6750 lines
225 KiB
C++
6750 lines
225 KiB
C++
/*************************************************************************/
|
|
/* gltf_document.cpp */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
|
|
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
|
|
#include "gltf_document.h"
|
|
#include "core/error_list.h"
|
|
#include "core/error_macros.h"
|
|
#include "core/variant.h"
|
|
#include "gltf_accessor.h"
|
|
#include "gltf_animation.h"
|
|
#include "gltf_camera.h"
|
|
#include "gltf_light.h"
|
|
#include "gltf_mesh.h"
|
|
#include "gltf_node.h"
|
|
#include "gltf_skeleton.h"
|
|
#include "gltf_skin.h"
|
|
#include "gltf_spec_gloss.h"
|
|
#include "gltf_state.h"
|
|
#include "gltf_texture.h"
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "core/bind/core_bind.h"
|
|
#include "core/crypto/crypto_core.h"
|
|
#include "core/error_macros.h"
|
|
#include "core/io/json.h"
|
|
#include "core/math/disjoint_set.h"
|
|
#include "core/os/file_access.h"
|
|
#include "core/variant.h"
|
|
#include "core/version.h"
|
|
#include "core/version_hash.gen.h"
|
|
#include "drivers/png/png_driver_common.h"
|
|
#include "editor/import/resource_importer_scene.h"
|
|
#ifdef MODULE_CSG_ENABLED
|
|
#include "modules/csg/csg_shape.h"
|
|
#endif // MODULE_CSG_ENABLED
|
|
#ifdef MODULE_GRIDMAP_ENABLED
|
|
#include "modules/gridmap/grid_map.h"
|
|
#endif // MODULE_GRIDMAP_ENABLED
|
|
#include "modules/regex/regex.h"
|
|
#include "scene/2d/node_2d.h"
|
|
#include "scene/3d/bone_attachment.h"
|
|
#include "scene/3d/camera.h"
|
|
#include "scene/3d/mesh_instance.h"
|
|
#include "scene/3d/multimesh_instance.h"
|
|
#include "scene/3d/skeleton.h"
|
|
#include "scene/3d/spatial.h"
|
|
#include "scene/animation/animation_player.h"
|
|
#include "scene/main/node.h"
|
|
#include "scene/resources/surface_tool.h"
|
|
#include <limits>
|
|
|
|
Error GLTFDocument::serialize(Ref<GLTFState> state, Node *p_root, const String &p_path) {
|
|
uint64_t begin_time = OS::get_singleton()->get_ticks_usec();
|
|
|
|
_convert_scene_node(state, p_root, p_root, -1, -1);
|
|
if (!state->buffers.size()) {
|
|
state->buffers.push_back(Vector<uint8_t>());
|
|
}
|
|
|
|
/* STEP 1 CONVERT MESH INSTANCES */
|
|
_convert_mesh_instances(state);
|
|
|
|
/* STEP 2 SERIALIZE CAMERAS */
|
|
Error err = _serialize_cameras(state);
|
|
if (err != OK) {
|
|
return Error::FAILED;
|
|
}
|
|
|
|
/* STEP 3 CREATE SKINS */
|
|
err = _serialize_skins(state);
|
|
if (err != OK) {
|
|
return Error::FAILED;
|
|
}
|
|
/* STEP 4 CREATE BONE ATTACHMENTS */
|
|
err = _serialize_bone_attachment(state);
|
|
if (err != OK) {
|
|
return Error::FAILED;
|
|
}
|
|
/* STEP 5 SERIALIZE MESHES (we have enough info now) */
|
|
err = _serialize_meshes(state);
|
|
if (err != OK) {
|
|
return Error::FAILED;
|
|
}
|
|
|
|
/* STEP 6 SERIALIZE TEXTURES */
|
|
err = _serialize_materials(state);
|
|
if (err != OK) {
|
|
return Error::FAILED;
|
|
}
|
|
|
|
/* STEP 7 SERIALIZE IMAGES */
|
|
err = _serialize_images(state, p_path);
|
|
if (err != OK) {
|
|
return Error::FAILED;
|
|
}
|
|
|
|
/* STEP 8 SERIALIZE TEXTURES */
|
|
err = _serialize_textures(state);
|
|
if (err != OK) {
|
|
return Error::FAILED;
|
|
}
|
|
|
|
// /* STEP 9 SERIALIZE ANIMATIONS */
|
|
err = _serialize_animations(state);
|
|
if (err != OK) {
|
|
return Error::FAILED;
|
|
}
|
|
|
|
/* STEP 10 SERIALIZE ACCESSORS */
|
|
err = _encode_accessors(state);
|
|
if (err != OK) {
|
|
return Error::FAILED;
|
|
}
|
|
|
|
for (GLTFBufferViewIndex i = 0; i < state->buffer_views.size(); i++) {
|
|
state->buffer_views.write[i]->buffer = 0;
|
|
}
|
|
|
|
/* STEP 11 SERIALIZE BUFFER VIEWS */
|
|
err = _encode_buffer_views(state);
|
|
if (err != OK) {
|
|
return Error::FAILED;
|
|
}
|
|
|
|
/* STEP 12 SERIALIZE NODES */
|
|
err = _serialize_nodes(state);
|
|
if (err != OK) {
|
|
return Error::FAILED;
|
|
}
|
|
|
|
/* STEP 13 SERIALIZE SCENE */
|
|
err = _serialize_scenes(state);
|
|
if (err != OK) {
|
|
return Error::FAILED;
|
|
}
|
|
|
|
/* STEP 14 SERIALIZE SCENE */
|
|
err = _serialize_lights(state);
|
|
if (err != OK) {
|
|
return Error::FAILED;
|
|
}
|
|
|
|
/* STEP 15 SERIALIZE EXTENSIONS */
|
|
err = _serialize_extensions(state);
|
|
if (err != OK) {
|
|
return Error::FAILED;
|
|
}
|
|
|
|
/* STEP 16 SERIALIZE VERSION */
|
|
err = _serialize_version(state);
|
|
if (err != OK) {
|
|
return Error::FAILED;
|
|
}
|
|
|
|
/* STEP 17 SERIALIZE FILE */
|
|
err = _serialize_file(state, p_path);
|
|
if (err != OK) {
|
|
return Error::FAILED;
|
|
}
|
|
uint64_t elapsed = OS::get_singleton()->get_ticks_usec() - begin_time;
|
|
float elapsed_sec = double(elapsed) / 1000000.0;
|
|
elapsed_sec = Math::stepify(elapsed_sec, 0.01f);
|
|
print_line("glTF: Export time elapsed seconds " + rtos(elapsed_sec).pad_decimals(2));
|
|
|
|
return OK;
|
|
}
|
|
|
|
Error GLTFDocument::_serialize_extensions(Ref<GLTFState> state) const {
|
|
const String texture_transform = "KHR_texture_transform";
|
|
const String punctual_lights = "KHR_lights_punctual";
|
|
Array extensions_used;
|
|
extensions_used.push_back(punctual_lights);
|
|
extensions_used.push_back(texture_transform);
|
|
state->json["extensionsUsed"] = extensions_used;
|
|
Array extensions_required;
|
|
extensions_required.push_back(texture_transform);
|
|
state->json["extensionsRequired"] = extensions_required;
|
|
return OK;
|
|
}
|
|
|
|
Error GLTFDocument::_serialize_scenes(Ref<GLTFState> state) {
|
|
Array scenes;
|
|
const int loaded_scene = 0;
|
|
state->json["scene"] = loaded_scene;
|
|
|
|
if (state->nodes.size()) {
|
|
Dictionary s;
|
|
if (!state->scene_name.empty()) {
|
|
s["name"] = state->scene_name;
|
|
}
|
|
|
|
Array nodes;
|
|
nodes.push_back(0);
|
|
s["nodes"] = nodes;
|
|
scenes.push_back(s);
|
|
}
|
|
state->json["scenes"] = scenes;
|
|
|
|
return OK;
|
|
}
|
|
|
|
Error GLTFDocument::_parse_json(const String &p_path, Ref<GLTFState> state) {
|
|
Error err;
|
|
FileAccessRef f = FileAccess::open(p_path, FileAccess::READ, &err);
|
|
if (!f) {
|
|
return err;
|
|
}
|
|
|
|
Vector<uint8_t> array;
|
|
array.resize(f->get_len());
|
|
f->get_buffer(array.ptrw(), array.size());
|
|
String text;
|
|
text.parse_utf8((const char *)array.ptr(), array.size());
|
|
|
|
String err_txt;
|
|
int err_line;
|
|
Variant v;
|
|
err = JSON::parse(text, v, err_txt, err_line);
|
|
if (err != OK) {
|
|
_err_print_error("", p_path.utf8().get_data(), err_line, err_txt.utf8().get_data(), ERR_HANDLER_SCRIPT);
|
|
return err;
|
|
}
|
|
state->json = v;
|
|
|
|
return OK;
|
|
}
|
|
|
|
Error GLTFDocument::_serialize_bone_attachment(Ref<GLTFState> state) {
|
|
for (int skeleton_i = 0; skeleton_i < state->skeletons.size(); skeleton_i++) {
|
|
for (int attachment_i = 0; attachment_i < state->skeletons[skeleton_i]->bone_attachments.size(); attachment_i++) {
|
|
BoneAttachment *bone_attachment = state->skeletons[skeleton_i]->bone_attachments[attachment_i];
|
|
String bone_name = bone_attachment->get_bone_name();
|
|
bone_name = _sanitize_bone_name(state, bone_name);
|
|
int32_t bone = state->skeletons[skeleton_i]->godot_skeleton->find_bone(bone_name);
|
|
ERR_CONTINUE(bone == -1);
|
|
for (int skin_i = 0; skin_i < state->skins.size(); skin_i++) {
|
|
if (state->skins[skin_i]->skeleton != skeleton_i) {
|
|
continue;
|
|
}
|
|
|
|
for (int node_i = 0; node_i < bone_attachment->get_child_count(); node_i++) {
|
|
ERR_CONTINUE(bone >= state->skins[skin_i]->joints.size());
|
|
_convert_scene_node(state, bone_attachment->get_child(node_i), bone_attachment->get_owner(), state->skins[skin_i]->joints[bone], 0);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return OK;
|
|
}
|
|
|
|
Error GLTFDocument::_parse_glb(const String &p_path, Ref<GLTFState> state) {
|
|
Error err;
|
|
FileAccessRef f = FileAccess::open(p_path, FileAccess::READ, &err);
|
|
if (!f) {
|
|
return err;
|
|
}
|
|
|
|
uint32_t magic = f->get_32();
|
|
ERR_FAIL_COND_V(magic != 0x46546C67, ERR_FILE_UNRECOGNIZED); //glTF
|
|
f->get_32(); // version
|
|
f->get_32(); // length
|
|
|
|
uint32_t chunk_length = f->get_32();
|
|
uint32_t chunk_type = f->get_32();
|
|
|
|
ERR_FAIL_COND_V(chunk_type != 0x4E4F534A, ERR_PARSE_ERROR); //JSON
|
|
Vector<uint8_t> json_data;
|
|
json_data.resize(chunk_length);
|
|
uint32_t len = f->get_buffer(json_data.ptrw(), chunk_length);
|
|
ERR_FAIL_COND_V(len != chunk_length, ERR_FILE_CORRUPT);
|
|
|
|
String text;
|
|
text.parse_utf8((const char *)json_data.ptr(), json_data.size());
|
|
|
|
String err_txt;
|
|
int err_line;
|
|
Variant v;
|
|
err = JSON::parse(text, v, err_txt, err_line);
|
|
if (err != OK) {
|
|
_err_print_error("", p_path.utf8().get_data(), err_line, err_txt.utf8().get_data(), ERR_HANDLER_SCRIPT);
|
|
return err;
|
|
}
|
|
|
|
state->json = v;
|
|
|
|
//data?
