godot/drivers/vulkan/vulkan_context.cpp

2528 lines
94 KiB
C++

/*************************************************************************/
/* vulkan_context.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "vulkan_context.h"
#include "core/config/engine.h"
#include "core/config/project_settings.h"
#include "core/string/ustring.h"
#include "core/templates/local_vector.h"
#include "core/version.h"
#include "servers/rendering/rendering_device.h"
#include "vk_enum_string_helper.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
#define APP_SHORT_NAME "GodotEngine"
VulkanHooks *VulkanContext::vulkan_hooks = nullptr;
VkResult VulkanContext::vkCreateRenderPass2KHR(VkDevice device, const VkRenderPassCreateInfo2 *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkRenderPass *pRenderPass) {
if (fpCreateRenderPass2KHR == nullptr) {
fpCreateRenderPass2KHR = (PFN_vkCreateRenderPass2KHR)vkGetInstanceProcAddr(inst, "vkCreateRenderPass2KHR");
}
if (fpCreateRenderPass2KHR == nullptr) {
return VK_ERROR_EXTENSION_NOT_PRESENT;
} else {
return (fpCreateRenderPass2KHR)(device, pCreateInfo, pAllocator, pRenderPass);
}
}
VKAPI_ATTR VkBool32 VKAPI_CALL VulkanContext::_debug_messenger_callback(
VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity,
VkDebugUtilsMessageTypeFlagsEXT messageType,
const VkDebugUtilsMessengerCallbackDataEXT *pCallbackData,
void *pUserData) {
// This error needs to be ignored because the AMD allocator will mix up memory types on IGP processors.
if (strstr(pCallbackData->pMessage, "Mapping an image with layout") != nullptr &&
strstr(pCallbackData->pMessage, "can result in undefined behavior if this memory is used by the device") != nullptr) {
return VK_FALSE;
}
// This needs to be ignored because Validator is wrong here.
if (strstr(pCallbackData->pMessage, "Invalid SPIR-V binary version 1.3") != nullptr) {
return VK_FALSE;
}
// This needs to be ignored because Validator is wrong here.
if (strstr(pCallbackData->pMessage, "Shader requires flag") != nullptr) {
return VK_FALSE;
}
// This needs to be ignored because Validator is wrong here.
if (strstr(pCallbackData->pMessage, "SPIR-V module not valid: Pointer operand") != nullptr &&
strstr(pCallbackData->pMessage, "must be a memory object") != nullptr) {
return VK_FALSE;
}
// Workaround for Vulkan-Loader usability bug: https://github.com/KhronosGroup/Vulkan-Loader/issues/262.
if (strstr(pCallbackData->pMessage, "wrong ELF class: ELFCLASS32") != nullptr) {
return VK_FALSE;
}
#ifdef WINDOWS_ENABLED
// Some software installs Vulkan overlays in Windows registry and never cleans them up on uninstall.
// So we get spammy error level messages from the loader about those - make them verbose instead.
if (strstr(pCallbackData->pMessage, "loader_get_json: Failed to open JSON file") != nullptr) {
messageSeverity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT;
}
#endif
if (pCallbackData->pMessageIdName && strstr(pCallbackData->pMessageIdName, "UNASSIGNED-CoreValidation-DrawState-ClearCmdBeforeDraw") != nullptr) {
return VK_FALSE;
}
String type_string;
switch (messageType) {
case (VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT):
type_string = "GENERAL";
break;
case (VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT):
type_string = "VALIDATION";
break;
case (VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT):
type_string = "PERFORMANCE";
break;
case (VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT & VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT):
type_string = "VALIDATION|PERFORMANCE";
break;
}
String objects_string;
if (pCallbackData->objectCount > 0) {
objects_string = "\n\tObjects - " + String::num_int64(pCallbackData->objectCount);
for (uint32_t object = 0; object < pCallbackData->objectCount; ++object) {
objects_string +=
"\n\t\tObject[" + String::num_int64(object) + "]" +
" - " + string_VkObjectType(pCallbackData->pObjects[object].objectType) +
", Handle " + String::num_int64(pCallbackData->pObjects[object].objectHandle);
if (nullptr != pCallbackData->pObjects[object].pObjectName && strlen(pCallbackData->pObjects[object].pObjectName) > 0) {
objects_string += ", Name \"" + String(pCallbackData->pObjects[object].pObjectName) + "\"";
}
}
}
String labels_string;
if (pCallbackData->cmdBufLabelCount > 0) {
labels_string = "\n\tCommand Buffer Labels - " + String::num_int64(pCallbackData->cmdBufLabelCount);
for (uint32_t cmd_buf_label = 0; cmd_buf_label < pCallbackData->cmdBufLabelCount; ++cmd_buf_label) {
labels_string +=
"\n\t\tLabel[" + String::num_int64(cmd_buf_label) + "]" +
" - " + pCallbackData->pCmdBufLabels[cmd_buf_label].pLabelName +
"{ ";
for (int color_idx = 0; color_idx < 4; ++color_idx) {
labels_string += String::num(pCallbackData->pCmdBufLabels[cmd_buf_label].color[color_idx]);
if (color_idx < 3) {
labels_string += ", ";
}
}
labels_string += " }";
}
}
String error_message(type_string +
" - Message Id Number: " + String::num_int64(pCallbackData->messageIdNumber) +
" | Message Id Name: " + pCallbackData->pMessageIdName +
"\n\t" + pCallbackData->pMessage +
objects_string + labels_string);
// Convert VK severity to our own log macros.
switch (messageSeverity) {
case VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT:
print_verbose(error_message);
break;
case VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT:
print_line(error_message);
break;
case VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT:
WARN_PRINT(error_message);
break;
case VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT:
ERR_PRINT(error_message);
CRASH_COND_MSG(Engine::get_singleton()->is_abort_on_gpu_errors_enabled(),
"Crashing, because abort on GPU errors is enabled.");
break;
case VK_DEBUG_UTILS_MESSAGE_SEVERITY_FLAG_BITS_MAX_ENUM_EXT:
break; // Shouldn't happen, only handling to make compilers happy.
}
return VK_FALSE;
}
VKAPI_ATTR VkBool32 VKAPI_CALL VulkanContext::_debug_report_callback(
VkDebugReportFlagsEXT flags,
VkDebugReportObjectTypeEXT objectType,
uint64_t object,
size_t location,
int32_t messageCode,
const char *pLayerPrefix,
const char *pMessage,
void *pUserData) {
String debugMessage = String("Vulkan Debug Report: object - ") +
String::num_int64(object) + "\n" + pMessage;
switch (flags) {
case VK_DEBUG_REPORT_DEBUG_BIT_EXT:
case VK_DEBUG_REPORT_INFORMATION_BIT_EXT:
print_line(debugMessage);
break;
case VK_DEBUG_REPORT_WARNING_BIT_EXT:
case VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT:
WARN_PRINT(debugMessage);
break;
case VK_DEBUG_REPORT_ERROR_BIT_EXT:
ERR_PRINT(debugMessage);
break;
}
return VK_FALSE;
}
VkBool32 VulkanContext::_check_layers(uint32_t check_count, const char *const *check_names, uint32_t layer_count, VkLayerProperties *layers) {
for (uint32_t i = 0; i < check_count; i++) {
VkBool32 found = 0;
for (uint32_t j = 0; j < layer_count; j++) {
if (!strcmp(check_names[i], layers[j].layerName)) {
found = 1;
break;
}
}
if (!found) {
WARN_PRINT("Can't find layer: " + String(check_names[i]));
return 0;
}
}
return 1;
}
Error VulkanContext::_get_preferred_validation_layers(uint32_t *count, const char *const **names) {
static const LocalVector<LocalVector<const char *>> instance_validation_layers_alt{
// Preferred set of validation layers.
{ "VK_LAYER_KHRONOS_validation" },
// Alternative (deprecated, removed in SDK 1.1.126.0) set of validation layers.
{ "VK_LAYER_LUNARG_standard_validation" },
// Alternative (deprecated, removed in SDK 1.1.121.1) set of validation layers.
{ "VK_LAYER_GOOGLE_threading", "VK_LAYER_LUNARG_parameter_validation", "VK_LAYER_LUNARG_object_tracker", "VK_LAYER_LUNARG_core_validation", "VK_LAYER_GOOGLE_unique_objects" }
};
// Clear out-arguments.
*count = 0;
if (names != nullptr) {
*names = nullptr;
}
VkResult err;
uint32_t instance_layer_count;
err = vkEnumerateInstanceLayerProperties(&instance_layer_count, nullptr);
if (err) {
ERR_FAIL_V(ERR_CANT_CREATE);
}
if (instance_layer_count < 1) {
return OK;
}
VkLayerProperties *instance_layers = (VkLayerProperties *)malloc(sizeof(VkLayerProperties) * instance_layer_count);
err = vkEnumerateInstanceLayerProperties(&instance_layer_count, instance_layers);
if (err) {
free(instance_layers);
ERR_FAIL_V(ERR_CANT_CREATE);
}
for (uint32_t i = 0; i < instance_validation_layers_alt.size(); i++) {
if (_check_layers(instance_validation_layers_alt[i].size(), instance_validation_layers_alt[i].ptr(), instance_layer_count, instance_layers)) {
*count = instance_validation_layers_alt[i].size();
if (names != nullptr) {
*names = instance_validation_layers_alt[i].ptr();
}
break;
}
}
free(instance_layers);
return OK;
}
typedef VkResult(VKAPI_PTR *_vkEnumerateInstanceVersion)(uint32_t *);
Error VulkanContext::_obtain_vulkan_version() {
// https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VkApplicationInfo.html#_description
// For Vulkan 1.0 vkEnumerateInstanceVersion is not available, including not in the loader we compile against on Android.
_vkEnumerateInstanceVersion func = (_vkEnumerateInstanceVersion)vkGetInstanceProcAddr(nullptr, "vkEnumerateInstanceVersion");
if (func != nullptr) {
uint32_t api_version;
VkResult res = func(&api_version);
if (res == VK_SUCCESS) {
vulkan_major = VK_API_VERSION_MAJOR(api_version);
vulkan_minor = VK_API_VERSION_MINOR(api_version);
vulkan_patch = VK_API_VERSION_PATCH(api_version);
} else {
// According to the documentation this shouldn't fail with anything except a memory allocation error
// in which case we're in deep trouble anyway.
ERR_FAIL_V(ERR_CANT_CREATE);
}
} else {
print_line("vkEnumerateInstanceVersion not available, assuming Vulkan 1.0.");
}
// We don't go above 1.2.
if ((vulkan_major > 1) || (vulkan_major == 1 && vulkan_minor > 2)) {
vulkan_major = 1;
vulkan_minor = 2;
vulkan_patch = 0;
}
return OK;
}
Error VulkanContext::_initialize_extensions() {
uint32_t instance_extension_count = 0;
enabled_extension_count = 0;
enabled_debug_utils = false;
enabled_debug_report = false;
// Look for instance extensions.
