203 lines
11 KiB
C++
203 lines
11 KiB
C++
/*
|
|
Bullet Continuous Collision Detection and Physics Library
|
|
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
#ifndef BT_SEQUENTIAL_IMPULSE_CONSTRAINT_SOLVER_H
|
|
#define BT_SEQUENTIAL_IMPULSE_CONSTRAINT_SOLVER_H
|
|
|
|
class btIDebugDraw;
|
|
class btPersistentManifold;
|
|
class btDispatcher;
|
|
class btCollisionObject;
|
|
#include "BulletDynamics/ConstraintSolver/btTypedConstraint.h"
|
|
#include "BulletDynamics/ConstraintSolver/btContactSolverInfo.h"
|
|
#include "BulletDynamics/ConstraintSolver/btSolverBody.h"
|
|
#include "BulletDynamics/ConstraintSolver/btSolverConstraint.h"
|
|
#include "BulletCollision/NarrowPhaseCollision/btManifoldPoint.h"
|
|
#include "BulletDynamics/ConstraintSolver/btConstraintSolver.h"
|
|
|
|
typedef btScalar(*btSingleConstraintRowSolver)(btSolverBody&, btSolverBody&, const btSolverConstraint&);
|
|
|
|
///The btSequentialImpulseConstraintSolver is a fast SIMD implementation of the Projected Gauss Seidel (iterative LCP) method.
|
|
ATTRIBUTE_ALIGNED16(class) btSequentialImpulseConstraintSolver : public btConstraintSolver
|
|
{
|
|
protected:
|
|
btAlignedObjectArray<btSolverBody> m_tmpSolverBodyPool;
|
|
btConstraintArray m_tmpSolverContactConstraintPool;
|
|
btConstraintArray m_tmpSolverNonContactConstraintPool;
|
|
btConstraintArray m_tmpSolverContactFrictionConstraintPool;
|
|
btConstraintArray m_tmpSolverContactRollingFrictionConstraintPool;
|
|
|
|
btAlignedObjectArray<int> m_orderTmpConstraintPool;
|
|
btAlignedObjectArray<int> m_orderNonContactConstraintPool;
|
|
btAlignedObjectArray<int> m_orderFrictionConstraintPool;
|
|
btAlignedObjectArray<btTypedConstraint::btConstraintInfo1> m_tmpConstraintSizesPool;
|
|
int m_maxOverrideNumSolverIterations;
|
|
int m_fixedBodyId;
|
|
// When running solvers on multiple threads, a race condition exists for Kinematic objects that
|
|
// participate in more than one solver.
|
|
// The getOrInitSolverBody() function writes the companionId of each body (storing the index of the solver body
|
|
// for the current solver). For normal dynamic bodies it isn't an issue because they can only be in one island
|
|
// (and therefore one thread) at a time. But kinematic bodies can be in multiple islands at once.
|
|
// To avoid this race condition, this solver does not write the companionId, instead it stores the solver body
|
|
// index in this solver-local table, indexed by the uniqueId of the body.