|
|
|
|
chunk_length = f->get_32();
|
|
chunk_type = f->get_32();
|
|
|
|
if (f->eof_reached()) {
|
|
return OK; //all good
|
|
}
|
|
|
|
ERR_FAIL_COND_V(chunk_type != 0x004E4942, ERR_PARSE_ERROR); //BIN
|
|
|
|
state->glb_data.resize(chunk_length);
|
|
len = f->get_buffer(state->glb_data.ptrw(), chunk_length);
|
|
ERR_FAIL_COND_V(len != chunk_length, ERR_FILE_CORRUPT);
|
|
|
|
return OK;
|
|
}
|
|
|
|
static Array _vec3_to_arr(const Vector3 &p_vec3) {
|
|
Array array;
|
|
array.resize(3);
|
|
array[0] = p_vec3.x;
|
|
array[1] = p_vec3.y;
|
|
array[2] = p_vec3.z;
|
|
return array;
|
|
}
|
|
|
|
static Vector3 _arr_to_vec3(const Array &p_array) {
|
|
ERR_FAIL_COND_V(p_array.size() != 3, Vector3());
|
|
return Vector3(p_array[0], p_array[1], p_array[2]);
|
|
}
|
|
|
|
static Array _quat_to_array(const Quat &p_quat) {
|
|
Array array;
|
|
array.resize(4);
|
|
array[0] = p_quat.x;
|
|
array[1] = p_quat.y;
|
|
array[2] = p_quat.z;
|
|
array[3] = p_quat.w;
|
|
return array;
|
|
}
|
|
|
|
static Quat _arr_to_quat(const Array &p_array) {
|
|
ERR_FAIL_COND_V(p_array.size() != 4, Quat());
|
|
return Quat(p_array[0], p_array[1], p_array[2], p_array[3]);
|
|
}
|
|
|
|
static Transform _arr_to_xform(const Array &p_array) {
|
|
ERR_FAIL_COND_V(p_array.size() != 16, Transform());
|
|
|
|
Transform xform;
|
|
xform.basis.set_axis(Vector3::AXIS_X, Vector3(p_array[0], p_array[1], p_array[2]));
|
|
xform.basis.set_axis(Vector3::AXIS_Y, Vector3(p_array[4], p_array[5], p_array[6]));
|
|
xform.basis.set_axis(Vector3::AXIS_Z, Vector3(p_array[8], p_array[9], p_array[10]));
|
|
xform.set_origin(Vector3(p_array[12], p_array[13], p_array[14]));
|
|
|
|
return xform;
|
|
}
|
|
|
|
static Vector<real_t> _xform_to_array(const Transform p_transform) {
|
|
Vector<real_t> array;
|
|
array.resize(16);
|
|
Vector3 axis_x = p_transform.get_basis().get_axis(Vector3::AXIS_X);
|
|
array.write[0] = axis_x.x;
|
|
array.write[1] = axis_x.y;
|
|
array.write[2] = axis_x.z;
|
|
array.write[3] = 0.0f;
|
|
Vector3 axis_y = p_transform.get_basis().get_axis(Vector3::AXIS_Y);
|
|
array.write[4] = axis_y.x;
|
|
array.write[5] = axis_y.y;
|
|
array.write[6] = axis_y.z;
|
|
array.write[7] = 0.0f;
|
|
Vector3 axis_z = p_transform.get_basis().get_axis(Vector3::AXIS_Z);
|
|
array.write[8] = axis_z.x;
|
|
array.write[9] = axis_z.y;
|
|
array.write[10] = axis_z.z;
|
|
array.write[11] = 0.0f;
|
|
Vector3 origin = p_transform.get_origin();
|
|
array.write[12] = origin.x;
|
|
array.write[13] = origin.y;
|
|
array.write[14] = origin.z;
|
|
array.write[15] = 1.0f;
|
|
return array;
|
|
}
|
|
|
|
Error GLTFDocument::_serialize_nodes(Ref<GLTFState> state) {
|
|
Array nodes;
|
|
for (int i = 0; i < state->nodes.size(); i++) {
|
|
Dictionary node;
|
|
Ref<GLTFNode> n = state->nodes[i];
|
|
Dictionary extensions;
|
|
node["extensions"] = extensions;
|
|
if (!n->get_name().empty()) {
|
|
node["name"] = n->get_name();
|
|
}
|
|
if (n->camera != -1) {
|
|
node["camera"] = n->camera;
|
|
}
|
|
if (n->light != -1) {
|
|
Dictionary lights_punctual;
|
|
extensions["KHR_lights_punctual"] = lights_punctual;
|
|
lights_punctual["light"] = n->light;
|
|
}
|
|
if (n->mesh != -1) {
|
|
node["mesh"] = n->mesh;
|
|
}
|
|
if (n->skin != -1) {
|
|
node["skin"] = n->skin;
|
|
}
|
|
if (n->skeleton != -1 && n->skin < 0) {
|
|
}
|
|
if (n->xform != Transform()) {
|
|
node["matrix"] = _xform_to_array(n->xform);
|
|
}
|
|
|
|
if (!n->rotation.is_equal_approx(Quat())) {
|
|
node["rotation"] = _quat_to_array(n->rotation);
|
|
}
|
|
|
|
if (!n->scale.is_equal_approx(Vector3(1.0f, 1.0f, 1.0f))) {
|
|
node["scale"] = _vec3_to_arr(n->scale);
|
|
}
|
|
|
|
if (!n->translation.is_equal_approx(Vector3())) {
|
|
node["translation"] = _vec3_to_arr(n->translation);
|
|
}
|
|
if (n->children.size()) {
|
|
Array children;
|
|
for (int j = 0; j < n->children.size(); j++) {
|
|
children.push_back(n->children[j]);
|
|
}
|
|
node["children"] = children;
|
|
}
|
|
nodes.push_back(node);
|
|
}
|
|
state->json["nodes"] = nodes;
|
|
return OK;
|
|
}
|
|
|
|
String GLTFDocument::_sanitize_scene_name(Ref<GLTFState> state, const String &p_name) {
|
|
if (state->use_legacy_names) {
|
|
RegEx regex("([^a-zA-Z0-9_ -]+)");
|
|
String s_name = regex.sub(p_name, "", true);
|
|
return s_name;
|
|
} else {
|
|
return p_name.validate_node_name();
|
|
}
|
|
}
|
|
|
|
String GLTFDocument::_legacy_validate_node_name(const String &p_name) {
|
|
String invalid_character = ". : @ / \"";
|
|
String name = p_name;
|
|
Vector<String> chars = invalid_character.split(" ");
|
|
for (int i = 0; i < chars.size(); i++) {
|
|
name = name.replace(chars[i], "");
|
|
}
|
|
return name;
|
|
}
|
|
|
|
String GLTFDocument::_gen_unique_name(Ref<GLTFState> state, const String &p_name) {
|
|
const String s_name = _sanitize_scene_name(state, p_name);
|
|
|
|
String name;
|
|
int index = 1;
|
|
while (true) {
|
|
name = s_name;
|
|
|
|
if (index > 1) {
|
|
if (state->use_legacy_names) {
|
|
name += " ";
|
|
}
|
|
name += itos(index);
|
|
}
|
|
if (!state->unique_names.has(name)) {
|
|
break;
|
|
}
|
|
index++;
|
|
}
|
|
|
|
state->unique_names.insert(name);
|
|
|
|
return name;
|
|
}
|
|
|
|
String GLTFDocument::_sanitize_animation_name(const String &p_name) {
|
|
// Animations disallow the normal node invalid characters as well as "," and "["
|
|
// (See animation/animation_player.cpp::add_animation)
|
|
|
|
// TODO: Consider adding invalid_characters or a validate_animation_name to animation_player to mirror Node.
|
|
String name = p_name.validate_node_name();
|
|
name = name.replace(",", "");
|
|
name = name.replace("[", "");
|
|
return name;
|
|
}
|
|
|
|
String GLTFDocument::_gen_unique_animation_name(Ref<GLTFState> state, const String &p_name) {
|
|
const String s_name = _sanitize_animation_name(p_name);
|
|
|
|
String name;
|
|
int index = 1;
|
|
while (true) {
|
|
name = s_name;
|
|
|
|
if (index > 1) {
|
|
name += itos(index);
|
|
}
|
|
if (!state->unique_animation_names.has(name)) {
|
|
break;
|
|
}
|
|
index++;
|
|
}
|
|
|
|
state->unique_animation_names.insert(name);
|
|
|
|
return name;
|
|
}
|
|
|
|
String GLTFDocument::_sanitize_bone_name(Ref<GLTFState> state, const String &p_name) {
|
|
if (state->use_legacy_names) {
|
|
String name = p_name.camelcase_to_underscore(true);
|
|
RegEx pattern_del("([^a-zA-Z0-9_ ])+");
|
|
|
|
name = pattern_del.sub(name, "", true);
|
|
|
|
RegEx pattern_nospace(" +");
|
|
name = pattern_nospace.sub(name, "_", true);
|
|
|
|
RegEx pattern_multiple("_+");
|
|
name = pattern_multiple.sub(name, "_", true);
|
|
|
|
RegEx pattern_padded("0+(\\d+)");
|
|
name = pattern_padded.sub(name, "$1", true);
|
|
|
|
return name;
|
|
} else {
|
|
String name = p_name;
|
|
name = name.replace(":", "_");
|
|
name = name.replace("/", "_");
|
|
if (name.empty()) {
|
|
name = "bone";
|
|
}
|
|
return name;
|
|
}
|
|
}
|
|
|
|
String GLTFDocument::_gen_unique_bone_name(Ref<GLTFState> state, const GLTFSkeletonIndex skel_i, const String &p_name) {
|
|
String s_name = _sanitize_bone_name(state, p_name);
|
|
String name;
|
|
int index = 1;
|
|
while (true) {
|
|
name = s_name;
|
|
|
|
if (index > 1) {
|
|
name += "_" + itos(index);
|
|
}
|
|
if (!state->skeletons[skel_i]->unique_names.has(name)) {
|
|
break;
|
|
}
|
|
index++;
|
|
}
|
|
|
|
state->skeletons.write[skel_i]->unique_names.insert(name);
|
|
|
|
return name;
|
|
}
|
|
|
|
Error GLTFDocument::_parse_scenes(Ref<GLTFState> state) {
|
|
ERR_FAIL_COND_V(!state->json.has("scenes"), ERR_FILE_CORRUPT);
|
|
const Array &scenes = state->json["scenes"];
|
|
int loaded_scene = 0;
|
|
if (state->json.has("scene")) {
|
|
loaded_scene = state->json["scene"];
|
|
} else {
|
|
WARN_PRINT("The load-time scene is not defined in the glTF2 file. Picking the first scene.");
|
|
}
|
|
|
|
if (scenes.size()) {
|
|
ERR_FAIL_COND_V(loaded_scene >= scenes.size(), ERR_FILE_CORRUPT);
|
|
const Dictionary &s = scenes[loaded_scene];
|
|
ERR_FAIL_COND_V(!s.has("nodes"), ERR_UNAVAILABLE);
|
|
const Array &nodes = s["nodes"];
|
|
for (int j = 0; j < nodes.size(); j++) {
|
|
state->root_nodes.push_back(nodes[j]);
|
|
}
|
|
|
|
if (s.has("name") && !String(s["name"]).empty() && !((String)s["name"]).begins_with("Scene")) {
|
|
state->scene_name = _gen_unique_name(state, s["name"]);
|
|
} else {
|
|
state->scene_name = _gen_unique_name(state, state->filename);
|
|
}
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
Error GLTFDocument::_parse_nodes(Ref<GLTFState> state) {
|
|
ERR_FAIL_COND_V(!state->json.has("nodes"), ERR_FILE_CORRUPT);
|
|
const Array &nodes = state->json["nodes"];
|
|
for (int i = 0; i < nodes.size(); i++) {
|
|
Ref<GLTFNode> node;
|
|
node.instance();
|
|
const Dictionary &n = nodes[i];
|
|
|
|
if (n.has("name")) {
|
|
node->set_name(n["name"]);
|
|
}
|
|
if (n.has("camera")) {
|
|
node->camera = n["camera"];
|
|
}
|
|
if (n.has("mesh")) {
|
|
node->mesh = n["mesh"];
|
|
}
|
|
if (n.has("skin")) {
|
|
node->skin = n["skin"];
|
|
}
|
|
if (n.has("matrix")) {
|
|
node->xform = _arr_to_xform(n["matrix"]);
|
|
} else {
|
|
if (n.has("translation")) {
|
|
node->translation = _arr_to_vec3(n["translation"]);
|
|
}
|
|
if (n.has("rotation")) {
|
|
node->rotation = _arr_to_quat(n["rotation"]);
|
|
}
|
|
if (n.has("scale")) {
|
|
node->scale = _arr_to_vec3(n["scale"]);
|
|
}
|
|
|
|
node->xform.basis.set_quat_scale(node->rotation, node->scale);
|
|
node->xform.origin = node->translation;
|
|
}
|
|
|
|
if (n.has("extensions")) {
|
|
Dictionary extensions = n["extensions"];
|
|
if (extensions.has("KHR_lights_punctual")) {
|
|
Dictionary lights_punctual = extensions["KHR_lights_punctual"];
|
|
if (lights_punctual.has("light")) {
|
|
GLTFLightIndex light = lights_punctual["light"];
|
|
node->light = light;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (n.has("children")) {
|
|
const Array &children = n["children"];
|
|
for (int j = 0; j < children.size(); j++) {
|
|
node->children.push_back(children[j]);
|
|
}
|
|
}
|
|
|
|
state->nodes.push_back(node);
|
|
}
|
|
|
|
// build the hierarchy
|
|
for (GLTFNodeIndex node_i = 0; node_i < state->nodes.size(); node_i++) {
|
|
for (int j = 0; j < state->nodes[node_i]->children.size(); j++) {
|
|
GLTFNodeIndex child_i = state->nodes[node_i]->children[j];
|
|
|
|
ERR_FAIL_INDEX_V(child_i, state->nodes.size(), ERR_FILE_CORRUPT);
|
|
ERR_CONTINUE(state->nodes[child_i]->parent != -1); //node already has a parent, wtf.
|
|
|
|
state->nodes.write[child_i]->parent = node_i;
|
|
}
|
|
}
|
|
|
|
_compute_node_heights(state);
|
|
|
|
return OK;
|
|
}
|
|
|
|
void GLTFDocument::_compute_node_heights(Ref<GLTFState> state) {
|
|
state->root_nodes.clear();
|
|
for (GLTFNodeIndex node_i = 0; node_i < state->nodes.size(); ++node_i) {
|
|
Ref<GLTFNode> node = state->nodes[node_i];
|
|
node->height = 0;
|
|
|
|
GLTFNodeIndex current_i = node_i;
|
|
while (current_i >= 0) {
|
|
const GLTFNodeIndex parent_i = state->nodes[current_i]->parent;
|
|
if (parent_i >= 0) {
|
|
++node->height;
|
|
}
|
|
current_i = parent_i;
|
|
}
|
|
|
|
if (node->height == 0) {
|
|
state->root_nodes.push_back(node_i);
|
|
}
|
|
}
|
|
}
|
|
|
|
static Vector<uint8_t> _parse_base64_uri(const String &uri) {
|
|
int start = uri.find(",");
|
|
ERR_FAIL_COND_V(start == -1, Vector<uint8_t>());
|
|
|
|
CharString substr = uri.right(start + 1).ascii();
|
|
|
|
int strlen = substr.length();
|
|
|
|
Vector<uint8_t> buf;
|
|
buf.resize(strlen / 4 * 3 + 1 + 1);
|
|
|
|
size_t len = 0;
|
|
ERR_FAIL_COND_V(CryptoCore::b64_decode(buf.ptrw(), buf.size(), &len, (unsigned char *)substr.get_data(), strlen) != OK, Vector<uint8_t>());
|
|
|
|
buf.resize(len);
|
|
|
|
return buf;
|
|
}
|
|
Error GLTFDocument::_encode_buffer_glb(Ref<GLTFState> state, const String &p_path) {
|
|
print_verbose("glTF: Total buffers: " + itos(state->buffers.size()));
|
|
|
|
if (!state->buffers.size()) {
|
|
return OK;
|
|
}
|
|
Array buffers;
|
|
if (state->buffers.size()) {
|
|
Vector<uint8_t> buffer_data = state->buffers[0];
|
|
Dictionary gltf_buffer;
|
|
|
|
gltf_buffer["byteLength"] = buffer_data.size();
|
|
buffers.push_back(gltf_buffer);
|
|
}
|
|
|
|
for (GLTFBufferIndex i = 1; i < state->buffers.size() - 1; i++) {
|
|
Vector<uint8_t> buffer_data = state->buffers[i];
|
|
Dictionary gltf_buffer;
|
|
String filename = p_path.get_basename().get_file() + itos(i) + ".bin";
|
|
String path = p_path.get_base_dir() + "/" + filename;
|
|
Error err;
|
|
FileAccessRef f = FileAccess::open(path, FileAccess::WRITE, &err);
|
|
if (!f) {
|
|
return err;
|
|
}
|
|
if (buffer_data.size() == 0) {
|
|
return OK;
|
|
}
|
|
f->create(FileAccess::ACCESS_RESOURCES);
|
|
f->store_buffer(buffer_data.ptr(), buffer_data.size());
|
|
f->close();
|
|
gltf_buffer["uri"] = filename;
|
|
gltf_buffer["byteLength"] = buffer_data.size();
|
|
buffers.push_back(gltf_buffer);
|
|
}
|
|
state->json["buffers"] = buffers;
|
|
|
|
return OK;
|
|
}
|
|
|
|
Error GLTFDocument::_encode_buffer_bins(Ref<GLTFState> state, const String &p_path) {
|
|
print_verbose("glTF: Total buffers: " + itos(state->buffers.size()));
|
|
|
|
if (!state->buffers.size()) {
|
|
return OK;
|
|
}
|
|
Array buffers;
|
|
|
|
for (GLTFBufferIndex i = 0; i < state->buffers.size(); i++) {
|
|
Vector<uint8_t> buffer_data = state->buffers[i];
|
|
Dictionary gltf_buffer;
|
|
String filename = p_path.get_basename().get_file() + itos(i) + ".bin";
|
|
String path = p_path.get_base_dir() + "/" + filename;
|
|
Error err;
|
|
FileAccessRef f = FileAccess::open(path, FileAccess::WRITE, &err);
|
|
if (!f) {
|
|
return err;
|
|
}
|
|
if (buffer_data.size() == 0) {
|
|
return OK;
|
|
}
|
|
f->create(FileAccess::ACCESS_RESOURCES);
|
|
f->store_buffer(buffer_data.ptr(), buffer_data.size());
|
|
f->close();
|
|
gltf_buffer["uri"] = filename;
|
|
gltf_buffer["byteLength"] = buffer_data.size();
|
|
buffers.push_back(gltf_buffer);
|
|
}
|
|
state->json["buffers"] = buffers;
|
|
|
|
return OK;
|
|
}
|
|
|
|
Error GLTFDocument::_parse_buffers(Ref<GLTFState> state, const String &p_base_path) {
|
|
if (!state->json.has("buffers")) {
|
|
return OK;
|
|
}
|
|
|
|
const Array &buffers = state->json["buffers"];
|
|
for (GLTFBufferIndex i = 0; i < buffers.size(); i++) {
|
|
if (i == 0 && state->glb_data.size()) {
|
|
state->buffers.push_back(state->glb_data);
|
|
|
|
} else {
|
|
const Dictionary &buffer = buffers[i];
|
|
if (buffer.has("uri")) {
|
|
Vector<uint8_t> buffer_data;
|
|
String uri = buffer["uri"];
|
|
|
|
if (uri.begins_with("data:")) { // Embedded data using base64.