VkBool32 surfaceExtFound = 0;
VkBool32 platformSurfaceExtFound = 0;
memset(extension_names, 0, sizeof(extension_names));
VkResult err = vkEnumerateInstanceExtensionProperties(nullptr, &instance_extension_count, nullptr);
ERR_FAIL_COND_V(err != VK_SUCCESS && err != VK_INCOMPLETE, ERR_CANT_CREATE);
if (instance_extension_count > 0) {
VkExtensionProperties *instance_extensions = (VkExtensionProperties *)malloc(sizeof(VkExtensionProperties) * instance_extension_count);
err = vkEnumerateInstanceExtensionProperties(nullptr, &instance_extension_count, instance_extensions);
if (err != VK_SUCCESS && err != VK_INCOMPLETE) {
free(instance_extensions);
ERR_FAIL_V(ERR_CANT_CREATE);
}
for (uint32_t i = 0; i < instance_extension_count; i++) {
if (!strcmp(VK_KHR_SURFACE_EXTENSION_NAME, instance_extensions[i].extensionName)) {
surfaceExtFound = 1;
extension_names[enabled_extension_count++] = VK_KHR_SURFACE_EXTENSION_NAME;
}
if (!strcmp(_get_platform_surface_extension(), instance_extensions[i].extensionName)) {
platformSurfaceExtFound = 1;
extension_names[enabled_extension_count++] = _get_platform_surface_extension();
}
if (!strcmp(VK_EXT_DEBUG_REPORT_EXTENSION_NAME, instance_extensions[i].extensionName)) {
if (_use_validation_layers()) {
extension_names[enabled_extension_count++] = VK_EXT_DEBUG_REPORT_EXTENSION_NAME;
enabled_debug_report = true;
}
}
if (!strcmp(VK_EXT_DEBUG_UTILS_EXTENSION_NAME, instance_extensions[i].extensionName)) {
extension_names[enabled_extension_count++] = VK_EXT_DEBUG_UTILS_EXTENSION_NAME;
enabled_debug_utils = true;
}
if (!strcmp(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, instance_extensions[i].extensionName)) {
extension_names[enabled_extension_count++] = VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME;
}
if (enabled_extension_count >= MAX_EXTENSIONS) {
free(instance_extensions);
ERR_FAIL_V_MSG(ERR_BUG, "Enabled extension count reaches MAX_EXTENSIONS, BUG");
}
}
free(instance_extensions);
}
ERR_FAIL_COND_V_MSG(!surfaceExtFound, ERR_CANT_CREATE, "No surface extension found, is a driver installed?");
ERR_FAIL_COND_V_MSG(!platformSurfaceExtFound, ERR_CANT_CREATE, "No platform surface extension found, is a driver installed?");
return OK;
}
uint32_t VulkanContext::SubgroupCapabilities::supported_stages_flags_rd() const {
uint32_t flags = 0;
if (supportedStages & VK_SHADER_STAGE_VERTEX_BIT) {
flags += RenderingDevice::ShaderStage::SHADER_STAGE_VERTEX_BIT;
}
if (supportedStages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT) {
flags += RenderingDevice::ShaderStage::SHADER_STAGE_TESSELATION_CONTROL_BIT;
}
if (supportedStages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT) {
flags += RenderingDevice::ShaderStage::SHADER_STAGE_TESSELATION_EVALUATION_BIT;
}
// if (supportedStages & VK_SHADER_STAGE_GEOMETRY_BIT) {
// flags += RenderingDevice::ShaderStage::SHADER_STAGE_GEOMETRY_BIT;
// }
if (supportedStages & VK_SHADER_STAGE_FRAGMENT_BIT) {
flags += RenderingDevice::ShaderStage::SHADER_STAGE_FRAGMENT_BIT;
}
if (supportedStages & VK_SHADER_STAGE_COMPUTE_BIT) {
flags += RenderingDevice::ShaderStage::SHADER_STAGE_COMPUTE_BIT;
}
return flags;
}
String VulkanContext::SubgroupCapabilities::supported_stages_desc() const {
String res;
if (supportedStages & VK_SHADER_STAGE_VERTEX_BIT) {
res += ", STAGE_VERTEX";
}
if (supportedStages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT) {
res += ", STAGE_TESSELLATION_CONTROL";
}
if (supportedStages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT) {
res += ", STAGE_TESSELLATION_EVALUATION";
}
if (supportedStages & VK_SHADER_STAGE_GEOMETRY_BIT) {
res += ", STAGE_GEOMETRY";
}
if (supportedStages & VK_SHADER_STAGE_FRAGMENT_BIT) {
res += ", STAGE_FRAGMENT";
}
if (supportedStages & VK_SHADER_STAGE_COMPUTE_BIT) {
res += ", STAGE_COMPUTE";
}
// These are not defined on Android GRMBL.
if (supportedStages & 0x00000100 /* VK_SHADER_STAGE_RAYGEN_BIT_KHR */) {
res += ", STAGE_RAYGEN_KHR";
}
if (supportedStages & 0x00000200 /* VK_SHADER_STAGE_ANY_HIT_BIT_KHR */) {
res += ", STAGE_ANY_HIT_KHR";
}
if (supportedStages & 0x00000400 /* VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR */) {
res += ", STAGE_CLOSEST_HIT_KHR";
}
if (supportedStages & 0x00000800 /* VK_SHADER_STAGE_MISS_BIT_KHR */) {
res += ", STAGE_MISS_KHR";
}
if (supportedStages & 0x00001000 /* VK_SHADER_STAGE_INTERSECTION_BIT_KHR */) {
res += ", STAGE_INTERSECTION_KHR";
}
if (supportedStages & 0x00002000 /* VK_SHADER_STAGE_CALLABLE_BIT_KHR */) {
res += ", STAGE_CALLABLE_KHR";
}
if (supportedStages & 0x00000040 /* VK_SHADER_STAGE_TASK_BIT_NV */) {
res += ", STAGE_TASK_NV";
}
if (supportedStages & 0x00000080 /* VK_SHADER_STAGE_MESH_BIT_NV */) {
res += ", STAGE_MESH_NV";
}
return res.substr(2); // Remove first ", ".
}
uint32_t VulkanContext::SubgroupCapabilities::supported_operations_flags_rd() const {
uint32_t flags = 0;
if (supportedOperations & VK_SUBGROUP_FEATURE_BASIC_BIT) {
flags += RenderingDevice::SubgroupOperations::SUBGROUP_BASIC_BIT;
}
if (supportedOperations & VK_SUBGROUP_FEATURE_VOTE_BIT) {
flags += RenderingDevice::SubgroupOperations::SUBGROUP_VOTE_BIT;
}
if (supportedOperations & VK_SUBGROUP_FEATURE_ARITHMETIC_BIT) {
flags += RenderingDevice::SubgroupOperations::SUBGROUP_ARITHMETIC_BIT;
}
if (supportedOperations & VK_SUBGROUP_FEATURE_BALLOT_BIT) {
flags += RenderingDevice::SubgroupOperations::SUBGROUP_BALLOT_BIT;
}
if (supportedOperations & VK_SUBGROUP_FEATURE_SHUFFLE_BIT) {
flags += RenderingDevice::SubgroupOperations::SUBGROUP_SHUFFLE_BIT;
}
if (supportedOperations & VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT) {
flags += RenderingDevice::SubgroupOperations::SUBGROUP_SHUFFLE_RELATIVE_BIT;
}
if (supportedOperations & VK_SUBGROUP_FEATURE_CLUSTERED_BIT) {
flags += RenderingDevice::SubgroupOperations::SUBGROUP_CLUSTERED_BIT;
}
if (supportedOperations & VK_SUBGROUP_FEATURE_QUAD_BIT) {
flags += RenderingDevice::SubgroupOperations::SUBGROUP_QUAD_BIT;
}
return flags;
}
String VulkanContext::SubgroupCapabilities::supported_operations_desc() const {
String res;
if (supportedOperations & VK_SUBGROUP_FEATURE_BASIC_BIT) {
res += ", FEATURE_BASIC";
}
if (supportedOperations & VK_SUBGROUP_FEATURE_VOTE_BIT) {
res += ", FEATURE_VOTE";
}
if (supportedOperations & VK_SUBGROUP_FEATURE_ARITHMETIC_BIT) {
res += ", FEATURE_ARITHMETIC";
}
if (supportedOperations & VK_SUBGROUP_FEATURE_BALLOT_BIT) {
res += ", FEATURE_BALLOT";
}
if (supportedOperations & VK_SUBGROUP_FEATURE_SHUFFLE_BIT) {
res += ", FEATURE_SHUFFLE";
}
if (supportedOperations & VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT) {
res += ", FEATURE_SHUFFLE_RELATIVE";
}
if (supportedOperations & VK_SUBGROUP_FEATURE_CLUSTERED_BIT) {
res += ", FEATURE_CLUSTERED";
}
if (supportedOperations & VK_SUBGROUP_FEATURE_QUAD_BIT) {
res += ", FEATURE_QUAD";
}
if (supportedOperations & VK_SUBGROUP_FEATURE_PARTITIONED_BIT_NV) {
res += ", FEATURE_PARTITIONED_NV";
}
return res.substr(2); // Remove first ", ".
}
Error VulkanContext::_check_capabilities() {
// https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VK_KHR_multiview.html
// https://www.khronos.org/blog/vulkan-subgroup-tutorial
// For Vulkan 1.0 vkGetPhysicalDeviceProperties2 is not available, including not in the loader we compile against on Android.
// So we check if the functions are accessible by getting their function pointers and skipping if not
// (note that the desktop loader does a better job here but the android loader doesn't.)
// Assume not supported until proven otherwise.
vrs_capabilities.pipeline_vrs_supported = false;
vrs_capabilities.primitive_vrs_supported = false;
vrs_capabilities.attachment_vrs_supported = false;
multiview_capabilities.is_supported = false;
multiview_capabilities.geometry_shader_is_supported = false;
multiview_capabilities.tessellation_shader_is_supported = false;
multiview_capabilities.max_view_count = 0;
multiview_capabilities.max_instance_count = 0;
subgroup_capabilities.size = 0;
subgroup_capabilities.supportedStages = 0;
subgroup_capabilities.supportedOperations = 0;
subgroup_capabilities.quadOperationsInAllStages = false;
shader_capabilities.shader_float16_is_supported = false;
shader_capabilities.shader_int8_is_supported = false;
storage_buffer_capabilities.storage_buffer_16_bit_access_is_supported = false;
storage_buffer_capabilities.uniform_and_storage_buffer_16_bit_access_is_supported = false;
storage_buffer_capabilities.storage_push_constant_16_is_supported = false;
storage_buffer_capabilities.storage_input_output_16 = false;
// Check for extended features.
PFN_vkGetPhysicalDeviceFeatures2 vkGetPhysicalDeviceFeatures2_func = (PFN_vkGetPhysicalDeviceFeatures2)vkGetInstanceProcAddr(inst, "vkGetPhysicalDeviceFeatures2");
if (vkGetPhysicalDeviceFeatures2_func == nullptr) {
// In Vulkan 1.0 might be accessible under its original extension name.
vkGetPhysicalDeviceFeatures2_func = (PFN_vkGetPhysicalDeviceFeatures2)vkGetInstanceProcAddr(inst, "vkGetPhysicalDeviceFeatures2KHR");
}
if (vkGetPhysicalDeviceFeatures2_func != nullptr) {
// Check our extended features.
VkPhysicalDeviceFragmentShadingRateFeaturesKHR vrs_features = {
/*sType*/ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_FEATURES_KHR,
/*pNext*/ nullptr,
/*pipelineFragmentShadingRate*/ false,
/*primitiveFragmentShadingRate*/ false,
/*attachmentFragmentShadingRate*/ false,
};
VkPhysicalDeviceShaderFloat16Int8FeaturesKHR shader_features = {
/*sType*/ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_FLOAT16_INT8_FEATURES_KHR,
/*pNext*/ &vrs_features,
/*shaderFloat16*/ false,
/*shaderInt8*/ false,
};
VkPhysicalDevice16BitStorageFeaturesKHR storage_feature = {
/*sType*/ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES_KHR,
/*pNext*/ &shader_features,
/*storageBuffer16BitAccess*/ false,
/*uniformAndStorageBuffer16BitAccess*/ false,
/*storagePushConstant16*/ false,
/*storageInputOutput16*/ false,
};
VkPhysicalDeviceMultiviewFeatures multiview_features = {
/*sType*/ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES,
/*pNext*/ &storage_feature,
/*multiview*/ false,
/*multiviewGeometryShader*/ false,
/*multiviewTessellationShader*/ false,
};
VkPhysicalDeviceFeatures2 device_features;
device_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2;
device_features.pNext = &multiview_features;
vkGetPhysicalDeviceFeatures2_func(gpu, &device_features);
vrs_capabilities.pipeline_vrs_supported = vrs_features.pipelineFragmentShadingRate;
vrs_capabilities.primitive_vrs_supported = vrs_features.primitiveFragmentShadingRate;
vrs_capabilities.attachment_vrs_supported = vrs_features.attachmentFragmentShadingRate;
multiview_capabilities.is_supported = multiview_features.multiview;
multiview_capabilities.geometry_shader_is_supported = multiview_features.multiviewGeometryShader;
multiview_capabilities.tessellation_shader_is_supported = multiview_features.multiviewTessellationShader;
shader_capabilities.shader_float16_is_supported = shader_features.shaderFloat16;
shader_capabilities.shader_int8_is_supported = shader_features.shaderInt8;
storage_buffer_capabilities.storage_buffer_16_bit_access_is_supported = storage_feature.storageBuffer16BitAccess;
storage_buffer_capabilities.uniform_and_storage_buffer_16_bit_access_is_supported = storage_feature.uniformAndStorageBuffer16BitAccess;
storage_buffer_capabilities.storage_push_constant_16_is_supported = storage_feature.storagePushConstant16;
storage_buffer_capabilities.storage_input_output_16 = storage_feature.storageInputOutput16;
}
// Check extended properties.