|
|
btAlignedObjectArray<int> m_kinematicBodyUniqueIdToSolverBodyTable; // only used for multithreading
|
|
|
|
btSingleConstraintRowSolver m_resolveSingleConstraintRowGeneric;
|
|
btSingleConstraintRowSolver m_resolveSingleConstraintRowLowerLimit;
|
|
btSingleConstraintRowSolver m_resolveSplitPenetrationImpulse;
|
|
int m_cachedSolverMode; // used to check if SOLVER_SIMD flag has been changed
|
|
void setupSolverFunctions( bool useSimd );
|
|
|
|
btScalar m_leastSquaresResidual;
|
|
|
|
void setupFrictionConstraint( btSolverConstraint& solverConstraint, const btVector3& normalAxis,int solverBodyIdA,int solverBodyIdB,
|
|
btManifoldPoint& cp,const btVector3& rel_pos1,const btVector3& rel_pos2,
|
|
btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation,
|
|
const btContactSolverInfo& infoGlobal,
|
|
btScalar desiredVelocity=0., btScalar cfmSlip=0.);
|
|
|
|
void setupTorsionalFrictionConstraint( btSolverConstraint& solverConstraint, const btVector3& normalAxis,int solverBodyIdA,int solverBodyIdB,
|
|
btManifoldPoint& cp,btScalar combinedTorsionalFriction, const btVector3& rel_pos1,const btVector3& rel_pos2,
|
|
btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation,
|
|
btScalar desiredVelocity=0., btScalar cfmSlip=0.);
|
|
|
|
btSolverConstraint& addFrictionConstraint(const btVector3& normalAxis,int solverBodyIdA,int solverBodyIdB,int frictionIndex,btManifoldPoint& cp,const btVector3& rel_pos1,const btVector3& rel_pos2,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity=0., btScalar cfmSlip=0.);
|
|
btSolverConstraint& addTorsionalFrictionConstraint(const btVector3& normalAxis,int solverBodyIdA,int solverBodyIdB,int frictionIndex,btManifoldPoint& cp,btScalar torsionalFriction, const btVector3& rel_pos1,const btVector3& rel_pos2,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, btScalar desiredVelocity=0, btScalar cfmSlip=0.f);
|
|
|
|
|
|
void setupContactConstraint(btSolverConstraint& solverConstraint, int solverBodyIdA, int solverBodyIdB, btManifoldPoint& cp,
|
|
const btContactSolverInfo& infoGlobal,btScalar& relaxation, const btVector3& rel_pos1, const btVector3& rel_pos2);
|
|
|
|
static void applyAnisotropicFriction(btCollisionObject* colObj,btVector3& frictionDirection, int frictionMode);
|
|
|
|
void setFrictionConstraintImpulse( btSolverConstraint& solverConstraint, int solverBodyIdA,int solverBodyIdB,
|
|
btManifoldPoint& cp, const btContactSolverInfo& infoGlobal);
|
|
|
|
///m_btSeed2 is used for re-arranging the constraint rows. improves convergence/quality of friction
|
|
unsigned long m_btSeed2;
|
|
|
|
|
|
btScalar restitutionCurve(btScalar rel_vel, btScalar restitution, btScalar velocityThreshold);
|
|
|
|
virtual void convertContacts(btPersistentManifold** manifoldPtr, int numManifolds, const btContactSolverInfo& infoGlobal);
|
|
|
|
void convertContact(btPersistentManifold* manifold,const btContactSolverInfo& infoGlobal);
|
|
|
|
virtual void convertJoints(btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal);
|
|
void convertJoint(btSolverConstraint* currentConstraintRow, btTypedConstraint* constraint, const btTypedConstraint::btConstraintInfo1& info1, int solverBodyIdA, int solverBodyIdB, const btContactSolverInfo& infoGlobal);
|
|
|
|
virtual void convertBodies(btCollisionObject** bodies, int numBodies, const btContactSolverInfo& infoGlobal);
|
|
|
|
btScalar resolveSplitPenetrationSIMD(btSolverBody& bodyA,btSolverBody& bodyB, const btSolverConstraint& contactConstraint)
|
|
{
|
|
return m_resolveSplitPenetrationImpulse( bodyA, bodyB, contactConstraint );
|
|
}
|
|
|
|
btScalar resolveSplitPenetrationImpulseCacheFriendly(btSolverBody& bodyA,btSolverBody& bodyB, const btSolverConstraint& contactConstraint)
|
|
{
|
|
return m_resolveSplitPenetrationImpulse( bodyA, bodyB, contactConstraint );
|
|
}
|
|
|
|
//internal method
|
|
int getOrInitSolverBody(btCollisionObject& body,btScalar timeStep);
|
|