|
|
// Validate data MIME types and throw an error if it's one we don't know/support.
|
|
if (!uri.begins_with("data:application/octet-stream;base64") &&
|
|
!uri.begins_with("data:application/gltf-buffer;base64")) {
|
|
ERR_PRINT("glTF: Got buffer with an unknown URI data type: " + uri);
|
|
}
|
|
buffer_data = _parse_base64_uri(uri);
|
|
} else { // Relative path to an external image file.
|
|
uri = p_base_path.plus_file(uri).replace("\\", "/"); // Fix for Windows.
|
|
buffer_data = FileAccess::get_file_as_array(uri);
|
|
ERR_FAIL_COND_V_MSG(buffer.size() == 0, ERR_PARSE_ERROR, "glTF: Couldn't load binary file as an array: " + uri);
|
|
}
|
|
|
|
ERR_FAIL_COND_V(!buffer.has("byteLength"), ERR_PARSE_ERROR);
|
|
int byteLength = buffer["byteLength"];
|
|
ERR_FAIL_COND_V(byteLength < buffer_data.size(), ERR_PARSE_ERROR);
|
|
state->buffers.push_back(buffer_data);
|
|
}
|
|
}
|
|
}
|
|
|
|
print_verbose("glTF: Total buffers: " + itos(state->buffers.size()));
|
|
|
|
return OK;
|
|
}
|
|
|
|
Error GLTFDocument::_encode_buffer_views(Ref<GLTFState> state) {
|
|
Array buffers;
|
|
for (GLTFBufferViewIndex i = 0; i < state->buffer_views.size(); i++) {
|
|
Dictionary d;
|
|
|
|
Ref<GLTFBufferView> buffer_view = state->buffer_views[i];
|
|
|
|
d["buffer"] = buffer_view->buffer;
|
|
d["byteLength"] = buffer_view->byte_length;
|
|
|
|
d["byteOffset"] = buffer_view->byte_offset;
|
|
|
|
if (buffer_view->byte_stride != -1) {
|
|
d["byteStride"] = buffer_view->byte_stride;
|
|
}
|
|
|
|
// TODO Sparse
|
|
// d["target"] = buffer_view->indices;
|
|
|
|
ERR_FAIL_COND_V(!d.has("buffer"), ERR_INVALID_DATA);
|
|
ERR_FAIL_COND_V(!d.has("byteLength"), ERR_INVALID_DATA);
|
|
buffers.push_back(d);
|
|
}
|
|
print_verbose("glTF: Total buffer views: " + itos(state->buffer_views.size()));
|
|
state->json["bufferViews"] = buffers;
|
|
return OK;
|
|
}
|
|
|
|
Error GLTFDocument::_parse_buffer_views(Ref<GLTFState> state) {
|
|
if (!state->json.has("bufferViews")) {
|
|
return OK;
|
|
}
|
|
const Array &buffers = state->json["bufferViews"];
|
|
for (GLTFBufferViewIndex i = 0; i < buffers.size(); i++) {
|
|
const Dictionary &d = buffers[i];
|
|
|
|
Ref<GLTFBufferView> buffer_view;
|
|
buffer_view.instance();
|
|
|
|
ERR_FAIL_COND_V(!d.has("buffer"), ERR_PARSE_ERROR);
|
|
buffer_view->buffer = d["buffer"];
|
|
ERR_FAIL_COND_V(!d.has("byteLength"), ERR_PARSE_ERROR);
|
|
buffer_view->byte_length = d["byteLength"];
|
|
|
|
if (d.has("byteOffset")) {
|
|
buffer_view->byte_offset = d["byteOffset"];
|
|
}
|
|
|
|
if (d.has("byteStride")) {
|
|
buffer_view->byte_stride = d["byteStride"];
|
|
}
|
|
|
|
if (d.has("target")) {
|
|
const int target = d["target"];
|
|
buffer_view->indices = target == GLTFDocument::ELEMENT_ARRAY_BUFFER;
|
|
}
|
|
|
|
state->buffer_views.push_back(buffer_view);
|
|
}
|
|
|
|
print_verbose("glTF: Total buffer views: " + itos(state->buffer_views.size()));
|
|
|
|
return OK;
|
|
}
|
|
|
|
Error GLTFDocument::_encode_accessors(Ref<GLTFState> state) {
|
|
Array accessors;
|
|
for (GLTFAccessorIndex i = 0; i < state->accessors.size(); i++) {
|
|
Dictionary d;
|
|
|
|
Ref<GLTFAccessor> accessor = state->accessors[i];
|
|
d["componentType"] = accessor->component_type;
|
|
d["count"] = accessor->count;
|
|
d["type"] = _get_accessor_type_name(accessor->type);
|
|
d["byteOffset"] = accessor->byte_offset;
|
|
d["normalized"] = accessor->normalized;
|
|
Array max;
|
|
max.resize(accessor->max.size());
|
|
for (int32_t max_i = 0; max_i < max.size(); max_i++) {
|
|
max[max_i] = accessor->max[max_i];
|
|
}
|
|
d["max"] = max;
|
|
Array min;
|
|
min.resize(accessor->min.size());
|
|
for (int32_t min_i = 0; min_i < min.size(); min_i++) {
|
|
min[min_i] = accessor->min[min_i];
|
|
}
|
|
d["min"] = min;
|
|
d["bufferView"] = accessor->buffer_view; //optional because it may be sparse...
|
|
|
|
// Dictionary s;
|
|
// s["count"] = accessor->sparse_count;
|
|
// ERR_FAIL_COND_V(!s.has("count"), ERR_PARSE_ERROR);
|
|
|
|
// s["indices"] = accessor->sparse_accessors;
|
|
// ERR_FAIL_COND_V(!s.has("indices"), ERR_PARSE_ERROR);
|
|
|
|
// Dictionary si;
|
|
|
|
// si["bufferView"] = accessor->sparse_indices_buffer_view;
|
|
|
|
// ERR_FAIL_COND_V(!si.has("bufferView"), ERR_PARSE_ERROR);
|
|
// si["componentType"] = accessor->sparse_indices_component_type;
|
|
|
|
// if (si.has("byteOffset")) {
|
|
// si["byteOffset"] = accessor->sparse_indices_byte_offset;
|
|
// }
|
|
|
|
// ERR_FAIL_COND_V(!si.has("componentType"), ERR_PARSE_ERROR);
|
|
// s["indices"] = si;
|
|
// Dictionary sv;
|
|
|
|
// sv["bufferView"] = accessor->sparse_values_buffer_view;
|
|
// if (sv.has("byteOffset")) {
|
|
// sv["byteOffset"] = accessor->sparse_values_byte_offset;
|
|
// }
|
|
// ERR_FAIL_COND_V(!sv.has("bufferView"), ERR_PARSE_ERROR);
|
|
// s["values"] = sv;
|
|
// ERR_FAIL_COND_V(!s.has("values"), ERR_PARSE_ERROR);
|
|
// d["sparse"] = s;
|
|
accessors.push_back(d);
|
|
}
|
|
|
|
state->json["accessors"] = accessors;
|
|
ERR_FAIL_COND_V(!state->json.has("accessors"), ERR_FILE_CORRUPT);
|
|
print_verbose("glTF: Total accessors: " + itos(state->accessors.size()));
|
|
|
|
return OK;
|
|
}
|
|
|
|
String GLTFDocument::_get_accessor_type_name(const GLTFDocument::GLTFType p_type) {
|
|
if (p_type == GLTFDocument::TYPE_SCALAR) {
|
|
return "SCALAR";
|
|
}
|
|
if (p_type == GLTFDocument::TYPE_VEC2) {
|
|
return "VEC2";
|
|
}
|
|
if (p_type == GLTFDocument::TYPE_VEC3) {
|
|
return "VEC3";
|
|
}
|
|
if (p_type == GLTFDocument::TYPE_VEC4) {
|
|
return "VEC4";
|
|
}
|
|
|
|
if (p_type == GLTFDocument::TYPE_MAT2) {
|
|
return "MAT2";
|
|
}
|
|
if (p_type == GLTFDocument::TYPE_MAT3) {
|
|
return "MAT3";
|
|
}
|
|
if (p_type == GLTFDocument::TYPE_MAT4) {
|
|
return "MAT4";
|
|
}
|
|
ERR_FAIL_V("SCALAR");
|
|
}
|
|
|
|
GLTFDocument::GLTFType GLTFDocument::_get_type_from_str(const String &p_string) {
|
|
if (p_string == "SCALAR") {
|
|
return GLTFDocument::TYPE_SCALAR;
|
|
}
|
|
|
|
if (p_string == "VEC2") {
|
|
return GLTFDocument::TYPE_VEC2;
|
|
}
|
|
if (p_string == "VEC3") {
|
|
return GLTFDocument::TYPE_VEC3;
|
|
}
|
|
if (p_string == "VEC4") {
|
|
return GLTFDocument::TYPE_VEC4;
|
|
}
|
|
|
|
if (p_string == "MAT2") {
|
|
return GLTFDocument::TYPE_MAT2;
|
|
}
|
|
if (p_string == "MAT3") {
|
|
return GLTFDocument::TYPE_MAT3;
|
|
}
|
|
if (p_string == "MAT4") {
|
|
return GLTFDocument::TYPE_MAT4;
|
|
}
|
|
|
|
ERR_FAIL_V(GLTFDocument::TYPE_SCALAR);
|
|
}
|
|
|
|
Error GLTFDocument::_parse_accessors(Ref<GLTFState> state) {
|
|
if (!state->json.has("accessors")) {
|
|
return OK;
|
|
}
|
|
const Array &accessors = state->json["accessors"];
|
|
for (GLTFAccessorIndex i = 0; i < accessors.size(); i++) {
|
|
const Dictionary &d = accessors[i];
|
|
|
|
Ref<GLTFAccessor> accessor;
|
|
accessor.instance();
|
|
|
|
ERR_FAIL_COND_V(!d.has("componentType"), ERR_PARSE_ERROR);
|
|
accessor->component_type = d["componentType"];
|
|
ERR_FAIL_COND_V(!d.has("count"), ERR_PARSE_ERROR);
|
|
accessor->count = d["count"];
|
|
ERR_FAIL_COND_V(!d.has("type"), ERR_PARSE_ERROR);
|
|
accessor->type = _get_type_from_str(d["type"]);
|
|
|
|
if (d.has("bufferView")) {
|
|
accessor->buffer_view = d["bufferView"]; //optional because it may be sparse...
|
|
}
|
|
|
|
if (d.has("byteOffset")) {
|
|
accessor->byte_offset = d["byteOffset"];
|
|
}
|
|
|
|
if (d.has("normalized")) {
|
|
accessor->normalized = d["normalized"];
|
|
}
|
|
|
|
if (d.has("max")) {
|
|
Array max = d["max"];
|
|
accessor->max.resize(max.size());
|
|
PoolVector<float>::Write max_write = accessor->max.write();
|
|
for (int32_t max_i = 0; max_i < accessor->max.size(); max_i++) {
|
|
max_write[max_i] = max[max_i];
|
|
}
|
|
}
|
|
|
|
if (d.has("min")) {
|
|
Array min = d["min"];
|
|
accessor->min.resize(min.size());
|
|
PoolVector<float>::Write min_write = accessor->min.write();
|
|
for (int32_t min_i = 0; min_i < accessor->min.size(); min_i++) {
|
|
min_write[min_i] = min[min_i];
|
|
}
|
|
}
|
|
|
|
if (d.has("sparse")) {
|
|
//eeh..