PFN_vkGetPhysicalDeviceProperties2 device_properties_func = (PFN_vkGetPhysicalDeviceProperties2)vkGetInstanceProcAddr(inst, "vkGetPhysicalDeviceProperties2");
if (device_properties_func == nullptr) {
// In Vulkan 1.0 might be accessible under its original extension name.
device_properties_func = (PFN_vkGetPhysicalDeviceProperties2)vkGetInstanceProcAddr(inst, "vkGetPhysicalDeviceProperties2KHR");
}
if (device_properties_func != nullptr) {
VkPhysicalDeviceFragmentShadingRatePropertiesKHR vrsProperties;
VkPhysicalDeviceMultiviewProperties multiviewProperties;
VkPhysicalDeviceSubgroupProperties subgroupProperties;
VkPhysicalDeviceProperties2 physicalDeviceProperties;
void *nextptr = nullptr;
subgroupProperties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES;
subgroupProperties.pNext = nextptr;
nextptr = &subgroupProperties;
if (multiview_capabilities.is_supported) {
multiviewProperties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES;
multiviewProperties.pNext = nextptr;
nextptr = &multiviewProperties;
}
if (vrs_capabilities.attachment_vrs_supported) {
vrsProperties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_PROPERTIES_KHR;
vrsProperties.pNext = nextptr;
nextptr = &vrsProperties;
}
physicalDeviceProperties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2;
physicalDeviceProperties.pNext = nextptr;
device_properties_func(gpu, &physicalDeviceProperties);
subgroup_capabilities.size = subgroupProperties.subgroupSize;
subgroup_capabilities.supportedStages = subgroupProperties.supportedStages;
subgroup_capabilities.supportedOperations = subgroupProperties.supportedOperations;
// Note: quadOperationsInAllStages will be true if:
// - supportedStages has VK_SHADER_STAGE_ALL_GRAPHICS + VK_SHADER_STAGE_COMPUTE_BIT.
// - supportedOperations has VK_SUBGROUP_FEATURE_QUAD_BIT.
subgroup_capabilities.quadOperationsInAllStages = subgroupProperties.quadOperationsInAllStages;
if (vrs_capabilities.pipeline_vrs_supported || vrs_capabilities.primitive_vrs_supported || vrs_capabilities.attachment_vrs_supported) {
print_verbose("- Vulkan Variable Rate Shading supported:");
if (vrs_capabilities.pipeline_vrs_supported) {
print_verbose(" Pipeline fragment shading rate");
}
if (vrs_capabilities.primitive_vrs_supported) {
print_verbose(" Primitive fragment shading rate");
}
if (vrs_capabilities.attachment_vrs_supported) {
// TODO expose these somehow to the end user.
vrs_capabilities.min_texel_size.x = vrsProperties.minFragmentShadingRateAttachmentTexelSize.width;
vrs_capabilities.min_texel_size.y = vrsProperties.minFragmentShadingRateAttachmentTexelSize.height;
vrs_capabilities.max_texel_size.x = vrsProperties.maxFragmentShadingRateAttachmentTexelSize.width;
vrs_capabilities.max_texel_size.y = vrsProperties.maxFragmentShadingRateAttachmentTexelSize.height;
print_verbose(String(" Attachment fragment shading rate") + String(", min texel size: (") + itos(vrs_capabilities.min_texel_size.x) + String(", ") + itos(vrs_capabilities.min_texel_size.y) + String(")") + String(", max texel size: (") + itos(vrs_capabilities.max_texel_size.x) + String(", ") + itos(vrs_capabilities.max_texel_size.y) + String(")"));
}
} else {
print_verbose("- Vulkan Variable Rate Shading not supported");
}
if (multiview_capabilities.is_supported) {
multiview_capabilities.max_view_count = multiviewProperties.maxMultiviewViewCount;
multiview_capabilities.max_instance_count = multiviewProperties.maxMultiviewInstanceIndex;
print_verbose("- Vulkan multiview supported:");
print_verbose(" max view count: " + itos(multiview_capabilities.max_view_count));
print_verbose(" max instances: " + itos(multiview_capabilities.max_instance_count));
} else {
print_verbose("- Vulkan multiview not supported");
}
print_verbose("- Vulkan subgroup:");
print_verbose(" size: " + itos(subgroup_capabilities.size));
print_verbose(" stages: " + subgroup_capabilities.supported_stages_desc());
print_verbose(" supported ops: " + subgroup_capabilities.supported_operations_desc());
if (subgroup_capabilities.quadOperationsInAllStages) {
print_verbose(" quad operations in all stages");
}
} else {
print_verbose("- Couldn't call vkGetPhysicalDeviceProperties2");
}
return OK;
}
Error VulkanContext::_create_instance() {
// Obtain Vulkan version.
_obtain_vulkan_version();
// Initialize extensions.
{
Error err = _initialize_extensions();
if (err != OK) {
return err;
}
}
CharString cs = ProjectSettings::get_singleton()->get("application/config/name").operator String().utf8();
const VkApplicationInfo app = {
/*sType*/ VK_STRUCTURE_TYPE_APPLICATION_INFO,
/*pNext*/ nullptr,
/*pApplicationName*/ cs.get_data(),
/*applicationVersion*/ 0,
/*pEngineName*/ VERSION_NAME,
/*engineVersion*/ VK_MAKE_VERSION(VERSION_MAJOR, VERSION_MINOR, VERSION_PATCH),
/*apiVersion*/ VK_MAKE_VERSION(vulkan_major, vulkan_minor, 0)
};
VkInstanceCreateInfo inst_info{};
inst_info.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
inst_info.pApplicationInfo = &app;
inst_info.enabledExtensionCount = enabled_extension_count;
inst_info.ppEnabledExtensionNames = (const char *const *)extension_names;
if (_use_validation_layers()) {
_get_preferred_validation_layers(&inst_info.enabledLayerCount, &inst_info.ppEnabledLayerNames);
}
/*
* This is info for a temp callback to use during CreateInstance.
* After the instance is created, we use the instance-based
* function to register the final callback.
*/
VkDebugUtilsMessengerCreateInfoEXT dbg_messenger_create_info;
VkDebugReportCallbackCreateInfoEXT dbg_report_callback_create_info{};
if (enabled_debug_utils) {
// VK_EXT_debug_utils style.
dbg_messenger_create_info.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT;
dbg_messenger_create_info.pNext = nullptr;
dbg_messenger_create_info.flags = 0;
dbg_messenger_create_info.messageSeverity =
VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT;
dbg_messenger_create_info.messageType = VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT;
dbg_messenger_create_info.pfnUserCallback = _debug_messenger_callback;
dbg_messenger_create_info.pUserData = this;
inst_info.pNext = &dbg_messenger_create_info;
} else if (enabled_debug_report) {
dbg_report_callback_create_info.sType = VK_STRUCTURE_TYPE_DEBUG_REPORT_CALLBACK_CREATE_INFO_EXT;
dbg_report_callback_create_info.flags = VK_DEBUG_REPORT_INFORMATION_BIT_EXT |
VK_DEBUG_REPORT_WARNING_BIT_EXT |
VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT |
VK_DEBUG_REPORT_ERROR_BIT_EXT |
VK_DEBUG_REPORT_DEBUG_BIT_EXT;
dbg_report_callback_create_info.pfnCallback = _debug_report_callback;
dbg_report_callback_create_info.pUserData = this;
inst_info.pNext = &dbg_report_callback_create_info;
}
VkResult err;
if (vulkan_hooks) {
if (!vulkan_hooks->create_vulkan_instance(&inst_info, &inst)) {
return ERR_CANT_CREATE;
}
} else {
err = vkCreateInstance(&inst_info, nullptr, &inst);
ERR_FAIL_COND_V_MSG(err == VK_ERROR_INCOMPATIBLE_DRIVER, ERR_CANT_CREATE,
"Cannot find a compatible Vulkan installable client driver (ICD).\n\n"
"vkCreateInstance Failure");
ERR_FAIL_COND_V_MSG(err == VK_ERROR_EXTENSION_NOT_PRESENT, ERR_CANT_CREATE,
"Cannot find a specified extension library.\n"
"Make sure your layers path is set appropriately.\n"
"vkCreateInstance Failure");
ERR_FAIL_COND_V_MSG(err, ERR_CANT_CREATE,
"vkCreateInstance failed.\n\n"
"Do you have a compatible Vulkan installable client driver (ICD) installed?\n"
"Please look at the Getting Started guide for additional information.\n"
"vkCreateInstance Failure");
}
inst_initialized = true;
#ifdef USE_VOLK
volkLoadInstance(inst);
#endif
if (enabled_debug_utils) {
// Setup VK_EXT_debug_utils function pointers always (we use them for debug labels and names).
CreateDebugUtilsMessengerEXT =
(PFN_vkCreateDebugUtilsMessengerEXT)vkGetInstanceProcAddr(inst, "vkCreateDebugUtilsMessengerEXT");
DestroyDebugUtilsMessengerEXT =
(PFN_vkDestroyDebugUtilsMessengerEXT)vkGetInstanceProcAddr(inst, "vkDestroyDebugUtilsMessengerEXT");
SubmitDebugUtilsMessageEXT =
(PFN_vkSubmitDebugUtilsMessageEXT)vkGetInstanceProcAddr(inst, "vkSubmitDebugUtilsMessageEXT");
CmdBeginDebugUtilsLabelEXT =
(PFN_vkCmdBeginDebugUtilsLabelEXT)vkGetInstanceProcAddr(inst, "vkCmdBeginDebugUtilsLabelEXT");
CmdEndDebugUtilsLabelEXT =
(PFN_vkCmdEndDebugUtilsLabelEXT)vkGetInstanceProcAddr(inst, "vkCmdEndDebugUtilsLabelEXT");
CmdInsertDebugUtilsLabelEXT =
(PFN_vkCmdInsertDebugUtilsLabelEXT)vkGetInstanceProcAddr(inst, "vkCmdInsertDebugUtilsLabelEXT");
SetDebugUtilsObjectNameEXT =
(PFN_vkSetDebugUtilsObjectNameEXT)vkGetInstanceProcAddr(inst, "vkSetDebugUtilsObjectNameEXT");
if (nullptr == CreateDebugUtilsMessengerEXT || nullptr == DestroyDebugUtilsMessengerEXT ||
nullptr == SubmitDebugUtilsMessageEXT || nullptr == CmdBeginDebugUtilsLabelEXT ||
nullptr == CmdEndDebugUtilsLabelEXT || nullptr == CmdInsertDebugUtilsLabelEXT ||
nullptr == SetDebugUtilsObjectNameEXT) {
ERR_FAIL_V_MSG(ERR_CANT_CREATE,
"GetProcAddr: Failed to init VK_EXT_debug_utils\n"
"GetProcAddr: Failure");
}
err = CreateDebugUtilsMessengerEXT(inst, &dbg_messenger_create_info, nullptr, &dbg_messenger);
switch (err) {
case VK_SUCCESS:
break;
case VK_ERROR_OUT_OF_HOST_MEMORY:
ERR_FAIL_V_MSG(ERR_CANT_CREATE,
"CreateDebugUtilsMessengerEXT: out of host memory\n"
"CreateDebugUtilsMessengerEXT Failure");
break;
default:
ERR_FAIL_V_MSG(ERR_CANT_CREATE,
"CreateDebugUtilsMessengerEXT: unknown failure\n"
"CreateDebugUtilsMessengerEXT Failure");
ERR_FAIL_V(ERR_CANT_CREATE);
break;
}
} else if (enabled_debug_report) {
CreateDebugReportCallbackEXT = (PFN_vkCreateDebugReportCallbackEXT)vkGetInstanceProcAddr(inst, "vkCreateDebugReportCallbackEXT");
DebugReportMessageEXT = (PFN_vkDebugReportMessageEXT)vkGetInstanceProcAddr(inst, "vkDebugReportMessageEXT");
DestroyDebugReportCallbackEXT = (PFN_vkDestroyDebugReportCallbackEXT)vkGetInstanceProcAddr(inst, "vkDestroyDebugReportCallbackEXT");
if (nullptr == CreateDebugReportCallbackEXT || nullptr == DebugReportMessageEXT || nullptr == DestroyDebugReportCallbackEXT) {
ERR_FAIL_V_MSG(ERR_CANT_CREATE,
"GetProcAddr: Failed to init VK_EXT_debug_report\n"
"GetProcAddr: Failure");
}
err = CreateDebugReportCallbackEXT(inst, &dbg_report_callback_create_info, nullptr, &dbg_debug_report);
switch (err) {
case VK_SUCCESS:
break;
case VK_ERROR_OUT_OF_HOST_MEMORY:
ERR_FAIL_V_MSG(ERR_CANT_CREATE,
"CreateDebugReportCallbackEXT: out of host memory\n"
"CreateDebugReportCallbackEXT Failure");
break;
default:
ERR_FAIL_V_MSG(ERR_CANT_CREATE,
"CreateDebugReportCallbackEXT: unknown failure\n"
"CreateDebugReportCallbackEXT Failure");
ERR_FAIL_V(ERR_CANT_CREATE);
break;
}
}
return OK;
}
Error VulkanContext::_create_physical_device(VkSurfaceKHR p_surface) {
// Make initial call to query gpu_count, then second call for gpu info.
uint32_t gpu_count = 0;
VkResult err = vkEnumeratePhysicalDevices(inst, &gpu_count, nullptr);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
ERR_FAIL_COND_V_MSG(gpu_count == 0, ERR_CANT_CREATE,
"vkEnumeratePhysicalDevices reported zero accessible devices.\n\n"
"Do you have a compatible Vulkan installable client driver (ICD) installed?\n"
"vkEnumeratePhysicalDevices Failure");
VkPhysicalDevice *physical_devices = (VkPhysicalDevice *)malloc(sizeof(VkPhysicalDevice) * gpu_count);
err = vkEnumeratePhysicalDevices(inst, &gpu_count, physical_devices);
if (err) {
free(physical_devices);
ERR_FAIL_V(ERR_CANT_CREATE);
}
static const struct {
uint32_t id;
const char *name;
} vendor_names[] = {
{ 0x1002, "AMD" },
{ 0x1010, "ImgTec" },
{ 0x106B, "Apple" },
{ 0x10DE, "NVIDIA" },
{ 0x13B5, "ARM" },
{ 0x5143, "Qualcomm" },
{ 0x8086, "Intel" },
{ 0, nullptr },
};
int32_t device_index = -1;
if (vulkan_hooks) {
if (!vulkan_hooks->get_physical_device(&gpu)) {
return ERR_CANT_CREATE;
}
// Not really needed but nice to print the correct entry.
for (uint32_t i = 0; i < gpu_count; ++i) {
if (physical_devices[i] == gpu) {
device_index = i;
break;
}
}
} else {
// TODO: At least on Linux Laptops integrated GPUs fail with Vulkan in many instances.