void initSolverBody(btSolverBody* solverBody, btCollisionObject* collisionObject, btScalar timeStep);
|
|
|
|
btScalar resolveSingleConstraintRowGeneric(btSolverBody& bodyA,btSolverBody& bodyB,const btSolverConstraint& contactConstraint);
|
|
btScalar resolveSingleConstraintRowGenericSIMD(btSolverBody& bodyA,btSolverBody& bodyB,const btSolverConstraint& contactConstraint);
|
|
btScalar resolveSingleConstraintRowLowerLimit(btSolverBody& bodyA,btSolverBody& bodyB,const btSolverConstraint& contactConstraint);
|
|
btScalar resolveSingleConstraintRowLowerLimitSIMD(btSolverBody& bodyA,btSolverBody& bodyB,const btSolverConstraint& contactConstraint);
|
|
btScalar resolveSplitPenetrationImpulse(btSolverBody& bodyA,btSolverBody& bodyB, const btSolverConstraint& contactConstraint)
|
|
{
|
|
return m_resolveSplitPenetrationImpulse( bodyA, bodyB, contactConstraint );
|
|
}
|
|
|
|
protected:
|
|
|
|
void writeBackContacts(int iBegin, int iEnd, const btContactSolverInfo& infoGlobal);
|
|
void writeBackJoints(int iBegin, int iEnd, const btContactSolverInfo& infoGlobal);
|
|
void writeBackBodies(int iBegin, int iEnd, const btContactSolverInfo& infoGlobal);
|
|
virtual void solveGroupCacheFriendlySplitImpulseIterations(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
|
|
virtual btScalar solveGroupCacheFriendlyFinish(btCollisionObject** bodies,int numBodies,const btContactSolverInfo& infoGlobal);
|
|
virtual btScalar solveSingleIteration(int iteration, btCollisionObject** bodies ,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
|
|
|
|
virtual btScalar solveGroupCacheFriendlySetup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
|
|
virtual btScalar solveGroupCacheFriendlyIterations(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
|
|
|
|
|
|
public:
|
|
|
|
BT_DECLARE_ALIGNED_ALLOCATOR();
|
|
|
|
btSequentialImpulseConstraintSolver();
|
|
virtual ~btSequentialImpulseConstraintSolver();
|
|
|
|
virtual btScalar solveGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifold,int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& info, btIDebugDraw* debugDrawer,btDispatcher* dispatcher);
|
|
|
|
///clear internal cached data and reset random seed
|
|
virtual void reset();
|
|
|
|
unsigned long btRand2();
|
|
|
|
int btRandInt2 (int n);
|
|
|
|
void setRandSeed(unsigned long seed)
|
|
{
|
|
m_btSeed2 = seed;
|
|
}
|
|
unsigned long getRandSeed() const
|
|
{
|
|
return m_btSeed2;
|
|
}
|
|
|
|
|
|
virtual btConstraintSolverType getSolverType() const
|
|
{
|
|
return BT_SEQUENTIAL_IMPULSE_SOLVER;
|
|
}
|
|
|
|
btSingleConstraintRowSolver getActiveConstraintRowSolverGeneric()
|
|
{
|
|
return m_resolveSingleConstraintRowGeneric;
|
|
}
|
|
void setConstraintRowSolverGeneric(btSingleConstraintRowSolver rowSolver)
|
|
{
|
|
m_resolveSingleConstraintRowGeneric = rowSolver;
|
|
}
|
|
btSingleConstraintRowSolver getActiveConstraintRowSolverLowerLimit()
|
|
{
|
|
return m_resolveSingleConstraintRowLowerLimit;
|
|
}
|
|
void setConstraintRowSolverLowerLimit(btSingleConstraintRowSolver rowSolver)
|
|
{
|
|
m_resolveSingleConstraintRowLowerLimit = rowSolver;
|
|
}
|
|
|
|
///Various implementations of solving a single constraint row using a generic equality constraint, using scalar reference, SSE2 or SSE4
|
|
btSingleConstraintRowSolver getScalarConstraintRowSolverGeneric();
|
|
btSingleConstraintRowSolver getSSE2ConstraintRowSolverGeneric();
|
|
btSingleConstraintRowSolver getSSE4_1ConstraintRowSolverGeneric();
|
|
|
|
///Various implementations of solving a single constraint row using an inequality (lower limit) constraint, using scalar reference, SSE2 or SSE4
|
|
btSingleConstraintRowSolver getScalarConstraintRowSolverLowerLimit();
|
|
btSingleConstraintRowSolver getSSE2ConstraintRowSolverLowerLimit();
|
|
btSingleConstraintRowSolver getSSE4_1ConstraintRowSolverLowerLimit();
|
|
};
|
|
|
|
|
|
|
|
|
|
#endif //BT_SEQUENTIAL_IMPULSE_CONSTRAINT_SOLVER_H
|
|
|