|
|
|
|
const Dictionary &s = d["sparse"];
|
|
|
|
ERR_FAIL_COND_V(!s.has("count"), ERR_PARSE_ERROR);
|
|
accessor->sparse_count = s["count"];
|
|
ERR_FAIL_COND_V(!s.has("indices"), ERR_PARSE_ERROR);
|
|
const Dictionary &si = s["indices"];
|
|
|
|
ERR_FAIL_COND_V(!si.has("bufferView"), ERR_PARSE_ERROR);
|
|
accessor->sparse_indices_buffer_view = si["bufferView"];
|
|
ERR_FAIL_COND_V(!si.has("componentType"), ERR_PARSE_ERROR);
|
|
accessor->sparse_indices_component_type = si["componentType"];
|
|
|
|
if (si.has("byteOffset")) {
|
|
accessor->sparse_indices_byte_offset = si["byteOffset"];
|
|
}
|
|
|
|
ERR_FAIL_COND_V(!s.has("values"), ERR_PARSE_ERROR);
|
|
const Dictionary &sv = s["values"];
|
|
|
|
ERR_FAIL_COND_V(!sv.has("bufferView"), ERR_PARSE_ERROR);
|
|
accessor->sparse_values_buffer_view = sv["bufferView"];
|
|
if (sv.has("byteOffset")) {
|
|
accessor->sparse_values_byte_offset = sv["byteOffset"];
|
|
}
|
|
}
|
|
|
|
state->accessors.push_back(accessor);
|
|
}
|
|
|
|
print_verbose("glTF: Total accessors: " + itos(state->accessors.size()));
|
|
|
|
return OK;
|
|
}
|
|
|
|
double GLTFDocument::_filter_number(double p_float) {
|
|
if (Math::is_nan(p_float)) {
|
|
return 0.0f;
|
|
}
|
|
return p_float;
|
|
}
|
|
|
|
String GLTFDocument::_get_component_type_name(const uint32_t p_component) {
|
|
switch (p_component) {
|
|
case GLTFDocument::COMPONENT_TYPE_BYTE:
|
|
return "Byte";
|
|
case GLTFDocument::COMPONENT_TYPE_UNSIGNED_BYTE:
|
|
return "UByte";
|
|
case GLTFDocument::COMPONENT_TYPE_SHORT:
|
|
return "Short";
|
|
case GLTFDocument::COMPONENT_TYPE_UNSIGNED_SHORT:
|
|
return "UShort";
|
|
case GLTFDocument::COMPONENT_TYPE_INT:
|
|
return "Int";
|
|
case GLTFDocument::COMPONENT_TYPE_FLOAT:
|
|
return "Float";
|
|
}
|
|
|
|
return "<Error>";
|
|
}
|
|
|
|
String GLTFDocument::_get_type_name(const GLTFType p_component) {
|
|
static const char *names[] = {
|
|
"float",
|
|
"vec2",
|
|
"vec3",
|
|
"vec4",
|
|
"mat2",
|
|
"mat3",
|
|
"mat4"
|
|
};
|
|
|
|
return names[p_component];
|
|
}
|
|
|
|
Error GLTFDocument::_encode_buffer_view(Ref<GLTFState> state, const double *src, const int count, const GLTFType type, const int component_type, const bool normalized, const int byte_offset, const bool for_vertex, GLTFBufferViewIndex &r_accessor) {
|
|
const int component_count_for_type[7] = {
|
|
1, 2, 3, 4, 4, 9, 16
|
|
};
|
|
|
|
const int component_count = component_count_for_type[type];
|
|
const int component_size = _get_component_type_size(component_type);
|
|
ERR_FAIL_COND_V(component_size == 0, FAILED);
|
|
|
|
int skip_every = 0;
|
|
int skip_bytes = 0;
|
|
//special case of alignments, as described in spec
|
|
switch (component_type) {
|
|
case COMPONENT_TYPE_BYTE:
|
|
case COMPONENT_TYPE_UNSIGNED_BYTE: {
|
|
if (type == TYPE_MAT2) {
|
|
skip_every = 2;
|
|
skip_bytes = 2;
|
|
}
|
|
if (type == TYPE_MAT3) {
|
|
skip_every = 3;
|
|
skip_bytes = 1;
|
|
}
|
|
} break;
|
|
case COMPONENT_TYPE_SHORT:
|
|
case COMPONENT_TYPE_UNSIGNED_SHORT: {
|
|
if (type == TYPE_MAT3) {
|
|
skip_every = 6;
|
|
skip_bytes = 4;
|
|
}
|
|
} break;
|
|
default: {
|
|
}
|
|
}
|
|
|
|
Ref<GLTFBufferView> bv;
|
|
bv.instance();
|
|
const uint32_t offset = bv->byte_offset = byte_offset;
|
|
Vector<uint8_t> &gltf_buffer = state->buffers.write[0];
|
|
|
|
int stride = _get_component_type_size(component_type);
|
|
if (for_vertex && stride % 4) {
|
|
stride += 4 - (stride % 4); //according to spec must be multiple of 4
|
|
}
|
|
//use to debug
|
|
print_verbose("glTF: encoding type " + _get_type_name(type) + " component type: " + _get_component_type_name(component_type) + " stride: " + itos(stride) + " amount " + itos(count));
|
|
|
|
print_verbose("glTF: encoding accessor offset " + itos(byte_offset) + " view offset: " + itos(bv->byte_offset) + " total buffer len: " + itos(gltf_buffer.size()) + " view len " + itos(bv->byte_length));
|
|
|
|
const int buffer_end = (stride * (count - 1)) + _get_component_type_size(component_type);
|
|
// TODO define bv->byte_stride
|
|
bv->byte_offset = gltf_buffer.size();
|
|
|
|
switch (component_type) {
|
|
case COMPONENT_TYPE_BYTE: {
|
|
Vector<int8_t> buffer;
|
|
buffer.resize(count * component_count);
|
|
int32_t dst_i = 0;
|
|
for (int i = 0; i < count; i++) {
|
|
for (int j = 0; j < component_count; j++) {
|
|
if (skip_every && j > 0 && (j % skip_every) == 0) {
|
|
dst_i += skip_bytes;
|
|
}
|
|
double d = *src;
|
|
if (normalized) {
|
|
buffer.write[dst_i] = d * 128.0;
|
|
} else {
|
|
buffer.write[dst_i] = d;
|
|
}
|
|
src++;
|
|
dst_i++;
|
|
}
|
|
}
|
|
int64_t old_size = gltf_buffer.size();
|
|
gltf_buffer.resize(old_size + (buffer.size() * sizeof(int8_t)));
|
|
memcpy(gltf_buffer.ptrw() + old_size, buffer.ptrw(), buffer.size() * sizeof(int8_t));
|
|
bv->byte_length = buffer.size() * sizeof(int8_t);
|
|
} break;
|
|
case COMPONENT_TYPE_UNSIGNED_BYTE: {
|
|
Vector<uint8_t> buffer;
|
|
buffer.resize(count * component_count);
|
|
int32_t dst_i = 0;
|
|
for (int i = 0; i < count; i++) {
|
|
for (int j = 0; j < component_count; j++) {
|
|
if (skip_every && j > 0 && (j % skip_every) == 0) {
|
|
dst_i += skip_bytes;
|
|
}
|
|
double d = *src;
|
|
if (normalized) {
|
|
buffer.write[dst_i] = d * 255.0;
|
|
} else {
|
|
buffer.write[dst_i] = d;
|
|
}
|
|
src++;
|
|
dst_i++;
|
|
}
|
|
}
|
|
gltf_buffer.append_array(buffer);
|
|
bv->byte_length = buffer.size() * sizeof(uint8_t);
|
|
} break;
|
|
case COMPONENT_TYPE_SHORT: {
|
|
Vector<int16_t> buffer;
|
|
buffer.resize(count * component_count);
|
|
int32_t dst_i = 0;
|
|
for (int i = 0; i < count; i++) {
|
|
for (int j = 0; j < component_count; j++) {
|
|
if (skip_every && j > 0 && (j % skip_every) == 0) {
|
|
dst_i += skip_bytes;
|
|
}
|
|
double d = *src;
|
|
if (normalized) {
|
|
buffer.write[dst_i] = d * 32768.0;
|
|
} else {
|
|
buffer.write[dst_i] = d;
|
|
}
|
|
src++;
|
|
dst_i++;
|
|
}
|
|
}
|
|
int64_t old_size = gltf_buffer.size();
|
|
gltf_buffer.resize(old_size + (buffer.size() * sizeof(int16_t)));
|
|
memcpy(gltf_buffer.ptrw() + old_size, buffer.ptrw(), buffer.size() * sizeof(int16_t));
|
|
bv->byte_length = buffer.size() * sizeof(int16_t);
|
|
} break;
|
|
case COMPONENT_TYPE_UNSIGNED_SHORT: {
|
|
Vector<uint16_t> buffer;
|
|
buffer.resize(count * component_count);
|
|
int32_t dst_i = 0;
|
|
for (int i = 0; i < count; i++) {
|
|
for (int j = 0; j < component_count; j++) {
|
|
if (skip_every && j > 0 && (j % skip_every) == 0) {
|
|
dst_i += skip_bytes;
|
|
}
|
|
double d = *src;
|
|
if (normalized) {
|
|
buffer.write[dst_i] = d * 65535.0;
|
|
} else {
|
|
buffer.write[dst_i] = d;
|
|
}
|
|
src++;
|
|
dst_i++;
|
|
}
|
|
}
|
|
int64_t old_size = gltf_buffer.size();
|
|
gltf_buffer.resize(old_size + (buffer.size() * sizeof(uint16_t)));
|
|
memcpy(gltf_buffer.ptrw() + old_size, buffer.ptrw(), buffer.size() * sizeof(uint16_t));
|
|
bv->byte_length = buffer.size() * sizeof(uint16_t);
|
|
} break;
|
|
case COMPONENT_TYPE_INT: {
|
|
Vector<int> buffer;
|
|
buffer.resize(count * component_count);
|
|
int32_t dst_i = 0;
|
|
for (int i = 0; i < count; i++) {
|
|
for (int j = 0; j < component_count; j++) {
|
|
if (skip_every && j > 0 && (j % skip_every) == 0) {
|
|
dst_i += skip_bytes;
|
|
}
|
|
double d = *src;
|
|
buffer.write[dst_i] = d;
|
|
src++;
|
|
dst_i++;
|
|
}
|
|
}
|
|
int64_t old_size = gltf_buffer.size();
|
|
gltf_buffer.resize(old_size + (buffer.size() * sizeof(int32_t)));
|
|
memcpy(gltf_buffer.ptrw() + old_size, buffer.ptrw(), buffer.size() * sizeof(int32_t));
|
|
bv->byte_length = buffer.size() * sizeof(int32_t);
|
|
} break;
|
|
case COMPONENT_TYPE_FLOAT: {
|
|
Vector<float> buffer;
|
|
buffer.resize(count * component_count);
|
|
int32_t dst_i = 0;
|
|
for (int i = 0; i < count; i++) {
|
|
for (int j = 0; j < component_count; j++) {
|
|
if (skip_every && j > 0 && (j % skip_every) == 0) {
|
|
dst_i += skip_bytes;
|
|
}
|
|
double d = *src;
|
|
buffer.write[dst_i] = d;
|
|
src++;
|
|
dst_i++;
|
|
}
|
|
}
|
|
int64_t old_size = gltf_buffer.size();
|
|
gltf_buffer.resize(old_size + (buffer.size() * sizeof(float)));
|
|
memcpy(gltf_buffer.ptrw() + old_size, buffer.ptrw(), buffer.size() * sizeof(float));
|
|
bv->byte_length = buffer.size() * sizeof(float);
|
|
} break;
|
|
}
|
|
ERR_FAIL_COND_V(buffer_end > bv->byte_length, ERR_INVALID_DATA);
|
|
|
|
ERR_FAIL_COND_V((int)(offset + buffer_end) > gltf_buffer.size(), ERR_INVALID_DATA);
|
|
r_accessor = bv->buffer = state->buffer_views.size();
|
|
state->buffer_views.push_back(bv);
|
|
return OK;
|
|
}
|
|
|
|
Error GLTFDocument::_decode_buffer_view(Ref<GLTFState> state, double *dst, const GLTFBufferViewIndex p_buffer_view, const int skip_every, const int skip_bytes, const int element_size, const int count, const GLTFType type, const int component_count, const int component_type, const int component_size, const bool normalized, const int byte_offset, const bool for_vertex) {
|
|
const Ref<GLTFBufferView> bv = state->buffer_views[p_buffer_view];
|
|
|
|
int stride = element_size;
|
|
if (bv->byte_stride != -1) {
|
|
stride = bv->byte_stride;
|
|
}
|
|
if (for_vertex && stride % 4) {
|
|
stride += 4 - (stride % 4); //according to spec must be multiple of 4
|
|
}
|
|
|
|
ERR_FAIL_INDEX_V(bv->buffer, state->buffers.size(), ERR_PARSE_ERROR);
|
|
|
|
const uint32_t offset = bv->byte_offset + byte_offset;
|
|
Vector<uint8_t> buffer = state->buffers[bv->buffer]; //copy on write, so no performance hit
|
|
const uint8_t *bufptr = buffer.ptr();
|
|
|
|
//use to debug
|
|
print_verbose("glTF: type " + _get_type_name(type) + " component type: " + _get_component_type_name(component_type) + " stride: " + itos(stride) + " amount " + itos(count));
|
|
print_verbose("glTF: accessor offset " + itos(byte_offset) + " view offset: " + itos(bv->byte_offset) + " total buffer len: " + itos(buffer.size()) + " view len " + itos(bv->byte_length));
|
|
|
|
const int buffer_end = (stride * (count - 1)) + element_size;
|
|
ERR_FAIL_COND_V(buffer_end > bv->byte_length, ERR_PARSE_ERROR);
|
|
|
|
ERR_FAIL_COND_V((int)(offset + buffer_end) > buffer.size(), ERR_PARSE_ERROR);
|
|
|
|
//fill everything as doubles
|
|
|
|
for (int i = 0; i < count; i++) {
|
|
const uint8_t *src = &bufptr[offset + i * stride];
|
|
|
|
for (int j = 0; j < component_count; j++) {
|
|
if (skip_every && j > 0 && (j % skip_every) == 0) {
|
|
src += skip_bytes;
|
|
}
|
|
|
|
double d = 0;
|
|
|
|
switch (component_type) {
|
|
case COMPONENT_TYPE_BYTE: {
|
|
int8_t b = int8_t(*src);
|
|
if (normalized) {
|
|
d = (double(b) / 128.0);
|
|
} else {
|
|
d = double(b);
|
|
}
|
|
} break;
|
|
case COMPONENT_TYPE_UNSIGNED_BYTE: {
|
|
uint8_t b = *src;
|
|
if (normalized) {
|
|
d = (double(b) / 255.0);
|
|
} else {
|
|
d = double(b);
|
|
}
|
|
} break;
|
|
case COMPONENT_TYPE_SHORT: {
|
|
int16_t s = *(int16_t *)src;
|
|
if (normalized) {
|
|
d = (double(s) / 32768.0);
|
|
} else {
|
|
d = double(s);
|
|
}
|
|
} break;
|
|
case COMPONENT_TYPE_UNSIGNED_SHORT: {
|
|
uint16_t s = *(uint16_t *)src;
|
|
if (normalized) {
|
|
d = (double(s) / 65535.0);
|
|
} else {
|
|
d = double(s);
|
|
}
|
|
} break;
|
|
case COMPONENT_TYPE_INT: {
|
|
d = *(int *)src;
|
|
} break;
|
|
case COMPONENT_TYPE_FLOAT: {
|
|
d = *(float *)src;
|
|
} break;
|
|
}
|
|
|
|
*dst++ = d;
|
|
src += component_size;
|
|
}
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
int GLTFDocument::_get_component_type_size(const int component_type) {
|
|
switch (component_type) {
|
|
case COMPONENT_TYPE_BYTE:
|
|
case COMPONENT_TYPE_UNSIGNED_BYTE:
|
|
return 1;
|
|
break;
|
|
case COMPONENT_TYPE_SHORT:
|
|
case COMPONENT_TYPE_UNSIGNED_SHORT:
|
|
return 2;
|
|
break;
|
|
case COMPONENT_TYPE_INT:
|
|
case COMPONENT_TYPE_FLOAT:
|
|
return 4;
|
|
break;
|
|
default: {
|
|
ERR_FAIL_V(0);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
Vector<double> GLTFDocument::_decode_accessor(Ref<GLTFState> state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) {
|
|
//spec, for reference:
|
|
//https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#data-alignment
|
|
|
|
ERR_FAIL_INDEX_V(p_accessor, state->accessors.size(), Vector<double>());
|
|
|
|
const Ref<GLTFAccessor> a = state->accessors[p_accessor];
|
|
|
|
const int component_count_for_type[7] = {
|
|
1, 2, 3, 4, 4, 9, 16
|
|
};
|
|
|
|
const int component_count = component_count_for_type[a->type];
|
|
const int component_size = _get_component_type_size(a->component_type);
|
|
ERR_FAIL_COND_V(component_size == 0, Vector<double>());
|
|
int element_size = component_count * component_size;
|
|
|
|
int skip_every = 0;
|
|
int skip_bytes = 0;
|
|
//special case of alignments, as described in spec
|
|
switch (a->component_type) {
|
|
case COMPONENT_TYPE_BYTE:
|
|
case COMPONENT_TYPE_UNSIGNED_BYTE: {
|
|
if (a->type == TYPE_MAT2) {
|
|
skip_every = 2;
|
|
skip_bytes = 2;
|
|
element_size = 8; //override for this case
|
|
}
|
|
if (a->type == TYPE_MAT3) {
|
|
skip_every = 3;
|
|
skip_bytes = 1;
|
|
element_size = 12; //override for this case
|
|
}
|
|
} break;
|
|
case COMPONENT_TYPE_SHORT:
|
|
case COMPONENT_TYPE_UNSIGNED_SHORT: {
|
|
if (a->type == TYPE_MAT3) {
|
|
skip_every = 6;
|
|
skip_bytes = 4;
|
|
element_size = 16; //override for this case
|
|
}
|
|
} break;
|
|
default: {
|
|
}
|
|
}
|
|
|
|
Vector<double> dst_buffer;
|
|
dst_buffer.resize(component_count * a->count);
|
|
double *dst = dst_buffer.ptrw();
|
|
|
|
if (a->buffer_view >= 0) {
|
|
ERR_FAIL_INDEX_V(a->buffer_view, state->buffer_views.size(), Vector<double>());
|
|
|
|
const Error err = _decode_buffer_view(state, dst, a->buffer_view, skip_every, skip_bytes, element_size, a->count, a->type, component_count, a->component_type, component_size, a->normalized, a->byte_offset, p_for_vertex);
|
|
if (err != OK) {
|
|
return Vector<double>();
|
|
}
|
|
} else {
|
|
//fill with zeros, as bufferview is not defined.