// The device should really be a preference, but for now choosing a discrete GPU over the
// integrated one is better than the default.
int type_selected = -1;
print_verbose("Vulkan devices:");
for (uint32_t i = 0; i < gpu_count; ++i) {
VkPhysicalDeviceProperties props;
vkGetPhysicalDeviceProperties(physical_devices[i], &props);
bool present_supported = false;
uint32_t device_queue_family_count = 0;
vkGetPhysicalDeviceQueueFamilyProperties(physical_devices[i], &device_queue_family_count, nullptr);
VkQueueFamilyProperties *device_queue_props = (VkQueueFamilyProperties *)malloc(device_queue_family_count * sizeof(VkQueueFamilyProperties));
vkGetPhysicalDeviceQueueFamilyProperties(physical_devices[i], &device_queue_family_count, device_queue_props);
for (uint32_t j = 0; j < device_queue_family_count; j++) {
VkBool32 supports;
vkGetPhysicalDeviceSurfaceSupportKHR(physical_devices[i], j, p_surface, &supports);
if (supports && ((device_queue_props[j].queueFlags & VK_QUEUE_GRAPHICS_BIT) != 0)) {
present_supported = true;
} else {
continue;
}
}
String name = props.deviceName;
String vendor = "Unknown";
String dev_type;
switch (props.deviceType) {
case VkPhysicalDeviceType::VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU: {
dev_type = "Discrete";
} break;
case VkPhysicalDeviceType::VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU: {
dev_type = "Integrated";
} break;
case VkPhysicalDeviceType::VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU: {
dev_type = "Virtual";
} break;
case VkPhysicalDeviceType::VK_PHYSICAL_DEVICE_TYPE_CPU: {
dev_type = "CPU";
} break;
default: {
dev_type = "Other";
} break;
}
uint32_t vendor_idx = 0;
while (vendor_names[vendor_idx].name != nullptr) {
if (props.vendorID == vendor_names[vendor_idx].id) {
vendor = vendor_names[vendor_idx].name;
break;
}
vendor_idx++;
}
free(device_queue_props);
print_verbose(" #" + itos(i) + ": " + vendor + " " + name + " - " + (present_supported ? "Supported" : "Unsupported") + ", " + dev_type);
if (present_supported) { // Select first supported device of preferred type: Discrete > Integrated > Virtual > CPU > Other.
switch (props.deviceType) {
case VkPhysicalDeviceType::VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU: {
if (type_selected < 4) {
type_selected = 4;
device_index = i;
}
} break;
case VkPhysicalDeviceType::VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU: {
if (type_selected < 3) {
type_selected = 3;
device_index = i;
}
} break;
case VkPhysicalDeviceType::VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU: {
if (type_selected < 2) {
type_selected = 2;
device_index = i;
}
} break;
case VkPhysicalDeviceType::VK_PHYSICAL_DEVICE_TYPE_CPU: {
if (type_selected < 1) {
type_selected = 1;
device_index = i;
}
} break;
default: {
if (type_selected < 0) {
type_selected = 0;
device_index = i;
}
} break;
}
}
}
int32_t user_device_index = Engine::get_singleton()->get_gpu_index(); // Force user selected GPU.
if (user_device_index >= 0 && user_device_index < (int32_t)gpu_count) {
device_index = user_device_index;
}
ERR_FAIL_COND_V_MSG(device_index == -1, ERR_CANT_CREATE, "None of Vulkan devices supports both graphics and present queues.");
gpu = physical_devices[device_index];
}
free(physical_devices);
// Look for device extensions.
uint32_t device_extension_count = 0;
VkBool32 swapchainExtFound = 0;
enabled_extension_count = 0;
memset(extension_names, 0, sizeof(extension_names));
// Get identifier properties.
vkGetPhysicalDeviceProperties(gpu, &gpu_props);
device_name = gpu_props.deviceName;
device_type = gpu_props.deviceType;
pipeline_cache_id = String::hex_encode_buffer(gpu_props.pipelineCacheUUID, VK_UUID_SIZE);
pipeline_cache_id += "-driver-" + itos(gpu_props.driverVersion);
{
device_vendor = "Unknown";
uint32_t vendor_idx = 0;
while (vendor_names[vendor_idx].name != nullptr) {
if (gpu_props.vendorID == vendor_names[vendor_idx].id) {
device_vendor = vendor_names[vendor_idx].name;
break;
}
vendor_idx++;
}
}
print_line(
"Vulkan API " + itos(vulkan_major) + "." + itos(vulkan_minor) + "." + itos(vulkan_patch) +
" - " + "Using Vulkan Device #" + itos(device_index) + ": " + device_vendor + " - " + device_name);
device_api_version = gpu_props.apiVersion;
err = vkEnumerateDeviceExtensionProperties(gpu, nullptr, &device_extension_count, nullptr);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
if (device_extension_count > 0) {
VkExtensionProperties *device_extensions = (VkExtensionProperties *)malloc(sizeof(VkExtensionProperties) * device_extension_count);
err = vkEnumerateDeviceExtensionProperties(gpu, nullptr, &device_extension_count, device_extensions);
if (err) {
free(device_extensions);
ERR_FAIL_V(ERR_CANT_CREATE);
}
for (uint32_t i = 0; i < device_extension_count; i++) {
if (!strcmp(VK_KHR_SWAPCHAIN_EXTENSION_NAME, device_extensions[i].extensionName)) {
swapchainExtFound = 1;
extension_names[enabled_extension_count++] = VK_KHR_SWAPCHAIN_EXTENSION_NAME;
}
if (!strcmp(VK_KHR_MULTIVIEW_EXTENSION_NAME, device_extensions[i].extensionName)) {
// If multiview is supported, enable it.
extension_names[enabled_extension_count++] = VK_KHR_MULTIVIEW_EXTENSION_NAME;
}
if (!strcmp(VK_KHR_FRAGMENT_SHADING_RATE_EXTENSION_NAME, device_extensions[i].extensionName)) {
// if shading rate image is supported, enable it
extension_names[enabled_extension_count++] = VK_KHR_FRAGMENT_SHADING_RATE_EXTENSION_NAME;
}
if (!strcmp(VK_KHR_CREATE_RENDERPASS_2_EXTENSION_NAME, device_extensions[i].extensionName)) {
extension_names[enabled_extension_count++] = VK_KHR_CREATE_RENDERPASS_2_EXTENSION_NAME;
}
if (enabled_extension_count >= MAX_EXTENSIONS) {
free(device_extensions);
ERR_FAIL_V_MSG(ERR_BUG, "Enabled extension count reaches MAX_EXTENSIONS, BUG");
}
}
if (VK_KHR_incremental_present_enabled) {
// Even though the user "enabled" the extension via the command
// line, we must make sure that it's enumerated for use with the
// device. Therefore, disable it here, and re-enable it again if
// enumerated.
VK_KHR_incremental_present_enabled = false;
for (uint32_t i = 0; i < device_extension_count; i++) {
if (!strcmp(VK_KHR_INCREMENTAL_PRESENT_EXTENSION_NAME, device_extensions[i].extensionName)) {
extension_names[enabled_extension_count++] = VK_KHR_INCREMENTAL_PRESENT_EXTENSION_NAME;
VK_KHR_incremental_present_enabled = true;
}
if (enabled_extension_count >= MAX_EXTENSIONS) {
free(device_extensions);
ERR_FAIL_V_MSG(ERR_BUG, "Enabled extension count reaches MAX_EXTENSIONS, BUG");
}
}
}
if (VK_GOOGLE_display_timing_enabled) {
// Even though the user "enabled" the extension via the command
// line, we must make sure that it's enumerated for use with the
// device. Therefore, disable it here, and re-enable it again if
// enumerated.
VK_GOOGLE_display_timing_enabled = false;
for (uint32_t i = 0; i < device_extension_count; i++) {
if (!strcmp(VK_GOOGLE_DISPLAY_TIMING_EXTENSION_NAME, device_extensions[i].extensionName)) {
extension_names[enabled_extension_count++] = VK_GOOGLE_DISPLAY_TIMING_EXTENSION_NAME;
VK_GOOGLE_display_timing_enabled = true;
}
if (enabled_extension_count >= MAX_EXTENSIONS) {
free(device_extensions);
ERR_FAIL_V_MSG(ERR_BUG, "Enabled extension count reaches MAX_EXTENSIONS, BUG");
}
}
}
free(device_extensions);
}
ERR_FAIL_COND_V_MSG(!swapchainExtFound, ERR_CANT_CREATE,
"vkEnumerateDeviceExtensionProperties failed to find the " VK_KHR_SWAPCHAIN_EXTENSION_NAME
" extension.\n\nDo you have a compatible Vulkan installable client driver (ICD) installed?\n"
"vkCreateInstance Failure");
// Call with nullptr data to get count.
vkGetPhysicalDeviceQueueFamilyProperties(gpu, &queue_family_count, nullptr);
ERR_FAIL_COND_V(queue_family_count == 0, ERR_CANT_CREATE);
queue_props = (VkQueueFamilyProperties *)malloc(queue_family_count * sizeof(VkQueueFamilyProperties));
vkGetPhysicalDeviceQueueFamilyProperties(gpu, &queue_family_count, queue_props);
// Query fine-grained feature support for this device.
// If app has specific feature requirements it should check supported
// features based on this query
vkGetPhysicalDeviceFeatures(gpu, &physical_device_features);
physical_device_features.robustBufferAccess = false; // Turn off robust buffer access, which can hamper performance on some hardware.
#define GET_INSTANCE_PROC_ADDR(inst, entrypoint) \
{ \
fp##entrypoint = (PFN_vk##entrypoint)vkGetInstanceProcAddr(inst, "vk" #entrypoint); \
ERR_FAIL_COND_V_MSG(fp##entrypoint == nullptr, ERR_CANT_CREATE, \
"vkGetInstanceProcAddr failed to find vk" #entrypoint); \
}
GET_INSTANCE_PROC_ADDR(inst, GetPhysicalDeviceSurfaceSupportKHR);
GET_INSTANCE_PROC_ADDR(inst, GetPhysicalDeviceSurfaceCapabilitiesKHR);
GET_INSTANCE_PROC_ADDR(inst, GetPhysicalDeviceSurfaceFormatsKHR);
GET_INSTANCE_PROC_ADDR(inst, GetPhysicalDeviceSurfacePresentModesKHR);
GET_INSTANCE_PROC_ADDR(inst, GetSwapchainImagesKHR);
// Gets capability info for current Vulkan driver.
