1[i1]*axe2[i2] - axe1[i2]*axe2[i1])/axe2[i2]) = (vecproj[i1]*axe2[i2] - vecproj[i2]*axe2[i1])/axe2[i2]
|
|
|
|
--> u*(axe1[i1]*axe2[i2] - axe1[i2]*axe2[i1]) = vecproj[i1]*axe2[i2] - vecproj[i2]*axe2[i1]
|
|
|
|
--> u = (vecproj[i1]*axe2[i2] - vecproj[i2]*axe2[i1]) /(axe1[i1]*axe2[i2] - axe1[i2]*axe2[i1])
|
|
|
|
if 0.0<= u+v <=1.0 then they are inside of triangle
|
|
|
|
\return false if the point is outside of triangle.This function doesn't take the margin
|
|
*/
|
|
SIMD_FORCE_INLINE bool get_uv_parameters(
|
|
const btVector3 & point,
|
|
const btVector3 & tri_plane,
|
|
GREAL & u, GREAL & v) const
|
|
{
|
|
btVector3 _axe1 = m_vertices[1]-m_vertices[0];
|
|
btVector3 _axe2 = m_vertices[2]-m_vertices[0];
|
|
btVector3 _vecproj = point - m_vertices[0];
|
|
GUINT _i1 = (tri_plane.closestAxis()+1)%3;
|
|
GUINT _i2 = (_i1+1)%3;
|
|
if(btFabs(_axe2[_i2])<G_EPSILON)
|
|
{
|
|
u = (_vecproj[_i2]*_axe2[_i1] - _vecproj[_i1]*_axe2[_i2]) /(_axe1[_i2]*_axe2[_i1] - _axe1[_i1]*_axe2[_i2]);
|
|
v = (_vecproj[_i1] - u*_axe1[_i1])/_axe2[_i1];
|
|
}
|
|
else
|
|
{
|
|
u = (_vecproj[_i1]*_axe2[_i2] - _vecproj[_i2]*_axe2[_i1]) /(_axe1[_i1]*_axe2[_i2] - _axe1[_i2]*_axe2[_i1]);
|
|
v = (_vecproj[_i2] - u*_axe1[_i2])/_axe2[_i2];
|
|
}
|
|
|
|
if(u<-G_EPSILON)
|
|
{
|
|
return false;
|
|
}
|
|
else if(v<-G_EPSILON)
|
|
{
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
btScalar sumuv;
|
|
sumuv = u+v;
|
|
if(sumuv<-G_EPSILON)
|
|
{
|
|
return false;
|
|
}
|
|
else if(sumuv-1.0f>G_EPSILON)
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
//! is point in triangle beam?
|
|
/*!
|
|
Test if point is in triangle, with m_margin tolerance
|
|
*/
|
|
SIMD_FORCE_INLINE bool is_point_inside(const btVector3 & point, const btVector3 & tri_normal) const
|
|
{
|
|
//Test with edge 0
|
|
btVector4 edge_plane;
|
|
this->get_edge_plane(0,tri_normal,edge_plane);
|
|
GREAL dist = DISTANCE_PLANE_POINT(edge_plane,point);
|
|
if(dist-m_margin>0.0f) return false; // outside plane
|
|
|
|
this->get_edge_plane(1,tri_normal,edge_plane);
|
|
dist = DISTANCE_PLANE_POINT(edge_plane,point);
|
|
if(dist-m_margin>0.0f) return false; // outside plane
|
|
|
|
this->get_edge_plane(2,tri_normal,edge_plane);
|
|
dist = DISTANCE_PLANE_POINT(edge_plane,point);
|
|
if(dist-m_margin>0.0f) return false; // outside plane
|
|
return true;
|
|
}
|
|
|
|
|
|
//! Bidireccional ray collision
|
|
SIMD_FORCE_INLINE bool ray_collision(
|
|
const btVector3 & vPoint,
|
|
const btVector3 & vDir, btVector3 & pout, btVector3 & triangle_normal,
|
|
GREAL & tparam, GREAL tmax = G_REAL_INFINITY)
|
|
{
|
|
btVector4 faceplane;
|
|
{
|
|
btVector3 dif1 = m_vertices[1] - m_vertices[0];
|
|
btVector3 dif2 = m_vertices[2] - m_vertices[0];
|
|
VEC_CROSS(faceplane,dif1,dif2);
|
|
faceplane[3] = m_vertices[0].dot(faceplane);
|
|
}
|
|
|
|
GUINT res = LINE_PLANE_COLLISION(faceplane,vDir,vPoint,pout,tparam, btScalar(0), tmax);
|
|
if(res == 0) return false;
|
|
if(! is_point_inside(pout,faceplane)) return false;
|
|
|
|
if(res==2) //invert normal
|
|
{
|
|
triangle_normal.setValue(-faceplane[0],-faceplane[1],-faceplane[2]);
|
|
}
|
|
else
|
|
{
|
|
triangle_normal.setValue(faceplane[0],faceplane[1],faceplane[2]);
|
|
}
|
|
|
|
VEC_NORMALIZE(triangle_normal);
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
//! one direccion ray collision
|
|
SIMD_FORCE_INLINE bool ray_collision_front_side(
|
|
const btVector3 & vPoint,
|
|
const btVector3 & vDir, btVector3 & pout, btVector3 & triangle_normal,
|
|
GREAL & tparam, GREAL tmax = G_REAL_INFINITY)
|
|
{
|
|
btVector4 faceplane;
|
|
{
|
|
btVector3 dif1 = m_vertices[1] - m_vertices[0];
|
|
btVector3 dif2 = m_vertices[2] - m_vertices[0];
|
|
VEC_CROSS(faceplane,dif1,dif2);
|
|
faceplane[3] = m_vertices[0].dot(faceplane);
|
|
}
|
|
|
|
GUINT res = LINE_PLANE_COLLISION(faceplane,vDir,vPoint,pout,tparam, btScalar(0), tmax);
|
|
if(res != 1) return false;
|
|
|
|
if(!is_point_inside(pout,faceplane)) return false;
|
|
|
|
triangle_normal.setValue(faceplane[0],faceplane[1],faceplane[2]);
|
|
|
|
VEC_NORMALIZE(triangle_normal);
|
|
|
|
return true;
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
#endif // GIM_TRI_COLLISION_H_INCLUDED
|