|
|
for (int i = 0; i < (a->count * component_count); i++) {
|
|
dst_buffer.write[i] = 0;
|
|
}
|
|
}
|
|
|
|
if (a->sparse_count > 0) {
|
|
// I could not find any file using this, so this code is so far untested
|
|
Vector<double> indices;
|
|
indices.resize(a->sparse_count);
|
|
const int indices_component_size = _get_component_type_size(a->sparse_indices_component_type);
|
|
|
|
Error err = _decode_buffer_view(state, indices.ptrw(), a->sparse_indices_buffer_view, 0, 0, indices_component_size, a->sparse_count, TYPE_SCALAR, 1, a->sparse_indices_component_type, indices_component_size, false, a->sparse_indices_byte_offset, false);
|
|
if (err != OK) {
|
|
return Vector<double>();
|
|
}
|
|
|
|
Vector<double> data;
|
|
data.resize(component_count * a->sparse_count);
|
|
err = _decode_buffer_view(state, data.ptrw(), a->sparse_values_buffer_view, skip_every, skip_bytes, element_size, a->sparse_count, a->type, component_count, a->component_type, component_size, a->normalized, a->sparse_values_byte_offset, p_for_vertex);
|
|
if (err != OK) {
|
|
return Vector<double>();
|
|
}
|
|
|
|
for (int i = 0; i < indices.size(); i++) {
|
|
const int write_offset = int(indices[i]) * component_count;
|
|
|
|
for (int j = 0; j < component_count; j++) {
|
|
dst[write_offset + j] = data[i * component_count + j];
|
|
}
|
|
}
|
|
}
|
|
|
|
return dst_buffer;
|
|
}
|
|
|
|
GLTFAccessorIndex GLTFDocument::_encode_accessor_as_ints(Ref<GLTFState> state, const Vector<int32_t> p_attribs, const bool p_for_vertex) {
|
|
if (p_attribs.size() == 0) {
|
|
return -1;
|
|
}
|
|
const int element_count = 1;
|
|
const int ret_size = p_attribs.size();
|
|
Vector<double> attribs;
|
|
attribs.resize(ret_size);
|
|
Vector<double> type_max;
|
|
type_max.resize(element_count);
|
|
Vector<double> type_min;
|
|
type_min.resize(element_count);
|
|
for (int i = 0; i < p_attribs.size(); i++) {
|
|
attribs.write[i] = Math::stepify(p_attribs[i], 1.0);
|
|
if (i == 0) {
|
|
for (int32_t type_i = 0; type_i < element_count; type_i++) {
|
|
type_max.write[type_i] = attribs[(i * element_count) + type_i];
|
|
type_min.write[type_i] = attribs[(i * element_count) + type_i];
|
|
}
|
|
}
|
|
for (int32_t type_i = 0; type_i < element_count; type_i++) {
|
|
type_max.write[type_i] = MAX(attribs[(i * element_count) + type_i], type_max[type_i]);
|
|
type_min.write[type_i] = MIN(attribs[(i * element_count) + type_i], type_min[type_i]);
|
|
type_max.write[type_i] = _filter_number(type_max.write[type_i]);
|
|
type_min.write[type_i] = _filter_number(type_min.write[type_i]);
|
|
}
|
|
}
|
|
|
|
ERR_FAIL_COND_V(attribs.size() == 0, -1);
|
|
|
|
Ref<GLTFAccessor> accessor;
|
|
accessor.instance();
|
|
GLTFBufferIndex buffer_view_i;
|
|
int64_t size = state->buffers[0].size();
|
|
const GLTFDocument::GLTFType type = GLTFDocument::TYPE_SCALAR;
|
|
const int component_type = GLTFDocument::COMPONENT_TYPE_INT;
|
|
|
|
PoolVector<float> max;
|
|
max.resize(type_max.size());
|
|
PoolVector<float>::Write write_max = max.write();
|
|
for (int32_t max_i = 0; max_i < max.size(); max_i++) {
|
|
write_max[max_i] = type_max[max_i];
|
|
}
|
|
accessor->max = max;
|
|
PoolVector<float> min;
|
|
min.resize(type_min.size());
|
|
PoolVector<float>::Write write_min = min.write();
|
|
for (int32_t min_i = 0; min_i < min.size(); min_i++) {
|
|
write_min[min_i] = type_min[min_i];
|
|
}
|
|
accessor->min = min;
|
|
accessor->normalized = false;
|
|
accessor->count = ret_size;
|
|
accessor->type = type;
|
|
accessor->component_type = component_type;
|
|
accessor->byte_offset = 0;
|
|
Error err = _encode_buffer_view(state, attribs.ptr(), attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i);
|
|
if (err != OK) {
|
|
return -1;
|
|
}
|
|
accessor->buffer_view = buffer_view_i;
|
|
state->accessors.push_back(accessor);
|
|
return state->accessors.size() - 1;
|
|
}
|
|
|
|
Vector<int> GLTFDocument::_decode_accessor_as_ints(Ref<GLTFState> state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) {
|
|
const Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
|
|
Vector<int> ret;
|
|
|
|
if (attribs.size() == 0) {
|
|
return ret;
|
|
}
|
|
|
|
const double *attribs_ptr = attribs.ptr();
|
|
const int ret_size = attribs.size();
|
|
ret.resize(ret_size);
|
|
{
|
|
for (int i = 0; i < ret_size; i++) {
|
|
ret.write[i] = int(attribs_ptr[i]);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
Vector<float> GLTFDocument::_decode_accessor_as_floats(Ref<GLTFState> state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) {
|
|
const Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
|
|
Vector<float> ret;
|
|
|
|
if (attribs.size() == 0) {
|
|
return ret;
|
|
}
|
|
|
|
const double *attribs_ptr = attribs.ptr();
|
|
const int ret_size = attribs.size();
|
|
ret.resize(ret_size);
|
|
{
|
|
for (int i = 0; i < ret_size; i++) {
|
|
ret.write[i] = float(attribs_ptr[i]);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
GLTFAccessorIndex GLTFDocument::_encode_accessor_as_vec2(Ref<GLTFState> state, const Vector<Vector2> p_attribs, const bool p_for_vertex) {
|
|
if (p_attribs.size() == 0) {
|
|
return -1;
|
|
}
|
|
const int element_count = 2;
|
|
|
|
const int ret_size = p_attribs.size() * element_count;
|
|
Vector<double> attribs;
|
|
attribs.resize(ret_size);
|
|
Vector<double> type_max;
|
|
type_max.resize(element_count);
|
|
Vector<double> type_min;
|
|
type_min.resize(element_count);
|
|
|
|
for (int i = 0; i < p_attribs.size(); i++) {
|
|
Vector2 attrib = p_attribs[i];
|
|
attribs.write[(i * element_count) + 0] = Math::stepify(attrib.x, CMP_NORMALIZE_TOLERANCE);
|
|
attribs.write[(i * element_count) + 1] = Math::stepify(attrib.y, CMP_NORMALIZE_TOLERANCE);
|
|
_calc_accessor_min_max(i, element_count, type_max, attribs, type_min);
|
|
}
|
|
|
|
ERR_FAIL_COND_V(attribs.size() % element_count != 0, -1);
|
|
|
|
Ref<GLTFAccessor> accessor;
|
|
accessor.instance();
|
|
GLTFBufferIndex buffer_view_i;
|
|
int64_t size = state->buffers[0].size();
|
|
const GLTFDocument::GLTFType type = GLTFDocument::TYPE_VEC2;
|
|
const int component_type = GLTFDocument::COMPONENT_TYPE_FLOAT;
|
|
|
|
PoolVector<float> max;
|
|
max.resize(type_max.size());
|
|
PoolVector<float>::Write write_max = max.write();
|
|
for (int32_t max_i = 0; max_i < max.size(); max_i++) {
|
|
write_max[max_i] = type_max[max_i];
|
|
}
|
|
accessor->max = max;
|
|
PoolVector<float> min;
|
|
min.resize(type_min.size());
|
|
PoolVector<float>::Write write_min = min.write();
|
|
for (int32_t min_i = 0; min_i < min.size(); min_i++) {
|
|
write_min[min_i] = type_min[min_i];
|
|
}
|
|
accessor->normalized = false;
|
|
accessor->count = p_attribs.size();
|
|
accessor->type = type;
|
|
accessor->component_type = component_type;
|
|
accessor->byte_offset = 0;
|
|
Error err = _encode_buffer_view(state, attribs.ptr(), p_attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i);
|
|
if (err != OK) {
|
|
return -1;
|
|
}
|
|
accessor->buffer_view = buffer_view_i;
|
|
state->accessors.push_back(accessor);
|
|
return state->accessors.size() - 1;
|
|
}
|
|
|
|
GLTFAccessorIndex GLTFDocument::_encode_accessor_as_color(Ref<GLTFState> state, const Vector<Color> p_attribs, const bool p_for_vertex) {
|
|
if (p_attribs.size() == 0) {
|
|
return -1;
|
|
}
|
|
|
|
const int ret_size = p_attribs.size() * 4;
|
|
Vector<double> attribs;
|
|
attribs.resize(ret_size);
|
|
|
|
const int element_count = 4;
|
|
Vector<double> type_max;
|
|
type_max.resize(element_count);
|
|
Vector<double> type_min;
|
|
type_min.resize(element_count);
|
|
for (int i = 0; i < p_attribs.size(); i++) {
|
|
Color attrib = p_attribs[i];
|
|
attribs.write[(i * element_count) + 0] = Math::stepify(attrib.r, CMP_NORMALIZE_TOLERANCE);
|
|
attribs.write[(i * element_count) + 1] = Math::stepify(attrib.g, CMP_NORMALIZE_TOLERANCE);
|
|
attribs.write[(i * element_count) + 2] = Math::stepify(attrib.b, CMP_NORMALIZE_TOLERANCE);
|
|
attribs.write[(i * element_count) + 3] = Math::stepify(attrib.a, CMP_NORMALIZE_TOLERANCE);
|
|
|
|
_calc_accessor_min_max(i, element_count, type_max, attribs, type_min);
|
|
}
|
|
|
|
ERR_FAIL_COND_V(attribs.size() % element_count != 0, -1);
|
|
|
|
Ref<GLTFAccessor> accessor;
|
|
accessor.instance();
|
|
GLTFBufferIndex buffer_view_i;
|
|
int64_t size = state->buffers[0].size();
|
|
const GLTFDocument::GLTFType type = GLTFDocument::TYPE_VEC4;
|
|
const int component_type = GLTFDocument::COMPONENT_TYPE_FLOAT;
|
|
PoolVector<float> max;
|
|
max.resize(type_max.size());
|
|
PoolVector<float>::Write write_max = max.write();
|
|
for (int32_t max_i = 0; max_i < max.size(); max_i++) {
|
|
write_max[max_i] = type_max[max_i];
|
|
}
|
|
accessor->max = max;
|
|
PoolVector<float> min;
|
|
min.resize(type_min.size());
|
|
PoolVector<float>::Write write_min = min.write();
|
|
for (int32_t min_i = 0; min_i < min.size(); min_i++) {
|
|
write_min[min_i] = type_min[min_i];
|
|
}
|
|
accessor->normalized = false;
|
|
accessor->count = p_attribs.size();
|
|
accessor->type = type;
|
|
accessor->component_type = component_type;
|
|
accessor->byte_offset = 0;
|
|
Error err = _encode_buffer_view(state, attribs.ptr(), p_attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i);
|
|
if (err != OK) {
|
|
return -1;
|
|
}
|
|
accessor->buffer_view = buffer_view_i;
|
|
state->accessors.push_back(accessor);
|
|
return state->accessors.size() - 1;
|
|
}
|
|
|
|
void GLTFDocument::_calc_accessor_min_max(int i, const int element_count, Vector<double> &type_max, Vector<double> attribs, Vector<double> &type_min) {
|
|
if (i == 0) {
|
|
for (int32_t type_i = 0; type_i < element_count; type_i++) {
|
|
type_max.write[type_i] = attribs[(i * element_count) + type_i];
|
|
type_min.write[type_i] = attribs[(i * element_count) + type_i];
|
|
}
|
|
}
|
|
for (int32_t type_i = 0; type_i < element_count; type_i++) {
|
|
type_max.write[type_i] = MAX(attribs[(i * element_count) + type_i], type_max[type_i]);
|
|
type_min.write[type_i] = MIN(attribs[(i * element_count) + type_i], type_min[type_i]);
|
|
type_max.write[type_i] = _filter_number(type_max.write[type_i]);
|
|
type_min.write[type_i] = _filter_number(type_min.write[type_i]);
|
|
}
|
|
}
|
|
|
|
GLTFAccessorIndex GLTFDocument::_encode_accessor_as_weights(Ref<GLTFState> state, const Vector<Color> p_attribs, const bool p_for_vertex) {
|
|
if (p_attribs.size() == 0) {
|
|
return -1;
|
|
}
|
|
|
|
const int ret_size = p_attribs.size() * 4;
|
|
Vector<double> attribs;
|
|
attribs.resize(ret_size);
|
|
|
|
const int element_count = 4;
|
|
|
|
Vector<double> type_max;
|
|
type_max.resize(element_count);
|
|
Vector<double> type_min;
|
|
type_min.resize(element_count);
|
|
for (int i = 0; i < p_attribs.size(); i++) {
|
|
Color attrib = p_attribs[i];
|
|
attribs.write[(i * element_count) + 0] = Math::stepify(attrib.r, CMP_NORMALIZE_TOLERANCE);
|
|
attribs.write[(i * element_count) + 1] = Math::stepify(attrib.g, CMP_NORMALIZE_TOLERANCE);
|
|
attribs.write[(i * element_count) + 2] = Math::stepify(attrib.b, CMP_NORMALIZE_TOLERANCE);
|
|
attribs.write[(i * element_count) + 3] = Math::stepify(attrib.a, CMP_NORMALIZE_TOLERANCE);
|
|
|
|
_calc_accessor_min_max(i, element_count, type_max, attribs, type_min);
|
|
}
|
|
|
|
ERR_FAIL_COND_V(attribs.size() % element_count != 0, -1);
|
|
|
|
Ref<GLTFAccessor> accessor;
|
|
accessor.instance();
|
|
GLTFBufferIndex buffer_view_i;
|
|
int64_t size = state->buffers[0].size();
|
|
const GLTFDocument::GLTFType type = GLTFDocument::TYPE_VEC4;
|
|