{
Error res = _check_capabilities();
if (res != OK) {
return res;
}
}
device_initialized = true;
return OK;
}
Error VulkanContext::_create_device() {
VkResult err;
float queue_priorities[1] = { 0.0 };
VkDeviceQueueCreateInfo queues[2];
queues[0].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queues[0].pNext = nullptr;
queues[0].queueFamilyIndex = graphics_queue_family_index;
queues[0].queueCount = 1;
queues[0].pQueuePriorities = queue_priorities;
queues[0].flags = 0;
// Before we retrieved what is supported, here we tell Vulkan we want to enable these features using the same structs.
void *nextptr = nullptr;
VkPhysicalDeviceShaderFloat16Int8FeaturesKHR shader_features = {
/*sType*/ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_FLOAT16_INT8_FEATURES_KHR,
/*pNext*/ nextptr,
/*shaderFloat16*/ shader_capabilities.shader_float16_is_supported,
/*shaderInt8*/ shader_capabilities.shader_int8_is_supported,
};
nextptr = &shader_features;
VkPhysicalDeviceFragmentShadingRateFeaturesKHR vrs_features;
if (vrs_capabilities.pipeline_vrs_supported || vrs_capabilities.primitive_vrs_supported || vrs_capabilities.attachment_vrs_supported) {
// Insert into our chain to enable these features if they are available.
vrs_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_FEATURES_KHR;
vrs_features.pNext = nextptr;
vrs_features.pipelineFragmentShadingRate = vrs_capabilities.pipeline_vrs_supported;
vrs_features.primitiveFragmentShadingRate = vrs_capabilities.primitive_vrs_supported;
vrs_features.attachmentFragmentShadingRate = vrs_capabilities.attachment_vrs_supported;
nextptr = &vrs_features;
}
VkPhysicalDeviceVulkan11Features vulkan11features;
VkPhysicalDevice16BitStorageFeaturesKHR storage_feature;
VkPhysicalDeviceMultiviewFeatures multiview_features;
if (vulkan_major > 1 || vulkan_minor >= 2) {
// In Vulkan 1.2 and newer we use a newer struct to enable various features.
vulkan11features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES;
vulkan11features.pNext = nextptr;
vulkan11features.storageBuffer16BitAccess = storage_buffer_capabilities.storage_buffer_16_bit_access_is_supported;
vulkan11features.uniformAndStorageBuffer16BitAccess = storage_buffer_capabilities.uniform_and_storage_buffer_16_bit_access_is_supported;
vulkan11features.storagePushConstant16 = storage_buffer_capabilities.storage_push_constant_16_is_supported;
vulkan11features.storageInputOutput16 = storage_buffer_capabilities.storage_input_output_16;
vulkan11features.multiview = multiview_capabilities.is_supported;
vulkan11features.multiviewGeometryShader = multiview_capabilities.geometry_shader_is_supported;
vulkan11features.multiviewTessellationShader = multiview_capabilities.tessellation_shader_is_supported;
vulkan11features.variablePointersStorageBuffer = 0;
vulkan11features.variablePointers = 0;
vulkan11features.protectedMemory = 0;
vulkan11features.samplerYcbcrConversion = 0;
vulkan11features.shaderDrawParameters = 0;
nextptr = &vulkan11features;
} else {
// On Vulkan 1.0 and 1.1 we use our older structs to initialise these features.
storage_feature.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES_KHR;
storage_feature.pNext = nextptr;
storage_feature.storageBuffer16BitAccess = storage_buffer_capabilities.storage_buffer_16_bit_access_is_supported;
storage_feature.uniformAndStorageBuffer16BitAccess = storage_buffer_capabilities.uniform_and_storage_buffer_16_bit_access_is_supported;
storage_feature.storagePushConstant16 = storage_buffer_capabilities.storage_push_constant_16_is_supported;
storage_feature.storageInputOutput16 = storage_buffer_capabilities.storage_input_output_16;
nextptr = &storage_feature;
if (vulkan_major == 1 && vulkan_minor == 1) {
multiview_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES;
multiview_features.pNext = nextptr;
multiview_features.multiview = multiview_capabilities.is_supported;
multiview_features.multiviewGeometryShader = multiview_capabilities.geometry_shader_is_supported;
multiview_features.multiviewTessellationShader = multiview_capabilities.tessellation_shader_is_supported;
nextptr = &multiview_features;
}
}
VkDeviceCreateInfo sdevice = {
/*sType*/ VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO,
/*pNext*/ nextptr,
/*flags*/ 0,
/*queueCreateInfoCount*/ 1,
/*pQueueCreateInfos*/ queues,
/*enabledLayerCount*/ 0,
/*ppEnabledLayerNames*/ nullptr,
/*enabledExtensionCount*/ enabled_extension_count,
/*ppEnabledExtensionNames*/ (const char *const *)extension_names,
/*pEnabledFeatures*/ &physical_device_features, // If specific features are required, pass them in here.
};
if (separate_present_queue) {
queues[1].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queues[1].pNext = nullptr;
queues[1].queueFamilyIndex = present_queue_family_index;
queues[1].queueCount = 1;
queues[1].pQueuePriorities = queue_priorities;
queues[1].flags = 0;
sdevice.queueCreateInfoCount = 2;
}
if (vulkan_hooks) {
if (!vulkan_hooks->create_vulkan_device(&sdevice, &device)) {
return ERR_CANT_CREATE;
}
} else {
err = vkCreateDevice(gpu, &sdevice, nullptr, &device);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
}
return OK;
}
Error VulkanContext::_initialize_queues(VkSurfaceKHR p_surface) {
// Iterate over each queue to learn whether it supports presenting:
VkBool32 *supportsPresent = (VkBool32 *)malloc(queue_family_count * sizeof(VkBool32));
for (uint32_t i = 0; i < queue_family_count; i++) {
fpGetPhysicalDeviceSurfaceSupportKHR(gpu, i, p_surface, &supportsPresent[i]);
}
// Search for a graphics and a present queue in the array of queue
// families, try to find one that supports both.
uint32_t graphicsQueueFamilyIndex = UINT32_MAX;
uint32_t presentQueueFamilyIndex = UINT32_MAX;
for (uint32_t i = 0; i < queue_family_count; i++) {
if ((queue_props[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) != 0) {
if (graphicsQueueFamilyIndex == UINT32_MAX) {
graphicsQueueFamilyIndex = i;
}
if (supportsPresent[i] == VK_TRUE) {
graphicsQueueFamilyIndex = i;
presentQueueFamilyIndex = i;
break;
}
}
}
if (presentQueueFamilyIndex == UINT32_MAX) {
// If didn't find a queue that supports both graphics and present, then
// find a separate present queue.
for (uint32_t i = 0; i < queue_family_count; ++i) {
if (supportsPresent[i] == VK_TRUE) {
presentQueueFamilyIndex = i;
break;
}
}
}
free(supportsPresent);
// Generate error if could not find both a graphics and a present queue.
ERR_FAIL_COND_V_MSG(graphicsQueueFamilyIndex == UINT32_MAX || presentQueueFamilyIndex == UINT32_MAX, ERR_CANT_CREATE,
"Could not find both graphics and present queues\n");
graphics_queue_family_index = graphicsQueueFamilyIndex;
present_queue_family_index = presentQueueFamilyIndex;
separate_present_queue = (graphics_queue_family_index != present_queue_family_index);
_create_device();
static PFN_vkGetDeviceProcAddr g_gdpa = nullptr;
#define GET_DEVICE_PROC_ADDR(dev, entrypoint) \
{ \
if (!g_gdpa) \
g_gdpa = (PFN_vkGetDeviceProcAddr)vkGetInstanceProcAddr(inst, "vkGetDeviceProcAddr"); \
fp##entrypoint = (PFN_vk##entrypoint)g_gdpa(dev, "vk" #entrypoint); \
ERR_FAIL_COND_V_MSG(fp##entrypoint == nullptr, ERR_CANT_CREATE, \
"vkGetDeviceProcAddr failed to find vk" #entrypoint); \
}
GET_DEVICE_PROC_ADDR(device, CreateSwapchainKHR);
GET_DEVICE_PROC_ADDR(device, DestroySwapchainKHR);
GET_DEVICE_PROC_ADDR(device, GetSwapchainImagesKHR);
GET_DEVICE_PROC_ADDR(device, AcquireNextImageKHR);
GET_DEVICE_PROC_ADDR(device, QueuePresentKHR);
if (VK_GOOGLE_display_timing_enabled) {
GET_DEVICE_PROC_ADDR(device, GetRefreshCycleDurationGOOGLE);
GET_DEVICE_PROC_ADDR(device, GetPastPresentationTimingGOOGLE);
}
vkGetDeviceQueue(device, graphics_queue_family_index, 0, &graphics_queue);
if (!separate_present_queue) {
present_queue = graphics_queue;
} else {
vkGetDeviceQueue(device, present_queue_family_index, 0, &present_queue);
}
// Get the list of VkFormat's that are supported:
uint32_t formatCount;
VkResult err = fpGetPhysicalDeviceSurfaceFormatsKHR(gpu, p_surface, &formatCount, nullptr);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
VkSurfaceFormatKHR *surfFormats = (VkSurfaceFormatKHR *)malloc(formatCount * sizeof(VkSurfaceFormatKHR));
err = fpGetPhysicalDeviceSurfaceFormatsKHR(gpu, p_surface, &formatCount, surfFormats);
if (err) {
free(surfFormats);
ERR_FAIL_V(ERR_CANT_CREATE);
}
// If the format list includes just one entry of VK_FORMAT_UNDEFINED,
// the surface has no preferred format. Otherwise, at least one
// supported format will be returned.
if (formatCount == 1 && surfFormats[0].format == VK_FORMAT_UNDEFINED) {
format = VK_FORMAT_B8G8R8A8_UNORM;
color_space = surfFormats[0].colorSpace;
} else {
// These should be ordered with the ones we want to use on top and fallback modes further down
// we want a 32bit RGBA unsigned normalised buffer or similar.
const VkFormat allowed_formats[] = {
VK_FORMAT_B8G8R8A8_UNORM,
VK_FORMAT_R8G8B8A8_UNORM
};
uint32_t allowed_formats_count = sizeof(allowed_formats) / sizeof(VkFormat);
if (formatCount < 1) {
free(surfFormats);
ERR_FAIL_V_MSG(ERR_CANT_CREATE, "formatCount less than 1");
}
// Find the first format that we support.
format = VK_FORMAT_UNDEFINED;
for (uint32_t af = 0; af < allowed_formats_count && format == VK_FORMAT_UNDEFINED; af++) {
for (uint32_t sf = 0; sf < formatCount && format == VK_FORMAT_UNDEFINED; sf++) {
if (surfFormats[sf].format == allowed_formats[af]) {
format = surfFormats[sf].format;
color_space = surfFormats[sf].colorSpace;
}
}
}
if (format == VK_FORMAT_UNDEFINED) {
free(surfFormats);
ERR_FAIL_V_MSG(ERR_CANT_CREATE, "No usable surface format found.");
}
}
free(surfFormats);
Error serr = _create_semaphores();
if (serr) {
return serr;
}
queues_initialized = true;
return OK;
}
Error VulkanContext::_create_semaphores() {
VkResult err;
// Create semaphores to synchronize acquiring presentable buffers before
// rendering and waiting for drawing to be complete before presenting.
VkSemaphoreCreateInfo semaphoreCreateInfo = {
/*sType*/ VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO,
/*pNext*/ nullptr,
/*flags*/ 0,
};
// Create fences that we can use to throttle if we get too far
// ahead of the image presents.
VkFenceCreateInfo fence_ci = {
/*sType*/ VK_STRUCTURE_TYPE_FENCE_CREATE_INFO,
/*pNext*/ nullptr,
/*flags*/ VK_FENCE_CREATE_SIGNALED_BIT
};
for (uint32_t i = 0; i < FRAME_LAG; i++) {
err = vkCreateFence(device, &fence_ci, nullptr, &fences[i]);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
err = vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &draw_complete_semaphores[i]);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
if (separate_present_queue) {
err = vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &image_ownership_semaphores[i]);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
}
}
frame_index = 0;
// Get Memory information and properties.
vkGetPhysicalDeviceMemoryProperties(gpu, &memory_properties);
return OK;
}
bool VulkanContext::_use_validation_layers() {
return Engine::get_singleton()->is_validation_layers_enabled();
}
Error VulkanContext::_window_create(DisplayServer::WindowID p_window_id, DisplayServer::VSyncMode p_vsync_mode, VkSurfaceKHR p_surface, int p_width, int p_height) {
ERR_FAIL_COND_V(windows.has(p_window_id), ERR_INVALID_PARAMETER);
if (!device_initialized) {
Error err = _create_physical_device(p_surface);
ERR_FAIL_COND_V(err != OK, ERR_CANT_CREATE);
}
if (!queues_initialized) {
// We use a single GPU, but we need a surface to initialize the
// queues, so this process must be deferred until a surface
// is created.
Error err = _initialize_queues(p_surface);
ERR_FAIL_COND_V(err != OK, ERR_CANT_CREATE);
}
Window window;
window.surface = p_surface;
window.width = p_width;
window.height = p_height;
window.vsync_mode = p_vsync_mode;
Error err = _update_swap_chain(&window);
ERR_FAIL_COND_V(err != OK, ERR_CANT_CREATE);
VkSemaphoreCreateInfo semaphoreCreateInfo = {
/*sType*/ VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO,
/*pNext*/ nullptr,
/*flags*/ 0,
};
for (uint32_t i = 0; i < FRAME_LAG; i++) {
VkResult vkerr = vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &window.image_acquired_semaphores[i]);
ERR_FAIL_COND_V(vkerr, ERR_CANT_CREATE);
}
windows[p_window_id] = window;
return OK;
}
void VulkanContext::window_resize(DisplayServer::WindowID p_window, int p_width, int p_height) {
ERR_FAIL_COND(!windows.has(p_window));
windows[p_window].width = p_width;
windows[p_window].height = p_height;
_update_swap_chain(&windows[p_window]);
}
int VulkanContext::window_get_width(DisplayServer::WindowID p_window) {
ERR_FAIL_COND_V(!windows.has(p_window), -1);
return windows[p_window].width;
}
int VulkanContext::window_get_height(DisplayServer::WindowID p_window) {
ERR_FAIL_COND_V(!windows.has(p_window), -1);
return windows[p_window].height;
}
bool VulkanContext::window_is_valid_swapchain(DisplayServer::WindowID p_window) {
ERR_FAIL_COND_V(!windows.has(p_window), false);
Window *w = &windows[p_window];
return w->swapchain_image_resources != VK_NULL_HANDLE;
}
VkRenderPass VulkanContext::window_get_render_pass(DisplayServer::WindowID p_window) {
ERR_FAIL_COND_V(!windows.has(p_window), VK_NULL_HANDLE);
Window *w = &windows[p_window];
// Vulkan use of currentbuffer.
return w->render_pass;
}
VkFramebuffer VulkanContext::window_get_framebuffer(DisplayServer::WindowID p_window) {
ERR_FAIL_COND_V(!windows.has(p_window), VK_NULL_HANDLE);
ERR_FAIL_COND_V(!buffers_prepared, VK_NULL_HANDLE);
Window *w = &windows[p_window];
// Vulkan use of currentbuffer.
if (w->swapchain_image_resources != VK_NULL_HANDLE) {
return w->swapchain_image_resources[w->current_buffer].framebuffer;
} else {
return VK_NULL_HANDLE;
}
}
void VulkanContext::window_destroy(DisplayServer::WindowID p_window_id) {
ERR_FAIL_COND(!windows.has(p_window_id));
_clean_up_swap_chain(&windows[p_window_id]);
for (uint32_t i = 0; i < FRAME_LAG; i++) {
vkDestroySemaphore(device, windows[p_window_id].image_acquired_semaphores[i], nullptr);
}
vkDestroySurfaceKHR(inst, windows[p_window_id].surface, nullptr);
windows.erase(p_window_id);
}
Error VulkanContext::_clean_up_swap_chain(Window *window) {
if (!window->swapchain) {
return OK;
}
vkDeviceWaitIdle(device);
// This destroys images associated it seems.
fpDestroySwapchainKHR(device, window->swapchain, nullptr);
window->swapchain = VK_NULL_HANDLE;
vkDestroyRenderPass(device, window->render_pass, nullptr);
if (window->swapchain_image_resources) {
for (uint32_t i = 0; i < swapchainImageCount; i++) {
vkDestroyImageView(device, window->swapchain_image_resources[i].view, nullptr);
vkDestroyFramebuffer(device, window->swapchain_image_resources[i].framebuffer, nullptr);
}
free(window->swapchain_image_resources);
window->swapchain_image_resources = nullptr;
}
if (separate_present_queue) {
vkDestroyCommandPool(device, window->present_cmd_pool, nullptr);
}
return OK;
}
Error VulkanContext::_update_swap_chain(Window *window) {
VkResult err;
if (window->swapchain) {
_clean_up_swap_chain(window);
}
// Check the surface capabilities and formats.
VkSurfaceCapabilitiesKHR surfCapabilities;
err = fpGetPhysicalDeviceSurfaceCapabilitiesKHR(gpu, window->surface, &surfCapabilities);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
uint32_t presentModeCount;
err = fpGetPhysicalDeviceSurfacePresentModesKHR(gpu, window->surface, &presentModeCount, nullptr);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
VkPresentModeKHR *presentModes = (VkPresentModeKHR *)malloc(presentModeCount * sizeof(VkPresentModeKHR));
ERR_FAIL_COND_V(!presentModes, ERR_CANT_CREATE);
err = fpGetPhysicalDeviceSurfacePresentModesKHR(gpu, window->surface, &presentModeCount, presentModes);
if (err) {
free(presentModes);
ERR_FAIL_V(ERR_CANT_CREATE);
}
VkExtent2D swapchainExtent;
// Width and height are either both 0xFFFFFFFF, or both not 0xFFFFFFFF.
if (surfCapabilities.currentExtent.width == 0xFFFFFFFF) {
// If the surface size is undefined, the size is set to the size
// of the images requested, which must fit within the minimum and
// maximum values.
swapchainExtent.width = window->width;
swapchainExtent.height = window->height;
if (swapchainExtent.width < surfCapabilities.minImageExtent.width) {
swapchainExtent.width = surfCapabilities.minImageExtent.width;
} else if (swapchainExtent.width > surfCapabilities.maxImageExtent.width) {
swapchainExtent.width = surfCapabilities.maxImageExtent.width;
}
if (swapchainExtent.height < surfCapabilities.minImageExtent.height) {
swapchainExtent.height = surfCapabilities.minImageExtent.height;
} else if (swapchainExtent.height > surfCapabilities.maxImageExtent.height) {
swapchainExtent.height = surfCapabilities.maxImageExtent.height;
}
} else {
// If the surface size is defined, the swap chain size must match.
swapchainExtent = surfCapabilities.currentExtent;
window->width = surfCapabilities.currentExtent.width;
window->height = surfCapabilities.currentExtent.height;
}
if (window->width == 0 || window->height == 0) {
free(presentModes);
// Likely window minimized, no swapchain created.
return OK;
}
// The FIFO present mode is guaranteed by the spec to be supported
// and to have no tearing. It's a great default present mode to use.
// There are times when you may wish to use another present mode. The
// following code shows how to select them, and the comments provide some
// reasons you may wish to use them.
//
// It should be noted that Vulkan 1.0 doesn't provide a method for
// synchronizing rendering with the presentation engine's display. There
// is a method provided for throttling rendering with the display, but
// there are some presentation engines for which this method will not work.
// If an application doesn't throttle its rendering, and if it renders much
// faster than the refresh rate of the display, this can waste power on
// mobile devices. That is because power is being spent rendering images
// that may never be seen.
// VK_PRESENT_MODE_IMMEDIATE_KHR is for applications that don't care about
// tearing, or have some way of synchronizing their rendering with the
// display.
// VK_PRESENT_MODE_MAILBOX_KHR may be useful for applications that
// generally render a new presentable image every refresh cycle, but are
// occasionally early. In this case, the application wants the new image
// to be displayed instead of the previously-queued-for-presentation image
// that has not yet been displayed.
// VK_PRESENT_MODE_FIFO_RELAXED_KHR is for applications that generally
// render a new presentable image every refresh cycle, but are occasionally
// late. In this case (perhaps because of stuttering/latency concerns),
// the application wants the late image to be immediately displayed, even
// though that may mean some tearing.
VkPresentModeKHR requested_present_mode = VkPresentModeKHR::VK_PRESENT_MODE_FIFO_KHR;
switch (window->vsync_mode) {
case DisplayServer::VSYNC_MAILBOX:
requested_present_mode = VkPresentModeKHR::VK_PRESENT_MODE_MAILBOX_KHR;
break;
case DisplayServer::VSYNC_ADAPTIVE:
requested_present_mode = VkPresentModeKHR::VK_PRESENT_MODE_FIFO_RELAXED_KHR;
break;
case DisplayServer::VSYNC_ENABLED:
requested_present_mode = VkPresentModeKHR::VK_PRESENT_MODE_FIFO_KHR;
break;
case DisplayServer::VSYNC_DISABLED:
requested_present_mode = VkPresentModeKHR::VK_PRESENT_MODE_IMMEDIATE_KHR;
break;
}
// Check if the requested mode is available.
bool present_mode_available = false;
for (uint32_t i = 0; i < presentModeCount; i++) {
if (presentModes[i] == requested_present_mode) {
present_mode_available = true;
}
}
// Set the windows present mode if it is available, otherwise FIFO is used (guaranteed supported).
if (present_mode_available) {
window->presentMode = requested_present_mode;
} else {
String present_mode_string;
switch (window->vsync_mode) {
case DisplayServer::VSYNC_MAILBOX:
present_mode_string = "Mailbox";
break;
case DisplayServer::VSYNC_ADAPTIVE:
present_mode_string = "Adaptive";
break;
case DisplayServer::VSYNC_ENABLED:
present_mode_string = "Enabled";
break;
case DisplayServer::VSYNC_DISABLED:
present_mode_string = "Disabled";
break;
}
WARN_PRINT(vformat("The requested V-Sync mode %s is not available. Falling back to V-Sync mode Enabled.", present_mode_string));
window->vsync_mode = DisplayServer::VSYNC_ENABLED; // Set to default.
}
print_verbose("Using present mode: " + String(string_VkPresentModeKHR(window->presentMode)));
free(presentModes);
// Determine the number of VkImages to use in the swap chain.
// Application desires to acquire 3 images at a time for triple
// buffering.
uint32_t desiredNumOfSwapchainImages = 3;
if (desiredNumOfSwapchainImages < surfCapabilities.minImageCount) {
desiredNumOfSwapchainImages = surfCapabilities.minImageCount;
}
// If maxImageCount is 0, we can ask for as many images as we want;
// otherwise we're limited to maxImageCount.
if ((surfCapabilities.maxImageCount > 0) && (desiredNumOfSwapchainImages > surfCapabilities.maxImageCount)) {
// Application must settle for fewer images than desired.
desiredNumOfSwapchainImages = surfCapabilities.maxImageCount;
}
VkSurfaceTransformFlagsKHR preTransform;
if (surfCapabilities.supportedTransforms & VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR) {
preTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
} else {
preTransform = surfCapabilities.currentTransform;
}
// Find a supported composite alpha mode - one of these is guaranteed to be set.
VkCompositeAlphaFlagBitsKHR compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
VkCompositeAlphaFlagBitsKHR compositeAlphaFlags[4] = {
VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR,
VK_COMPOSITE_ALPHA_PRE_MULTIPLIED_BIT_KHR,
VK_COMPOSITE_ALPHA_POST_MULTIPLIED_BIT_KHR,
VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR,
};
for (uint32_t i = 0; i < ARRAY_SIZE(compositeAlphaFlags); i++) {
if (surfCapabilities.supportedCompositeAlpha & compositeAlphaFlags[i]) {
compositeAlpha = compositeAlphaFlags[i];
break;
}
}
VkSwapchainCreateInfoKHR swapchain_ci = {
/*sType*/ VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR,
/*pNext*/ nullptr,
/*flags*/ 0,
/*surface*/ window->surface,
/*minImageCount*/ desiredNumOfSwapchainImages,
/*imageFormat*/ format,
/*imageColorSpace*/ color_space,
/*imageExtent*/ {
/*width*/ swapchainExtent.width,
/*height*/ swapchainExtent.height,
},
/*imageArrayLayers*/ 1,
/*imageUsage*/ VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
/*imageSharingMode*/ VK_SHARING_MODE_EXCLUSIVE,
/*queueFamilyIndexCount*/ 0,
/*pQueueFamilyIndices*/ nullptr,
/*preTransform*/ (VkSurfaceTransformFlagBitsKHR)preTransform,
/*compositeAlpha*/ compositeAlpha,
/*presentMode*/ window->presentMode,
/*clipped*/ true,
/*oldSwapchain*/ VK_NULL_HANDLE,
};
err = fpCreateSwapchainKHR(device, &swapchain_ci, nullptr, &window->swapchain);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
uint32_t sp_image_count;
err = fpGetSwapchainImagesKHR(device, window->swapchain, &sp_image_count, nullptr);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
if (swapchainImageCount == 0) {
// Assign here for the first time.