const int component_type = GLTFDocument::COMPONENT_TYPE_FLOAT;
|
|
|
|
PoolVector<float> max;
|
|
max.resize(type_max.size());
|
|
PoolVector<float>::Write write_max = max.write();
|
|
for (int32_t max_i = 0; max_i < max.size(); max_i++) {
|
|
write_max[max_i] = type_max[max_i];
|
|
}
|
|
accessor->max = max;
|
|
PoolVector<float> min;
|
|
min.resize(type_min.size());
|
|
PoolVector<float>::Write write_min = min.write();
|
|
for (int32_t min_i = 0; min_i < min.size(); min_i++) {
|
|
write_min[min_i] = type_min[min_i];
|
|
}
|
|
accessor->normalized = false;
|
|
accessor->count = p_attribs.size();
|
|
accessor->type = type;
|
|
accessor->component_type = component_type;
|
|
accessor->byte_offset = 0;
|
|
Error err = _encode_buffer_view(state, attribs.ptr(), p_attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i);
|
|
if (err != OK) {
|
|
return -1;
|
|
}
|
|
accessor->buffer_view = buffer_view_i;
|
|
state->accessors.push_back(accessor);
|
|
return state->accessors.size() - 1;
|
|
}
|
|
|
|
GLTFAccessorIndex GLTFDocument::_encode_accessor_as_joints(Ref<GLTFState> state, const Vector<Color> p_attribs, const bool p_for_vertex) {
|
|
if (p_attribs.size() == 0) {
|
|
return -1;
|
|
}
|
|
|
|
const int element_count = 4;
|
|
const int ret_size = p_attribs.size() * element_count;
|
|
Vector<double> attribs;
|
|
attribs.resize(ret_size);
|
|
|
|
Vector<double> type_max;
|
|
type_max.resize(element_count);
|
|
Vector<double> type_min;
|
|
type_min.resize(element_count);
|
|
for (int i = 0; i < p_attribs.size(); i++) {
|
|
Color attrib = p_attribs[i];
|
|
attribs.write[(i * element_count) + 0] = Math::stepify(attrib.r, CMP_NORMALIZE_TOLERANCE);
|
|
attribs.write[(i * element_count) + 1] = Math::stepify(attrib.g, CMP_NORMALIZE_TOLERANCE);
|
|
attribs.write[(i * element_count) + 2] = Math::stepify(attrib.b, CMP_NORMALIZE_TOLERANCE);
|
|
attribs.write[(i * element_count) + 3] = Math::stepify(attrib.a, CMP_NORMALIZE_TOLERANCE);
|
|
_calc_accessor_min_max(i, element_count, type_max, attribs, type_min);
|
|
}
|
|
ERR_FAIL_COND_V(attribs.size() % element_count != 0, -1);
|
|
|
|
Ref<GLTFAccessor> accessor;
|
|
accessor.instance();
|
|
GLTFBufferIndex buffer_view_i;
|
|
int64_t size = state->buffers[0].size();
|
|
const GLTFDocument::GLTFType type = GLTFDocument::TYPE_VEC4;
|
|
const int component_type = GLTFDocument::COMPONENT_TYPE_UNSIGNED_SHORT;
|
|
|
|
PoolVector<float> max;
|
|
max.resize(type_max.size());
|
|
PoolVector<float>::Write write_max = max.write();
|
|
for (int32_t max_i = 0; max_i < max.size(); max_i++) {
|
|
write_max[max_i] = type_max[max_i];
|
|
}
|
|
accessor->max = max;
|
|
PoolVector<float> min;
|
|
min.resize(type_min.size());
|
|
PoolVector<float>::Write write_min = min.write();
|
|
for (int32_t min_i = 0; min_i < min.size(); min_i++) {
|
|
write_min[min_i] = type_min[min_i];
|
|
}
|
|
accessor->normalized = false;
|
|
accessor->count = p_attribs.size();
|
|
accessor->type = type;
|
|
accessor->component_type = component_type;
|
|
accessor->byte_offset = 0;
|
|
Error err = _encode_buffer_view(state, attribs.ptr(), p_attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i);
|
|
if (err != OK) {
|
|
return -1;
|
|
}
|
|
accessor->buffer_view = buffer_view_i;
|
|
state->accessors.push_back(accessor);
|
|
return state->accessors.size() - 1;
|
|
}
|
|
|
|
GLTFAccessorIndex GLTFDocument::_encode_accessor_as_quats(Ref<GLTFState> state, const Vector<Quat> p_attribs, const bool p_for_vertex) {
|
|
if (p_attribs.size() == 0) {
|
|
return -1;
|
|
}
|
|
const int element_count = 4;
|
|
|
|
const int ret_size = p_attribs.size() * element_count;
|
|
Vector<double> attribs;
|
|
attribs.resize(ret_size);
|
|
|
|
Vector<double> type_max;
|
|
type_max.resize(element_count);
|
|
Vector<double> type_min;
|
|
type_min.resize(element_count);
|
|
for (int i = 0; i < p_attribs.size(); i++) {
|
|
Quat quat = p_attribs[i];
|
|
attribs.write[(i * element_count) + 0] = Math::stepify(quat.x, CMP_NORMALIZE_TOLERANCE);
|
|
attribs.write[(i * element_count) + 1] = Math::stepify(quat.y, CMP_NORMALIZE_TOLERANCE);
|
|
attribs.write[(i * element_count) + 2] = Math::stepify(quat.z, CMP_NORMALIZE_TOLERANCE);
|
|
attribs.write[(i * element_count) + 3] = Math::stepify(quat.w, CMP_NORMALIZE_TOLERANCE);
|
|
|
|
_calc_accessor_min_max(i, element_count, type_max, attribs, type_min);
|
|
}
|
|
|
|
ERR_FAIL_COND_V(attribs.size() % element_count != 0, -1);
|
|
|
|
Ref<GLTFAccessor> accessor;
|
|
accessor.instance();
|
|
GLTFBufferIndex buffer_view_i;
|
|
int64_t size = state->buffers[0].size();
|
|
const GLTFDocument::GLTFType type = GLTFDocument::TYPE_VEC4;
|
|
const int component_type = GLTFDocument::COMPONENT_TYPE_FLOAT;
|
|
|
|
PoolVector<float> max;
|
|
max.resize(type_max.size());
|
|
PoolVector<float>::Write write_max = max.write();
|
|
for (int32_t max_i = 0; max_i < max.size(); max_i++) {
|
|
write_max[max_i] = type_max[max_i];
|
|
}
|
|
accessor->max = max;
|
|
PoolVector<float> min;
|
|
min.resize(type_min.size());
|
|
PoolVector<float>::Write write_min = min.write();
|
|
for (int32_t min_i = 0; min_i < min.size(); min_i++) {
|
|
write_min[min_i] = type_min[min_i];
|
|
}
|
|
accessor->normalized = false;
|
|
accessor->count = p_attribs.size();
|
|
accessor->type = type;
|
|
accessor->component_type = component_type;
|
|
accessor->byte_offset = 0;
|
|
Error err = _encode_buffer_view(state, attribs.ptr(), p_attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i);
|
|
if (err != OK) {
|
|
return -1;
|
|
}
|
|
accessor->buffer_view = buffer_view_i;
|
|
state->accessors.push_back(accessor);
|
|
return state->accessors.size() - 1;
|
|
}
|
|
|
|
Vector<Vector2> GLTFDocument::_decode_accessor_as_vec2(Ref<GLTFState> state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) {
|
|
const Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
|
|
Vector<Vector2> ret;
|
|
|
|
if (attribs.size() == 0) {
|
|
return ret;
|
|
}
|
|
|
|
ERR_FAIL_COND_V(attribs.size() % 2 != 0, ret);
|
|
const double *attribs_ptr = attribs.ptr();
|
|
const int ret_size = attribs.size() / 2;
|
|
ret.resize(ret_size);
|
|
{
|
|
for (int i = 0; i < ret_size; i++) {
|
|
ret.write[i] = Vector2(attribs_ptr[i * 2 + 0], attribs_ptr[i * 2 + 1]);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
GLTFAccessorIndex GLTFDocument::_encode_accessor_as_floats(Ref<GLTFState> state, const Vector<real_t> p_attribs, const bool p_for_vertex) {
|
|
if (p_attribs.size() == 0) {
|
|
return -1;
|
|
}
|
|
const int element_count = 1;
|
|
const int ret_size = p_attribs.size();
|
|
Vector<double> attribs;
|
|
attribs.resize(ret_size);
|
|
|
|
Vector<double> type_max;
|
|
type_max.resize(element_count);
|
|
Vector<double> type_min;
|
|
type_min.resize(element_count);
|
|
|
|
for (int i = 0; i < p_attribs.size(); i++) {
|
|
attribs.write[i] = Math::stepify(p_attribs[i], CMP_NORMALIZE_TOLERANCE);
|
|
|
|
_calc_accessor_min_max(i, element_count, type_max, attribs, type_min);
|
|
}
|
|
|
|
ERR_FAIL_COND_V(!attribs.size(), -1);
|
|
|
|
Ref<GLTFAccessor> accessor;
|
|
accessor.instance();
|
|
GLTFBufferIndex buffer_view_i;
|
|
int64_t size = state->buffers[0].size();
|
|
const GLTFDocument::GLTFType type = GLTFDocument::TYPE_SCALAR;
|
|
const int component_type = GLTFDocument::COMPONENT_TYPE_FLOAT;
|
|
|
|
PoolVector<float> max;
|
|
max.resize(type_max.size());
|
|
PoolVector<float>::Write write_max = max.write();
|
|
for (int32_t max_i = 0; max_i < max.size(); max_i++) {
|
|
write_max[max_i] = type_max[max_i];
|
|
}
|
|
accessor->max = max;
|
|
PoolVector<float> min;
|
|
min.resize(type_min.size());
|
|
PoolVector<float>::Write write_min = min.write();
|
|
for (int32_t min_i = 0; min_i < min.size(); min_i++) {
|
|
write_min[min_i] = type_min[min_i];
|
|
}
|
|
accessor->normalized = false;
|
|
accessor->count = ret_size;
|
|
accessor->type = type;
|
|
accessor->component_type = component_type;
|
|
accessor->byte_offset = 0;
|
|
Error err = _encode_buffer_view(state, attribs.ptr(), attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i);
|
|
if (err != OK) {
|
|
return -1;
|
|
}
|
|
accessor->buffer_view = buffer_view_i;
|
|
state->accessors.push_back(accessor);
|
|
return state->accessors.size() - 1;
|
|
}
|
|
|
|
GLTFAccessorIndex GLTFDocument::_encode_accessor_as_vec3(Ref<GLTFState> state, const Vector<Vector3> p_attribs, const bool p_for_vertex) {
|
|
if (p_attribs.size() == 0) {
|
|
return -1;
|
|
}
|
|
const int element_count = 3;
|
|
const int ret_size = p_attribs.size() * element_count;
|
|
Vector<double> attribs;
|
|
attribs.resize(ret_size);
|
|
|
|
Vector<double> type_max;
|
|
type_max.resize(element_count);
|
|
Vector<double> type_min;
|
|
type_min.resize(element_count);
|
|
for (int i = 0; i < p_attribs.size(); i++) {
|
|
Vector3 attrib = p_attribs[i];
|
|
attribs.write[(i * element_count) + 0] = Math::stepify(attrib.x, CMP_NORMALIZE_TOLERANCE);
|
|
attribs.write[(i * element_count) + 1] = Math::stepify(attrib.y, CMP_NORMALIZE_TOLERANCE);
|
|
attribs.write[(i * element_count) + 2] = Math::stepify(attrib.z, CMP_NORMALIZE_TOLERANCE);
|
|
|
|
_calc_accessor_min_max(i, element_count, type_max, attribs, type_min);
|
|
}
|
|
ERR_FAIL_COND_V(attribs.size() % element_count != 0, -1);
|
|
|
|
Ref<GLTFAccessor> accessor;
|
|
accessor.instance();
|
|
GLTFBufferIndex buffer_view_i;
|
|
int64_t size = state->buffers[0].size();
|
|
const GLTFDocument::GLTFType type = GLTFDocument::TYPE_VEC3;
|
|
const int component_type = GLTFDocument::COMPONENT_TYPE_FLOAT;
|
|
|
|
PoolVector<float> max;
|
|
max.resize(type_max.size());
|
|
PoolVector<float>::Write write_max = max.write();
|
|
for (int32_t max_i = 0; max_i < max.size(); max_i++) {
|
|
write_max[max_i] = type_max[max_i];
|
|
}
|
|
accessor->max = max;
|
|
PoolVector<float> min;
|
|
min.resize(type_min.size());
|
|
PoolVector<float>::Write write_min = min.write();
|
|
for (int32_t min_i = 0; min_i < min.size(); min_i++) {
|
|
write_min[min_i] = type_min[min_i];
|
|
}
|
|
accessor->normalized = false;
|
|
accessor->count = p_attribs.size();
|
|
accessor->type = type;
|
|
accessor->component_type = component_type;
|
|
accessor->byte_offset = 0;
|
|
Error err = _encode_buffer_view(state, attribs.ptr(), p_attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i);
|
|
if (err != OK) {
|
|
return -1;
|
|
}
|
|
accessor->buffer_view = buffer_view_i;
|
|
state->accessors.push_back(accessor);
|
|
return state->accessors.size() - 1;
|
|
}
|
|
|
|
GLTFAccessorIndex GLTFDocument::_encode_accessor_as_xform(Ref<GLTFState> state, const Vector<Transform> p_attribs, const bool p_for_vertex) {
|
|
if (p_attribs.size() == 0) {
|
|
return -1;
|
|
}
|
|
const int element_count = 16;
|
|
const int ret_size = p_attribs.size() * element_count;
|
|
Vector<double> attribs;
|
|
attribs.resize(ret_size);
|
|
|
|
Vector<double> type_max;
|
|
type_max.resize(element_count);
|
|
Vector<double> type_min;
|
|
type_min.resize(element_count);
|
|
for (int i = 0; i < p_attribs.size(); i++) {
|
|
Transform attrib = p_attribs[i];
|
|
Basis basis = attrib.get_basis();
|
|
Vector3 axis_0 = basis.get_axis(Vector3::AXIS_X);
|
|
|
|
attribs.write[i * element_count + 0] = Math::stepify(axis_0.x, CMP_NORMALIZE_TOLERANCE);
|
|
attribs.write[i * element_count + 1] = Math::stepify(axis_0.y, CMP_NORMALIZE_TOLERANCE);
|
|
attribs.write[i * element_count + 2] = Math::stepify(axis_0.z, CMP_NORMALIZE_TOLERANCE);
|
|
attribs.write[i * element_count + 3] = 0.0;
|
|
|
|
Vector3 axis_1 = basis.get_axis(Vector3::AXIS_Y);
|
|