swapchainImageCount = sp_image_count;
} else {
ERR_FAIL_COND_V(swapchainImageCount != sp_image_count, ERR_BUG);
}
VkImage *swapchainImages = (VkImage *)malloc(swapchainImageCount * sizeof(VkImage));
ERR_FAIL_COND_V(!swapchainImages, ERR_CANT_CREATE);
err = fpGetSwapchainImagesKHR(device, window->swapchain, &swapchainImageCount, swapchainImages);
if (err) {
free(swapchainImages);
ERR_FAIL_V(ERR_CANT_CREATE);
}
window->swapchain_image_resources =
(SwapchainImageResources *)malloc(sizeof(SwapchainImageResources) * swapchainImageCount);
if (!window->swapchain_image_resources) {
free(swapchainImages);
ERR_FAIL_V(ERR_CANT_CREATE);
}
for (uint32_t i = 0; i < swapchainImageCount; i++) {
VkImageViewCreateInfo color_image_view = {
/*sType*/ VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
/*pNext*/ nullptr,
/*flags*/ 0,
/*image*/ swapchainImages[i],
/*viewType*/ VK_IMAGE_VIEW_TYPE_2D,
/*format*/ format,
/*components*/ {
/*r*/ VK_COMPONENT_SWIZZLE_R,
/*g*/ VK_COMPONENT_SWIZZLE_G,
/*b*/ VK_COMPONENT_SWIZZLE_B,
/*a*/ VK_COMPONENT_SWIZZLE_A,
},
/*subresourceRange*/ { /*aspectMask*/ VK_IMAGE_ASPECT_COLOR_BIT,
/*baseMipLevel*/ 0,
/*levelCount*/ 1,
/*baseArrayLayer*/ 0,
/*layerCount*/ 1 },
};
window->swapchain_image_resources[i].image = swapchainImages[i];
color_image_view.image = window->swapchain_image_resources[i].image;
err = vkCreateImageView(device, &color_image_view, nullptr, &window->swapchain_image_resources[i].view);
if (err) {
free(swapchainImages);
ERR_FAIL_V(ERR_CANT_CREATE);
}
}
free(swapchainImages);
/******** FRAMEBUFFER ************/
{
const VkAttachmentDescription2KHR attachment = {
/*sType*/ VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_2_KHR,
/*pNext*/ nullptr,
/*flags*/ 0,
/*format*/ format,
/*samples*/ VK_SAMPLE_COUNT_1_BIT,
/*loadOp*/ VK_ATTACHMENT_LOAD_OP_CLEAR,
/*storeOp*/ VK_ATTACHMENT_STORE_OP_STORE,
/*stencilLoadOp*/ VK_ATTACHMENT_LOAD_OP_DONT_CARE,
/*stencilStoreOp*/ VK_ATTACHMENT_STORE_OP_DONT_CARE,
/*initialLayout*/ VK_IMAGE_LAYOUT_UNDEFINED,
/*finalLayout*/ VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
};
const VkAttachmentReference2KHR color_reference = {
/*sType*/ VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2_KHR,
/*pNext*/ nullptr,
/*attachment*/ 0,
/*layout*/ VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
/*aspectMask*/ 0,
};
const VkSubpassDescription2KHR subpass = {
/*sType*/ VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION_2_KHR,
/*pNext*/ nullptr,
/*flags*/ 0,
/*pipelineBindPoint*/ VK_PIPELINE_BIND_POINT_GRAPHICS,
/*viewMask*/ 0,
/*inputAttachmentCount*/ 0,
/*pInputAttachments*/ nullptr,
/*colorAttachmentCount*/ 1,
/*pColorAttachments*/ &color_reference,
/*pResolveAttachments*/ nullptr,
/*pDepthStencilAttachment*/ nullptr,
/*preserveAttachmentCount*/ 0,
/*pPreserveAttachments*/ nullptr,
};
const VkRenderPassCreateInfo2KHR rp_info = {
/*sType*/ VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO_2_KHR,
/*pNext*/ nullptr,
/*flags*/ 0,
/*attachmentCount*/ 1,
/*pAttachments*/ &attachment,
/*subpassCount*/ 1,
/*pSubpasses*/ &subpass,
/*dependencyCount*/ 0,
/*pDependencies*/ nullptr,
/*correlatedViewMaskCount*/ 0,
/*pCorrelatedViewMasks*/ nullptr,
};
err = vkCreateRenderPass2KHR(device, &rp_info, nullptr, &window->render_pass);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
for (uint32_t i = 0; i < swapchainImageCount; i++) {
const VkFramebufferCreateInfo fb_info = {
/*sType*/ VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
/*pNext*/ nullptr,
/*flags*/ 0,
/*renderPass*/ window->render_pass,
/*attachmentCount*/ 1,
/*pAttachments*/ &window->swapchain_image_resources[i].view,
/*width*/ (uint32_t)window->width,
/*height*/ (uint32_t)window->height,
/*layers*/ 1,
};
err = vkCreateFramebuffer(device, &fb_info, nullptr, &window->swapchain_image_resources[i].framebuffer);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
}
}
/******** SEPARATE PRESENT QUEUE ************/
if (separate_present_queue) {
const VkCommandPoolCreateInfo present_cmd_pool_info = {
/*sType*/ VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO,
/*pNext*/ nullptr,
/*flags*/ 0,
/*queueFamilyIndex*/ present_queue_family_index,
};
err = vkCreateCommandPool(device, &present_cmd_pool_info, nullptr, &window->present_cmd_pool);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
const VkCommandBufferAllocateInfo present_cmd_info = {
/*sType*/ VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,
/*pNext*/ nullptr,
/*commandPool*/ window->present_cmd_pool,
/*level*/ VK_COMMAND_BUFFER_LEVEL_PRIMARY,
/*commandBufferCount*/ 1,
};
for (uint32_t i = 0; i < swapchainImageCount; i++) {
err = vkAllocateCommandBuffers(device, &present_cmd_info,
&window->swapchain_image_resources[i].graphics_to_present_cmd);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
const VkCommandBufferBeginInfo cmd_buf_info = {
/*sType*/ VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
/*pNext*/ nullptr,
/*flags*/ VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT,
/*pInheritanceInfo*/ nullptr,
};
err = vkBeginCommandBuffer(window->swapchain_image_resources[i].graphics_to_present_cmd, &cmd_buf_info);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
VkImageMemoryBarrier image_ownership_barrier = {
/*sType*/ VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
/*pNext*/ nullptr,
/*srcAccessMask*/ 0,
/*dstAccessMask*/ VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
/*oldLayout*/ VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
/*newLayout*/ VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
/*srcQueueFamilyIndex*/ graphics_queue_family_index,
/*dstQueueFamilyIndex*/ present_queue_family_index,
/*image*/ window->swapchain_image_resources[i].image,
/*subresourceRange*/ { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 }
};
vkCmdPipelineBarrier(window->swapchain_image_resources[i].graphics_to_present_cmd, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, 0, 0, nullptr, 0, nullptr, 1, &image_ownership_barrier);
err = vkEndCommandBuffer(window->swapchain_image_resources[i].graphics_to_present_cmd);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
}
}
// Reset current buffer.
window->current_buffer = 0;
return OK;
}
Error VulkanContext::initialize() {
#ifdef USE_VOLK
if (volkInitialize() != VK_SUCCESS) {
return FAILED;
}
#endif
Error err = _create_instance();
if (err != OK) {
return err;
}
return OK;
}
void VulkanContext::set_setup_buffer(VkCommandBuffer p_command_buffer) {
command_buffer_queue.write[0] = p_command_buffer;
}
void VulkanContext::append_command_buffer(VkCommandBuffer p_command_buffer) {
if (command_buffer_queue.size() <= command_buffer_count) {
command_buffer_queue.resize(command_buffer_count + 1);
}
command_buffer_queue.write[command_buffer_count] = p_command_buffer;
command_buffer_count++;
}
void VulkanContext::flush(bool p_flush_setup, bool p_flush_pending) {
// Ensure everything else pending is executed.
vkDeviceWaitIdle(device);
// Flush the pending setup buffer.
bool setup_flushable = p_flush_setup && command_buffer_queue[0];
bool pending_flushable = p_flush_pending && command_buffer_count > 1;
if (setup_flushable) {
// Use a fence to wait for everything done.
VkSubmitInfo submit_info;
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.pNext = nullptr;
submit_info.pWaitDstStageMask = nullptr;
submit_info.waitSemaphoreCount = 0;
submit_info.pWaitSemaphores = nullptr;
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers = command_buffer_queue.ptr();
submit_info.signalSemaphoreCount = pending_flushable ? 1 : 0;
submit_info.pSignalSemaphores = pending_flushable ? &draw_complete_semaphores[frame_index] : nullptr;
VkResult err = vkQueueSubmit(graphics_queue, 1, &submit_info, VK_NULL_HANDLE);
command_buffer_queue.write[0] = nullptr;
ERR_FAIL_COND(err);
}
if (pending_flushable) {
// Use a fence to wait for everything to finish.
VkSubmitInfo submit_info;
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.pNext = nullptr;
VkPipelineStageFlags wait_stage_mask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
submit_info.pWaitDstStageMask = setup_flushable ? &wait_stage_mask : nullptr;
submit_info.waitSemaphoreCount = setup_flushable ? 1 : 0;
submit_info.pWaitSemaphores = setup_flushable ? &draw_complete_semaphores[frame_index] : nullptr;
submit_info.commandBufferCount = command_buffer_count - 1;
submit_info.pCommandBuffers = command_buffer_queue.ptr() + 1;
submit_info.signalSemaphoreCount = 0;
submit_info.pSignalSemaphores = nullptr;
VkResult err = vkQueueSubmit(graphics_queue, 1, &submit_info, VK_NULL_HANDLE);
command_buffer_count = 1;
ERR_FAIL_COND(err);
}
vkDeviceWaitIdle(device);
}
Error VulkanContext::prepare_buffers() {
if (!queues_initialized) {
return OK;
}
VkResult err;
// Ensure no more than FRAME_LAG renderings are outstanding.
vkWaitForFences(device, 1, &fences[frame_index], VK_TRUE, UINT64_MAX);
vkResetFences(device, 1, &fences[frame_index]);
for (KeyValue<int, Window> &E : windows) {
Window *w = &E.value;
w->semaphore_acquired = false;
if (w->swapchain == VK_NULL_HANDLE) {
continue;
}
do {
// Get the index of the next available swapchain image.
err =
fpAcquireNextImageKHR(device, w->swapchain, UINT64_MAX,
w->image_acquired_semaphores[frame_index], VK_NULL_HANDLE, &w->current_buffer);
if (err == VK_ERROR_OUT_OF_DATE_KHR) {
// Swapchain is out of date (e.g. the window was resized) and
// must be recreated.
print_verbose("Vulkan: Early out of date swapchain, recreating.");
// resize_notify();
_update_swap_chain(w);
} else if (err == VK_SUBOPTIMAL_KHR) {
// Swapchain is not as optimal as it could be, but the platform's
// presentation engine will still present the image correctly.
print_verbose("Vulkan: Early suboptimal swapchain.");
break;
} else if (err != VK_SUCCESS) {
ERR_BREAK_MSG(err != VK_SUCCESS, "Vulkan: Did not create swapchain successfully.");
} else {
w->semaphore_acquired = true;
}
} while (err != VK_SUCCESS);
}
buffers_prepared = true;
return OK;
}
Error VulkanContext::swap_buffers() {
if (!queues_initialized) {
return OK;
}
// print_line("swapbuffers?");
VkResult err;
#if 0
if (VK_GOOGLE_display_timing_enabled) {
// Look at what happened to previous presents, and make appropriate
// adjustments in timing.
DemoUpdateTargetIPD(demo);
// Note: a real application would position its geometry to that it's in
// the correct location for when the next image is presented. It might
// also wait, so that there's less latency between any input and when
// the next image is rendered/presented. This demo program is so
// simple that it doesn't do either of those.
}
#endif
// Wait for the image acquired semaphore to be signalled to ensure
// that the image won't be rendered to until the presentation
// engine has fully released ownership to the application, and it is
// okay to render to the image.
const VkCommandBuffer *commands_ptr = nullptr;
uint32_t commands_to_submit = 0;
if (command_buffer_queue[0] == nullptr) {
// No setup command, but commands to submit, submit from the first and skip command.
if (command_buffer_count > 1) {
commands_ptr = command_buffer_queue.ptr() + 1;
commands_to_submit = command_buffer_count - 1;
}
} else {
commands_ptr = command_buffer_queue.ptr();
commands_to_submit = command_buffer_count;
}
VkSemaphore *semaphores_to_acquire = (VkSemaphore *)alloca(windows.size() * sizeof(VkSemaphore));
VkPipelineStageFlags *pipe_stage_flags = (VkPipelineStageFlags *)alloca(windows.size() * sizeof(VkPipelineStageFlags));
uint32_t semaphores_to_acquire_count = 0;
for (KeyValue<int, Window> &E : windows) {
Window *w = &E.value;
if (w->semaphore_acquired) {
semaphores_to_acquire[semaphores_to_acquire_count] = w->image_acquired_semaphores[frame_index];
pipe_stage_flags[semaphores_to_acquire_count] = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
semaphores_to_acquire_count++;
}
}
VkSubmitInfo submit_info;
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.pNext = nullptr;
submit_info.waitSemaphoreCount = semaphores_to_acquire_count;
submit_info.pWaitSemaphores = semaphores_to_acquire;
submit_info.pWaitDstStageMask = pipe_stage_flags;
submit_info.commandBufferCount = commands_to_submit;
submit_info.pCommandBuffers = commands_ptr;
submit_info.signalSemaphoreCount = 1;
submit_info.pSignalSemaphores = &draw_complete_semaphores[frame_index];
err = vkQueueSubmit(graphics_queue, 1, &submit_info, fences[frame_index]);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
command_buffer_queue.write[0] = nullptr;
command_buffer_count = 1;
if (separate_present_queue) {
// If we are using separate queues, change image ownership to the
// present queue before presenting, waiting for the draw complete
// semaphore and signalling the ownership released semaphore when finished.
VkFence nullFence = VK_NULL_HANDLE;
pipe_stage_flags[0] = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
submit_info.waitSemaphoreCount = 1;
submit_info.pWaitSemaphores = &draw_complete_semaphores[frame_index];
submit_info.commandBufferCount = 0;
VkCommandBuffer *cmdbufptr = (VkCommandBuffer *)alloca(sizeof(VkCommandBuffer *) * windows.size());
submit_info.pCommandBuffers = cmdbufptr;
for (KeyValue<int, Window> &E : windows) {
Window *w = &E.value;
if (w->swapchain == VK_NULL_HANDLE) {
continue;
}
cmdbufptr[submit_info.commandBufferCount] = w->swapchain_image_resources[w->current_buffer].graphics_to_present_cmd;
submit_info.commandBufferCount++;
}
submit_info.signalSemaphoreCount = 1;
submit_info.pSignalSemaphores = &image_ownership_semaphores[frame_index];
err = vkQueueSubmit(present_queue, 1, &submit_info, nullFence);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
}
// If we are using separate queues, we have to wait for image ownership,
// otherwise wait for draw complete.