attribs.write[i * element_count + 4] = Math::stepify(axis_1.x, CMP_NORMALIZE_TOLERANCE);
|
|
attribs.write[i * element_count + 5] = Math::stepify(axis_1.y, CMP_NORMALIZE_TOLERANCE);
|
|
attribs.write[i * element_count + 6] = Math::stepify(axis_1.z, CMP_NORMALIZE_TOLERANCE);
|
|
attribs.write[i * element_count + 7] = 0.0;
|
|
|
|
Vector3 axis_2 = basis.get_axis(Vector3::AXIS_Z);
|
|
attribs.write[i * element_count + 8] = Math::stepify(axis_2.x, CMP_NORMALIZE_TOLERANCE);
|
|
attribs.write[i * element_count + 9] = Math::stepify(axis_2.y, CMP_NORMALIZE_TOLERANCE);
|
|
attribs.write[i * element_count + 10] = Math::stepify(axis_2.z, CMP_NORMALIZE_TOLERANCE);
|
|
attribs.write[i * element_count + 11] = 0.0;
|
|
|
|
Vector3 origin = attrib.get_origin();
|
|
attribs.write[i * element_count + 12] = Math::stepify(origin.x, CMP_NORMALIZE_TOLERANCE);
|
|
attribs.write[i * element_count + 13] = Math::stepify(origin.y, CMP_NORMALIZE_TOLERANCE);
|
|
attribs.write[i * element_count + 14] = Math::stepify(origin.z, CMP_NORMALIZE_TOLERANCE);
|
|
attribs.write[i * element_count + 15] = 1.0;
|
|
|
|
_calc_accessor_min_max(i, element_count, type_max, attribs, type_min);
|
|
}
|
|
ERR_FAIL_COND_V(attribs.size() % element_count != 0, -1);
|
|
|
|
Ref<GLTFAccessor> accessor;
|
|
accessor.instance();
|
|
GLTFBufferIndex buffer_view_i;
|
|
int64_t size = state->buffers[0].size();
|
|
const GLTFDocument::GLTFType type = GLTFDocument::TYPE_MAT4;
|
|
const int component_type = GLTFDocument::COMPONENT_TYPE_FLOAT;
|
|
|
|
PoolVector<float> max;
|
|
max.resize(type_max.size());
|
|
PoolVector<float>::Write write_max = max.write();
|
|
for (int32_t max_i = 0; max_i < max.size(); max_i++) {
|
|
write_max[max_i] = type_max[max_i];
|
|
}
|
|
accessor->max = max;
|
|
PoolVector<float> min;
|
|
min.resize(type_min.size());
|
|
PoolVector<float>::Write write_min = min.write();
|
|
for (int32_t min_i = 0; min_i < min.size(); min_i++) {
|
|
write_min[min_i] = type_min[min_i];
|
|
}
|
|
accessor->normalized = false;
|
|
accessor->count = p_attribs.size();
|
|
accessor->type = type;
|
|
accessor->component_type = component_type;
|
|
accessor->byte_offset = 0;
|
|
Error err = _encode_buffer_view(state, attribs.ptr(), p_attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i);
|
|
if (err != OK) {
|
|
return -1;
|
|
}
|
|
accessor->buffer_view = buffer_view_i;
|
|
state->accessors.push_back(accessor);
|
|
return state->accessors.size() - 1;
|
|
}
|
|
|
|
Vector<Vector3> GLTFDocument::_decode_accessor_as_vec3(Ref<GLTFState> state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) {
|
|
const Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
|
|
Vector<Vector3> ret;
|
|
|
|
if (attribs.size() == 0) {
|
|
return ret;
|
|
}
|
|
|
|
ERR_FAIL_COND_V(attribs.size() % 3 != 0, ret);
|
|
const double *attribs_ptr = attribs.ptr();
|
|
const int ret_size = attribs.size() / 3;
|
|
ret.resize(ret_size);
|
|
{
|
|
for (int i = 0; i < ret_size; i++) {
|
|
ret.write[i] = Vector3(attribs_ptr[i * 3 + 0], attribs_ptr[i * 3 + 1], attribs_ptr[i * 3 + 2]);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
Vector<Color> GLTFDocument::_decode_accessor_as_color(Ref<GLTFState> state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) {
|
|
const Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
|
|
Vector<Color> ret;
|
|
|
|
if (attribs.size() == 0) {
|
|
return ret;
|
|
}
|
|
|
|
const int type = state->accessors[p_accessor]->type;
|
|
ERR_FAIL_COND_V(!(type == TYPE_VEC3 || type == TYPE_VEC4), ret);
|
|
int vec_len = 3;
|
|
if (type == TYPE_VEC4) {
|
|
vec_len = 4;
|
|
}
|
|
|
|
ERR_FAIL_COND_V(attribs.size() % vec_len != 0, ret);
|
|
const double *attribs_ptr = attribs.ptr();
|
|
const int ret_size = attribs.size() / vec_len;
|
|
ret.resize(ret_size);
|
|
{
|
|
for (int i = 0; i < ret_size; i++) {
|
|
ret.write[i] = Color(attribs_ptr[i * vec_len + 0], attribs_ptr[i * vec_len + 1], attribs_ptr[i * vec_len + 2], vec_len == 4 ? attribs_ptr[i * 4 + 3] : 1.0);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
Vector<Quat> GLTFDocument::_decode_accessor_as_quat(Ref<GLTFState> state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) {
|
|
const Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
|
|
Vector<Quat> ret;
|
|
|
|
if (attribs.size() == 0) {
|
|
return ret;
|
|
}
|
|
|
|
ERR_FAIL_COND_V(attribs.size() % 4 != 0, ret);
|
|
const double *attribs_ptr = attribs.ptr();
|
|
const int ret_size = attribs.size() / 4;
|
|
ret.resize(ret_size);
|
|
{
|
|
for (int i = 0; i < ret_size; i++) {
|
|
ret.write[i] = Quat(attribs_ptr[i * 4 + 0], attribs_ptr[i * 4 + 1], attribs_ptr[i * 4 + 2], attribs_ptr[i * 4 + 3]).normalized();
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
Vector<Transform2D> GLTFDocument::_decode_accessor_as_xform2d(Ref<GLTFState> state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) {
|
|
const Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
|
|
Vector<Transform2D> ret;
|
|
|
|
if (attribs.size() == 0) {
|
|
return ret;
|
|
}
|
|
|
|
ERR_FAIL_COND_V(attribs.size() % 4 != 0, ret);
|
|
ret.resize(attribs.size() / 4);
|
|
for (int i = 0; i < ret.size(); i++) {
|
|
ret.write[i][0] = Vector2(attribs[i * 4 + 0], attribs[i * 4 + 1]);
|
|
ret.write[i][1] = Vector2(attribs[i * 4 + 2], attribs[i * 4 + 3]);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
Vector<Basis> GLTFDocument::_decode_accessor_as_basis(Ref<GLTFState> state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) {
|
|
const Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
|
|
Vector<Basis> ret;
|
|
|
|
if (attribs.size() == 0) {
|
|
return ret;
|
|
}
|
|
|
|
ERR_FAIL_COND_V(attribs.size() % 9 != 0, ret);
|
|
ret.resize(attribs.size() / 9);
|
|
for (int i = 0; i < ret.size(); i++) {
|
|
ret.write[i].set_axis(0, Vector3(attribs[i * 9 + 0], attribs[i * 9 + 1], attribs[i * 9 + 2]));
|
|
ret.write[i].set_axis(1, Vector3(attribs[i * 9 + 3], attribs[i * 9 + 4], attribs[i * 9 + 5]));
|
|
ret.write[i].set_axis(2, Vector3(attribs[i * 9 + 6], attribs[i * 9 + 7], attribs[i * 9 + 8]));
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
Vector<Transform> GLTFDocument::_decode_accessor_as_xform(Ref<GLTFState> state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) {
|
|
const Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
|
|
Vector<Transform> ret;
|
|
|
|
if (attribs.size() == 0) {
|
|
return ret;
|
|
}
|
|
|
|
ERR_FAIL_COND_V(attribs.size() % 16 != 0, ret);
|
|
ret.resize(attribs.size() / 16);
|
|
for (int i = 0; i < ret.size(); i++) {
|
|
ret.write[i].basis.set_axis(0, Vector3(attribs[i * 16 + 0], attribs[i * 16 + 1], attribs[i * 16 + 2]));
|
|
ret.write[i].basis.set_axis(1, Vector3(attribs[i * 16 + 4], attribs[i * 16 + 5], attribs[i * 16 + 6]));
|
|
ret.write[i].basis.set_axis(2, Vector3(attribs[i * 16 + 8], attribs[i * 16 + 9], attribs[i * 16 + 10]));
|
|
ret.write[i].set_origin(Vector3(attribs[i * 16 + 12], attribs[i * 16 + 13], attribs[i * 16 + 14]));
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
Error GLTFDocument::_serialize_meshes(Ref<GLTFState> state) {
|
|
Array meshes;
|
|
for (GLTFMeshIndex gltf_mesh_i = 0; gltf_mesh_i < state->meshes.size(); gltf_mesh_i++) {
|
|
print_verbose("glTF: Serializing mesh: " + itos(gltf_mesh_i));
|
|
Ref<ArrayMesh> import_mesh = state->meshes.write[gltf_mesh_i]->get_mesh();
|
|
if (import_mesh.is_null()) {
|
|
continue;
|
|
}
|
|
Array primitives;
|
|
Array targets;
|
|
Dictionary gltf_mesh;
|
|
Array target_names;
|
|
Array weights;
|
|
for (int surface_i = 0; surface_i < import_mesh->get_surface_count(); surface_i++) {
|
|
Dictionary primitive;
|
|
Mesh::PrimitiveType primitive_type = import_mesh->surface_get_primitive_type(surface_i);
|
|
switch (primitive_type) {
|
|
case Mesh::PRIMITIVE_POINTS: {
|
|
primitive["mode"] = 0;
|
|
break;
|
|
}
|
|
case Mesh::PRIMITIVE_LINES: {
|
|
primitive["mode"] = 1;
|
|
break;
|
|
}
|
|
// case Mesh::PRIMITIVE_LINE_LOOP: {
|
|
// primitive["mode"] = 2;
|
|
// break;
|
|
// }
|
|
case Mesh::PRIMITIVE_LINE_STRIP: {
|
|
primitive["mode"] = 3;
|
|
break;
|
|
}
|
|
case Mesh::PRIMITIVE_TRIANGLES: {
|
|
primitive["mode"] = 4;
|
|
break;
|
|
}
|
|
case Mesh::PRIMITIVE_TRIANGLE_STRIP: {
|
|
primitive["mode"] = 5;
|
|
break;
|
|
}
|
|
// case Mesh::PRIMITIVE_TRIANGLE_FAN: {
|
|
// primitive["mode"] = 6;
|
|
// break;
|
|
// }
|
|
default: {
|
|
ERR_FAIL_V(FAILED);
|
|
}
|
|
}
|
|
|
|
Array array = import_mesh->surface_get_arrays(surface_i);
|
|
Dictionary attributes;
|
|
{
|
|
Vector<Vector3> a = array[Mesh::ARRAY_VERTEX];
|
|
ERR_FAIL_COND_V(!a.size(), ERR_INVALID_DATA);
|
|
attributes["POSITION"] = _encode_accessor_as_vec3(state, a, true);
|
|
}
|
|
{
|
|
Vector<real_t> a = array[Mesh::ARRAY_TANGENT];
|
|
if (a.size()) {
|
|
const int ret_size = a.size() / 4;
|
|
Vector<Color> attribs;
|
|
attribs.resize(ret_size);
|
|
for (int i = 0; i < ret_size; i++) {
|
|
Color out;
|
|
out.r = a[(i * 4) + 0];
|
|
out.g = a[(i * 4) + 1];
|
|
out.b = a[(i * 4) + 2];
|
|
out.a = a[(i * 4) + 3];
|
|
attribs.write[i] = out;
|
|
}
|
|
attributes["TANGENT"] = _encode_accessor_as_color(state, attribs, true);
|
|
}
|
|
}
|
|
{
|
|
Vector<Vector3> a = array[Mesh::ARRAY_NORMAL];
|
|
if (a.size()) {
|
|
const int ret_size = a.size();
|
|
Vector<Vector3> attribs;
|
|
attribs.resize(ret_size);
|
|
for (int i = 0; i < ret_size; i++) {
|
|
attribs.write[i] = Vector3(a[i]).normalized();
|
|
}
|
|
attributes["NORMAL"] = _encode_accessor_as_vec3(state, attribs, true);
|
|
}
|
|
}
|
|
{
|
|
Vector<Vector2> a = array[Mesh::ARRAY_TEX_UV];
|
|
if (a.size()) {
|
|
attributes["TEXCOORD_0"] = _encode_accessor_as_vec2(state, a, true);
|
|
}
|
|
}
|
|
{
|
|
Vector<Vector2> a = array[Mesh::ARRAY_TEX_UV2];
|
|
if (a.size()) {
|
|
attributes["TEXCOORD_1"] = _encode_accessor_as_vec2(state, a, true);
|
|
}
|
|
}
|
|
{
|
|
Vector<Color> a = array[Mesh::ARRAY_COLOR];
|
|
if (a.size()) {
|
|
attributes["COLOR_0"] = _encode_accessor_as_color(state, a, true);
|
|
}
|
|
}
|
|
Map<int, int> joint_i_to_bone_i;
|
|
for (GLTFNodeIndex node_i = 0; node_i < state->nodes.size(); node_i++) {
|
|
GLTFSkinIndex skin_i = -1;
|
|
if (state->nodes[node_i]->mesh == gltf_mesh_i) {
|
|
skin_i = state->nodes[node_i]->skin;
|
|
}
|
|
if (skin_i != -1) {
|
|
joint_i_to_bone_i = state->skins[skin_i]->joint_i_to_bone_i;
|
|
break;
|
|
}
|
|
}
|
|
{
|
|
const Array &a = array[Mesh::ARRAY_BONES];
|
|
const Vector<Vector3> &vertex_array = array[Mesh::ARRAY_VERTEX];
|
|
if ((a.size() / JOINT_GROUP_SIZE) == vertex_array.size()) {
|
|
const int ret_size = a.size() / JOINT_GROUP_SIZE;
|
|
Vector<Color> attribs;
|
|
attribs.resize(ret_size);
|
|
{
|
|
for (int array_i = 0; array_i < attribs.size(); array_i++) {
|
|
int32_t joint_0 = a[(array_i * JOINT_GROUP_SIZE) + 0];
|
|
int32_t joint_1 = a[(array_i * JOINT_GROUP_SIZE) + 1];
|
|
int32_t joint_2 = a[(array_i * JOINT_GROUP_SIZE) + 2];
|
|
int32_t joint_3 = a[(array_i * JOINT_GROUP_SIZE) + 3];
|
|
attribs.write[array_i] = Color(joint_0, joint_1, joint_2, joint_3);
|
|
}
|
|
}
|
|
attributes["JOINTS_0"] = _encode_accessor_as_joints(state, attribs, true);
|
|
}
|
|
ERR_FAIL_COND_V((a.size() / (JOINT_GROUP_SIZE * 2)) >= vertex_array.size(), FAILED);
|
|
}
|
|
{
|
|
const Array &a = array[Mesh::ARRAY_WEIGHTS];
|
|
const Vector<Vector3> &vertex_array = array[Mesh::ARRAY_VERTEX];
|
|
if ((a.size() / JOINT_GROUP_SIZE) == vertex_array.size()) {
|
|
const int ret_size = a.size() / JOINT_GROUP_SIZE;
|
|
Vector<Color> attribs;
|
|
attribs.resize(ret_size);