VkPresentInfoKHR present = {
/*sType*/ VK_STRUCTURE_TYPE_PRESENT_INFO_KHR,
/*pNext*/ nullptr,
/*waitSemaphoreCount*/ 1,
/*pWaitSemaphores*/ (separate_present_queue) ? &image_ownership_semaphores[frame_index] : &draw_complete_semaphores[frame_index],
/*swapchainCount*/ 0,
/*pSwapchain*/ nullptr,
/*pImageIndices*/ nullptr,
/*pResults*/ nullptr,
};
VkSwapchainKHR *pSwapchains = (VkSwapchainKHR *)alloca(sizeof(VkSwapchainKHR *) * windows.size());
uint32_t *pImageIndices = (uint32_t *)alloca(sizeof(uint32_t *) * windows.size());
present.pSwapchains = pSwapchains;
present.pImageIndices = pImageIndices;
for (KeyValue<int, Window> &E : windows) {
Window *w = &E.value;
if (w->swapchain == VK_NULL_HANDLE) {
continue;
}
pSwapchains[present.swapchainCount] = w->swapchain;
pImageIndices[present.swapchainCount] = w->current_buffer;
present.swapchainCount++;
}
#if 0
if (VK_KHR_incremental_present_enabled) {
// If using VK_KHR_incremental_present, we provide a hint of the region
// that contains changed content relative to the previously-presented
// image. The implementation can use this hint in order to save
// work/power (by only copying the region in the hint). The
// implementation is free to ignore the hint though, and so we must
// ensure that the entire image has the correctly-drawn content.
uint32_t eighthOfWidth = width / 8;
uint32_t eighthOfHeight = height / 8;
VkRectLayerKHR rect = {
/*offset.x*/ eighthOfWidth,
/*offset.y*/ eighthOfHeight,
/*extent.width*/ eighthOfWidth * 6,
/*extent.height*/ eighthOfHeight * 6,
/*layer*/ 0,
};
VkPresentRegionKHR region = {
/*rectangleCount*/ 1,
/*pRectangles*/ &rect,
};
VkPresentRegionsKHR regions = {
/*sType*/ VK_STRUCTURE_TYPE_PRESENT_REGIONS_KHR,
/*pNext*/ present.pNext,
/*swapchainCount*/ present.swapchainCount,
/*pRegions*/ &region,
};
present.pNext = &regions;
}
#endif
#if 0
if (VK_GOOGLE_display_timing_enabled) {
VkPresentTimeGOOGLE ptime;
if (prev_desired_present_time == 0) {
// This must be the first present for this swapchain.
//
// We don't know where we are relative to the presentation engine's
// display's refresh cycle. We also don't know how long rendering
// takes. Let's make a grossly-simplified assumption that the
// desiredPresentTime should be half way between now and
// now+target_IPD. We will adjust over time.
uint64_t curtime = getTimeInNanoseconds();
if (curtime == 0) {
// Since we didn't find out the current time, don't give a
// desiredPresentTime.
ptime.desiredPresentTime = 0;
} else {
ptime.desiredPresentTime = curtime + (target_IPD >> 1);
}
} else {
ptime.desiredPresentTime = (prev_desired_present_time + target_IPD);
}
ptime.presentID = next_present_id++;
prev_desired_present_time = ptime.desiredPresentTime;
VkPresentTimesInfoGOOGLE present_time = {
/*sType*/ VK_STRUCTURE_TYPE_PRESENT_TIMES_INFO_GOOGLE,
/*pNext*/ present.pNext,
/*swapchainCount*/ present.swapchainCount,
/*pTimes*/ &ptime,
};
if (VK_GOOGLE_display_timing_enabled) {
present.pNext = &present_time;
}
}
#endif
static int total_frames = 0;
total_frames++;
// print_line("current buffer: " + itos(current_buffer));
err = fpQueuePresentKHR(present_queue, &present);
frame_index += 1;
frame_index %= FRAME_LAG;
if (err == VK_ERROR_OUT_OF_DATE_KHR) {
// Swapchain is out of date (e.g. the window was resized) and
// must be recreated.
print_verbose("Vulkan: Swapchain is out of date, recreating.");
resize_notify();
} else if (err == VK_SUBOPTIMAL_KHR) {
// Swapchain is not as optimal as it could be, but the platform's
// presentation engine will still present the image correctly.
print_verbose("Vulkan: Swapchain is suboptimal.");
} else {
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
}
buffers_prepared = false;
return OK;
}
void VulkanContext::resize_notify() {
}
VkDevice VulkanContext::get_device() {
return device;
}
VkPhysicalDevice VulkanContext::get_physical_device() {
return gpu;
}
int VulkanContext::get_swapchain_image_count() const {
return swapchainImageCount;
}
VkQueue VulkanContext::get_graphics_queue() const {
return graphics_queue;
}
uint32_t VulkanContext::get_graphics_queue_family_index() const {
return graphics_queue_family_index;
}
VkFormat VulkanContext::get_screen_format() const {
return format;
}
VkPhysicalDeviceLimits VulkanContext::get_device_limits() const {
return gpu_props.limits;
}
RID VulkanContext::local_device_create() {
LocalDevice ld;
{ // Create device.
VkResult err;
float queue_priorities[1] = { 0.0 };
VkDeviceQueueCreateInfo queues[2];
queues[0].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queues[0].pNext = nullptr;
queues[0].queueFamilyIndex = graphics_queue_family_index;
queues[0].queueCount = 1;
queues[0].pQueuePriorities = queue_priorities;
queues[0].flags = 0;
VkDeviceCreateInfo sdevice = {
/*sType =*/VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO,
/*pNext */ nullptr,
/*flags */ 0,
/*queueCreateInfoCount */ 1,
/*pQueueCreateInfos */ queues,
/*enabledLayerCount */ 0,
/*ppEnabledLayerNames */ nullptr,
/*enabledExtensionCount */ enabled_extension_count,
/*ppEnabledExtensionNames */ (const char *const *)extension_names,
/*pEnabledFeatures */ &physical_device_features, // If specific features are required, pass them in here.
};
err = vkCreateDevice(gpu, &sdevice, nullptr, &ld.device);
ERR_FAIL_COND_V(err, RID());
}
{ // Create graphics queue.
vkGetDeviceQueue(ld.device, graphics_queue_family_index, 0, &ld.queue);
}
return local_device_owner.make_rid(ld);
}
VkDevice VulkanContext::local_device_get_vk_device(RID p_local_device) {
LocalDevice *ld = local_device_owner.get_or_null(p_local_device);
return ld->device;
}
void VulkanContext::local_device_push_command_buffers(RID p_local_device, const VkCommandBuffer *p_buffers, int p_count) {
LocalDevice *ld = local_device_owner.get_or_null(p_local_device);
ERR_FAIL_COND(ld->waiting);
VkSubmitInfo submit_info;
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.pNext = nullptr;
submit_info.pWaitDstStageMask = nullptr;
submit_info.waitSemaphoreCount = 0;
submit_info.pWaitSemaphores = nullptr;
submit_info.commandBufferCount = p_count;
submit_info.pCommandBuffers = p_buffers;
submit_info.signalSemaphoreCount = 0;
submit_info.pSignalSemaphores = nullptr;
VkResult err = vkQueueSubmit(ld->queue, 1, &submit_info, VK_NULL_HANDLE);
if (err == VK_ERROR_OUT_OF_HOST_MEMORY) {
print_line("Vulkan: Out of host memory!");
}
if (err == VK_ERROR_OUT_OF_DEVICE_MEMORY) {
print_line("Vulkan: Out of device memory!");
}
if (err == VK_ERROR_DEVICE_LOST) {
print_line("Vulkan: Device lost!");
}
ERR_FAIL_COND(err);
ld->waiting = true;
}
void VulkanContext::local_device_sync(RID p_local_device) {
LocalDevice *ld = local_device_owner.get_or_null(p_local_device);
ERR_FAIL_COND(!ld->waiting);
vkDeviceWaitIdle(ld->device);
ld->waiting = false;
}
void VulkanContext::local_device_free(RID p_local_device) {
LocalDevice *ld = local_device_owner.get_or_null(p_local_device);
vkDestroyDevice(ld->device, nullptr);
local_device_owner.free(p_local_device);
}
void VulkanContext::command_begin_label(VkCommandBuffer p_command_buffer, String p_label_name, const Color p_color) {
if (!enabled_debug_utils) {
return;
}
CharString cs = p_label_name.utf8();
VkDebugUtilsLabelEXT label;
label.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_LABEL_EXT;
label.pNext = nullptr;
label.pLabelName = cs.get_data();
label.color[0] = p_color[0];
label.color[1] = p_color[1];
label.color[2] = p_color[2];
label.color[3] = p_color[3];
CmdBeginDebugUtilsLabelEXT(p_command_buffer, &label);
}
void VulkanContext::command_insert_label(VkCommandBuffer p_command_buffer, String p_label_name, const Color p_color) {
if (!enabled_debug_utils) {
return;
}
CharString cs = p_label_name.utf8();
VkDebugUtilsLabelEXT label;
label.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_LABEL_EXT;
label.pNext = nullptr;
label.pLabelName = cs.get_data();
label.color[0] = p_color[0];
label.color[1] = p_color[1];
label.color[2] = p_color[2];
label.color[3] = p_color[3];
CmdInsertDebugUtilsLabelEXT(p_command_buffer, &label);
}
void VulkanContext::command_end_label(VkCommandBuffer p_command_buffer) {
if (!enabled_debug_utils) {
return;
}
CmdEndDebugUtilsLabelEXT(p_command_buffer);
}
void VulkanContext::set_object_name(VkObjectType p_object_type, uint64_t p_object_handle, String p_object_name) {
if (!enabled_debug_utils) {
return;
}
CharString obj_data = p_object_name.utf8();
VkDebugUtilsObjectNameInfoEXT name_info;
name_info.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_OBJECT_NAME_INFO_EXT;
name_info.pNext = nullptr;
name_info.objectType = p_object_type;
name_info.objectHandle = p_object_handle;
name_info.pObjectName = obj_data.get_data();
SetDebugUtilsObjectNameEXT(device, &name_info);
}
String VulkanContext::get_device_vendor_name() const {
return device_vendor;
}
String VulkanContext::get_device_name() const {
return device_name;
}
RenderingDevice::DeviceType VulkanContext::get_device_type() const {
return RenderingDevice::DeviceType(device_type);
}
String VulkanContext::get_device_api_version() const {
return vformat("%d.%d.%d", vulkan_major, vulkan_minor, vulkan_patch);
}
String VulkanContext::get_device_pipeline_cache_uuid() const {
return pipeline_cache_id;
}
DisplayServer::VSyncMode VulkanContext::get_vsync_mode(DisplayServer::WindowID p_window) const {
ERR_FAIL_COND_V_MSG(!windows.has(p_window), DisplayServer::VSYNC_ENABLED, "Could not get V-Sync mode for window with WindowID " + itos(p_window) + " because it does not exist.");
return windows[p_window].vsync_mode;
}
void VulkanContext::set_vsync_mode(DisplayServer::WindowID p_window, DisplayServer::VSyncMode p_mode) {
ERR_FAIL_COND_MSG(!windows.has(p_window), "Could not set V-Sync mode for window with WindowID " + itos(p_window) + " because it does not exist.");
windows[p_window].vsync_mode = p_mode;
_update_swap_chain(&windows[p_window]);
}
VulkanContext::VulkanContext() {
command_buffer_queue.resize(1); // First one is always the setup command.
command_buffer_queue.write[0] = nullptr;
}
VulkanContext::~VulkanContext() {
if (queue_props) {
free(queue_props);
}
if (device_initialized) {
for (uint32_t i = 0; i < FRAME_LAG; i++) {
vkDestroyFence(device, fences[i], nullptr);
vkDestroySemaphore(device, draw_complete_semaphores[i], nullptr);
if (separate_present_queue) {
vkDestroySemaphore(device, image_ownership_semaphores[i], nullptr);
}
}
if (inst_initialized && enabled_debug_utils) {
DestroyDebugUtilsMessengerEXT(inst, dbg_messenger, nullptr);
}
if (inst_initialized && dbg_debug_report != VK_NULL_HANDLE) {
DestroyDebugReportCallbackEXT(inst, dbg_debug_report, nullptr);
}
vkDestroyDevice(device, nullptr);
}
if (inst_initialized) {
vkDestroyInstance(inst, nullptr);
}
}