|
|
for (int i = 0; i < ret_size; i++) {
|
|
attribs.write[i] = Color(a[(i * JOINT_GROUP_SIZE) + 0], a[(i * JOINT_GROUP_SIZE) + 1], a[(i * JOINT_GROUP_SIZE) + 2], a[(i * JOINT_GROUP_SIZE) + 3]);
|
|
}
|
|
attributes["WEIGHTS_0"] = _encode_accessor_as_weights(state, attribs, true);
|
|
} else if ((a.size() / (JOINT_GROUP_SIZE * 2)) >= vertex_array.size()) {
|
|
int32_t vertex_count = vertex_array.size();
|
|
Vector<Color> weights_0;
|
|
weights_0.resize(vertex_count);
|
|
Vector<Color> weights_1;
|
|
weights_1.resize(vertex_count);
|
|
int32_t weights_8_count = JOINT_GROUP_SIZE * 2;
|
|
for (int32_t vertex_i = 0; vertex_i < vertex_count; vertex_i++) {
|
|
Color weight_0;
|
|
weight_0.r = a[vertex_i * weights_8_count + 0];
|
|
weight_0.g = a[vertex_i * weights_8_count + 1];
|
|
weight_0.b = a[vertex_i * weights_8_count + 2];
|
|
weight_0.a = a[vertex_i * weights_8_count + 3];
|
|
weights_0.write[vertex_i] = weight_0;
|
|
Color weight_1;
|
|
weight_1.r = a[vertex_i * weights_8_count + 4];
|
|
weight_1.g = a[vertex_i * weights_8_count + 5];
|
|
weight_1.b = a[vertex_i * weights_8_count + 6];
|
|
weight_1.a = a[vertex_i * weights_8_count + 7];
|
|
weights_1.write[vertex_i] = weight_1;
|
|
}
|
|
attributes["WEIGHTS_0"] = _encode_accessor_as_weights(state, weights_0, true);
|
|
attributes["WEIGHTS_1"] = _encode_accessor_as_weights(state, weights_1, true);
|
|
}
|
|
}
|
|
{
|
|
Vector<int32_t> mesh_indices = array[Mesh::ARRAY_INDEX];
|
|
if (mesh_indices.size()) {
|
|
if (primitive_type == Mesh::PRIMITIVE_TRIANGLES) {
|
|
//swap around indices, convert ccw to cw for front face
|
|
const int is = mesh_indices.size();
|
|
for (int k = 0; k < is; k += 3) {
|
|
SWAP(mesh_indices.write[k + 0], mesh_indices.write[k + 2]);
|
|
}
|
|
}
|
|
primitive["indices"] = _encode_accessor_as_ints(state, mesh_indices, true);
|
|
} else {
|
|
if (primitive_type == Mesh::PRIMITIVE_TRIANGLES) {
|
|
//generate indices because they need to be swapped for CW/CCW
|
|
const Vector<Vector3> &vertices = array[Mesh::ARRAY_VERTEX];
|
|
Ref<SurfaceTool> st;
|
|
st.instance();
|
|
st->create_from_triangle_arrays(array);
|
|
st->index();
|
|
Vector<int32_t> generated_indices = st->commit_to_arrays()[Mesh::ARRAY_INDEX];
|
|
const int vs = vertices.size();
|
|
generated_indices.resize(vs);
|
|
{
|
|
for (int k = 0; k < vs; k += 3) {
|
|
generated_indices.write[k] = k;
|
|
generated_indices.write[k + 1] = k + 2;
|
|
generated_indices.write[k + 2] = k + 1;
|
|
}
|
|
}
|
|
primitive["indices"] = _encode_accessor_as_ints(state, generated_indices, true);
|
|
}
|
|
}
|
|
}
|
|
|
|
primitive["attributes"] = attributes;
|
|
|
|
//blend shapes
|
|
print_verbose("glTF: Mesh has targets");
|
|
if (import_mesh->get_blend_shape_count()) {
|
|
ArrayMesh::BlendShapeMode shape_mode = import_mesh->get_blend_shape_mode();
|
|
Array array_morphs = import_mesh->surface_get_blend_shape_arrays(surface_i);
|
|
for (int morph_i = 0; morph_i < array_morphs.size(); morph_i++) {
|
|
Array array_morph = array_morphs[morph_i];
|
|
target_names.push_back(import_mesh->get_blend_shape_name(morph_i));
|
|
Dictionary t;
|
|
Vector<Vector3> varr = array_morph[Mesh::ARRAY_VERTEX];
|
|
Array mesh_arrays = import_mesh->surface_get_arrays(surface_i);
|
|
if (varr.size()) {
|
|
Vector<Vector3> src_varr = array[Mesh::ARRAY_VERTEX];
|
|
if (shape_mode == ArrayMesh::BlendShapeMode::BLEND_SHAPE_MODE_NORMALIZED) {
|
|
const int max_idx = src_varr.size();
|
|
for (int blend_i = 0; blend_i < max_idx; blend_i++) {
|
|
varr.write[blend_i] = Vector3(varr[blend_i]) - src_varr[blend_i];
|
|
}
|
|
}
|
|
|
|
t["POSITION"] = _encode_accessor_as_vec3(state, varr, true);
|
|
}
|
|
|
|
Vector<Vector3> narr = array_morph[Mesh::ARRAY_NORMAL];
|
|
if (varr.size()) {
|
|
t["NORMAL"] = _encode_accessor_as_vec3(state, narr, true);
|
|
}
|
|
Vector<real_t> tarr = array_morph[Mesh::ARRAY_TANGENT];
|
|
if (tarr.size()) {
|
|
const int ret_size = tarr.size() / 4;
|
|
Vector<Color> attribs;
|
|
attribs.resize(ret_size);
|
|
for (int i = 0; i < ret_size; i++) {
|
|
Color tangent;
|
|
tangent.r = tarr[(i * 4) + 0];
|
|
tangent.g = tarr[(i * 4) + 1];
|
|
tangent.b = tarr[(i * 4) + 2];
|
|
tangent.a = tarr[(i * 4) + 3];
|
|
}
|
|
t["TANGENT"] = _encode_accessor_as_color(state, attribs, true);
|
|
}
|
|
targets.push_back(t);
|
|
}
|
|
}
|
|
|
|
Ref<SpatialMaterial> mat = import_mesh->surface_get_material(surface_i);
|
|
if (mat.is_valid()) {
|
|
Map<Ref<Material>, GLTFMaterialIndex>::Element *material_cache_i = state->material_cache.find(mat);
|
|
if (material_cache_i && material_cache_i->get() != -1) {
|
|
primitive["material"] = material_cache_i->get();
|
|
} else {
|
|
GLTFMaterialIndex mat_i = state->materials.size();
|
|
state->materials.push_back(mat);
|
|
primitive["material"] = mat_i;
|
|
state->material_cache.insert(mat, mat_i);
|
|
}
|
|
}
|
|
|
|
if (targets.size()) {
|
|
primitive["targets"] = targets;
|
|
}
|
|
|
|
primitives.push_back(primitive);
|
|
}
|
|
|
|
Dictionary e;
|
|
e["targetNames"] = target_names;
|
|
|
|
for (int j = 0; j < target_names.size(); j++) {
|
|
real_t weight = 0.0;
|
|
if (j < state->meshes.write[gltf_mesh_i]->get_blend_weights().size()) {
|
|
weight = state->meshes.write[gltf_mesh_i]->get_blend_weights()[j];
|
|
}
|
|
weights.push_back(weight);
|
|
}
|
|
if (weights.size()) {
|
|
gltf_mesh["weights"] = weights;
|
|
}
|
|
|
|
ERR_FAIL_COND_V(target_names.size() != weights.size(), FAILED);
|
|
|
|
gltf_mesh["extras"] = e;
|
|
|
|
gltf_mesh["primitives"] = primitives;
|
|
|
|
meshes.push_back(gltf_mesh);
|
|
}
|
|
|
|
state->json["meshes"] = meshes;
|
|
print_verbose("glTF: Total meshes: " + itos(meshes.size()));
|
|
|
|
return OK;
|
|
}
|
|
|
|
Error GLTFDocument::_parse_meshes(Ref<GLTFState> state) {
|
|
if (!state->json.has("meshes")) {
|
|
return OK;
|
|
}
|
|
|
|
Array meshes = state->json["meshes"];
|
|
for (GLTFMeshIndex i = 0; i < meshes.size(); i++) {
|
|
print_verbose("glTF: Parsing mesh: " + itos(i));
|
|
Dictionary d = meshes[i];
|
|
|
|
Ref<GLTFMesh> mesh;
|
|
mesh.instance();
|
|
bool has_vertex_color = false;
|
|
|
|
ERR_FAIL_COND_V(!d.has("primitives"), ERR_PARSE_ERROR);
|
|
|
|
Array primitives = d["primitives"];
|
|
const Dictionary &extras = d.has("extras") ? (Dictionary)d["extras"] : Dictionary();
|
|
Ref<ArrayMesh> import_mesh;
|
|
import_mesh.instance();
|
|
String mesh_name = "mesh";
|
|
if (d.has("name") && !String(d["name"]).empty()) {
|
|
mesh_name = d["name"];
|
|
}
|
|
import_mesh->set_name(_gen_unique_name(state, vformat("%s_%s", state->scene_name, mesh_name)));
|
|
|
|
for (int j = 0; j < primitives.size(); j++) {
|
|
Dictionary p = primitives[j];
|
|
|
|
Array array;
|
|
array.resize(Mesh::ARRAY_MAX);
|
|
|
|
ERR_FAIL_COND_V(!p.has("attributes"), ERR_PARSE_ERROR);
|
|
|
|
Dictionary a = p["attributes"];
|
|
|
|
Mesh::PrimitiveType primitive = Mesh::PRIMITIVE_TRIANGLES;
|
|
if (p.has("mode")) {
|
|
const int mode = p["mode"];
|
|
ERR_FAIL_INDEX_V(mode, 7, ERR_FILE_CORRUPT);
|
|
static const Mesh::PrimitiveType primitives2[7] = {
|
|
Mesh::PRIMITIVE_POINTS,
|
|
Mesh::PRIMITIVE_LINES,
|
|
Mesh::PRIMITIVE_LINES, //loop not supported, should ce converted
|
|
Mesh::PRIMITIVE_LINES,
|
|
Mesh::PRIMITIVE_TRIANGLES,
|
|
Mesh::PRIMITIVE_TRIANGLE_STRIP,
|
|
Mesh::PRIMITIVE_TRIANGLES, //fan not supported, should be converted
|
|
#ifndef _MSC_VER
|
|
// #warning line loop and triangle fan are not supported and need to be converted to lines and triangles
|
|
#endif
|
|
|
|
};
|
|
|
|
primitive = primitives2[mode];
|
|
}
|
|
|
|
ERR_FAIL_COND_V(!a.has("POSITION"), ERR_PARSE_ERROR);
|
|
if (a.has("POSITION")) {
|
|
array[Mesh::ARRAY_VERTEX] = _decode_accessor_as_vec3(state, a["POSITION"], true);
|
|
}
|
|
if (a.has("NORMAL")) {
|
|
array[Mesh::ARRAY_NORMAL] = _decode_accessor_as_vec3(state, a["NORMAL"], true);
|
|
}
|
|
if (a.has("TANGENT")) {
|
|
array[Mesh::ARRAY_TANGENT] = _decode_accessor_as_floats(state, a["TANGENT"], true);
|
|
}
|
|
if (a.has("TEXCOORD_0")) {
|
|
array[Mesh::ARRAY_TEX_UV] = _decode_accessor_as_vec2(state, a["TEXCOORD_0"], true);
|
|
}
|
|
if (a.has("TEXCOORD_1")) {
|
|
array[Mesh::ARRAY_TEX_UV2] = _decode_accessor_as_vec2(state, a["TEXCOORD_1"], true);
|
|
}
|
|
if (a.has("COLOR_0")) {
|
|
array[Mesh::ARRAY_COLOR] = _decode_accessor_as_color(state, a["COLOR_0"], true);
|
|
has_vertex_color = true;
|
|
}
|
|
if (a.has("JOINTS_0") && !a.has("JOINTS_1")) {
|
|
array[Mesh::ARRAY_BONES] = _decode_accessor_as_ints(state, a["JOINTS_0"], true);
|
|
}
|
|
ERR_CONTINUE(a.has("JOINTS_0") && a.has("JOINTS_1"));
|
|
if (a.has("WEIGHTS_0") && !a.has("WEIGHTS_1")) {
|
|
Vector<float> weights = _decode_accessor_as_floats(state, a["WEIGHTS_0"], true);
|
|
{ //gltf does not seem to normalize the weights for some reason..
|
|
int wc = weights.size();
|
|
float *w = weights.ptrw();
|
|
|
|
for (int k = 0; k < wc; k += 4) {
|
|
float total = 0.0;
|
|
total += w[k + 0];
|
|
total += w[k + 1];
|
|
total += w[k + 2];
|
|
total += w[k + 3];
|
|
if (total > 0.0) {
|
|
w[k + 0] /= total;
|
|
w[k + 1] /= total;
|
|
w[k + 2] /= total;
|
|
w[k + 3] /= total;
|
|
}
|
|
}
|
|
}
|
|
array[Mesh::ARRAY_WEIGHTS] = weights;
|
|
}
|
|
ERR_CONTINUE(a.has("WEIGHTS_0") && a.has("WEIGHTS_1"));
|
|
|
|
if (p.has("indices")) {
|
|
Vector<int> indices = _decode_accessor_as_ints(state, p["indices"], false);
|
|
|
|
if (primitive == Mesh::PRIMITIVE_TRIANGLES) {
|
|
//swap around indices, convert ccw to cw for front face
|
|
|
|
const int is = indices.size();
|
|
int *w = indices.ptrw();
|
|
for (int k = 0; k < is; k += 3) {
|
|
SWAP(w[k + 1], w[k + 2]);
|
|
}
|
|
}
|
|
array[Mesh::ARRAY_INDEX] = indices;
|
|
|
|
} else if (primitive == Mesh::PRIMITIVE_TRIANGLES) {
|
|
//generate indices because they need to be swapped for CW/CCW
|
|
const Vector<Vector3> &vertices = array[Mesh::ARRAY_VERTEX];
|
|
ERR_FAIL_COND_V(vertices.size() == 0, ERR_PARSE_ERROR);
|
|
Vector<int> indices;
|
|
const int vs = vertices.size();
|
|
indices.resize(vs);
|
|
{
|
|
int *w = indices.ptrw();
|
|
for (int k = 0; k < vs; k += 3) {
|
|
w[k] = k;
|
|
w[k + 1] = k + 2;
|
|
w[k + 2] = k + 1;
|
|
}
|
|
}
|
|
array[Mesh::ARRAY_INDEX] = indices;
|
|
}
|
|
|
|
bool generate_tangents = (primitive == Mesh::PRIMITIVE_TRIANGLES && !a.has("TANGENT") && a.has("TEXCOORD_0") && a.has("NORMAL"));
|
|
|
|
if (generate_tangents) {
|
|
//must generate mikktspace tangents.. ergh..
|
|
Ref<SurfaceTool> st;
|
|
st.instance();
|
|
st->create_from_triangle_arrays(array);
|
|
st->generate_tangents();
|
|
array = st->commit_to_arrays();
|
|
}
|
|
|
|
Array morphs;
|
|
//blend shapes
|
|
if (p.has("targets")) {
|
|
print_verbose("glTF: Mesh has targets");
|
|
const Array &targets = p["targets"];
|
|
|
|
//ideally BLEND_SHAPE_MODE_RELATIVE since gltf2 stores in displacement
|
|
//but it could require a larger refactor?
|
|
import_mesh->set_blend_shape_mode(Mesh::BLEND_SHAPE_MODE_NORMALIZED);
|
|
|
|
if (j == 0) {
|
|
const Array &target_names = extras.has("targetNames") ? (Array)extras["targetNames"] : Array();
|
|
for (int k = 0; k < targets.size(); k++) {
|
|
const String name = k < target_names.size() ? (String)target_names[k] : String("morph_") + itos(k);
|
|
import_mesh->add_blend_shape(name);
|
|
}
|
|
}
|
|
|
|
for (int k = 0; k < targets.size(); k++) {
|
|
const Dictionary &t = targets[k];
|
|
|
|
Array array_copy;
|
|
array_copy.resize(Mesh::ARRAY_MAX);
|
|
|
|
for (int l = 0; l < Mesh::ARRAY_MAX; l++) {
|
|
array_copy[l] = array[l];
|
|
}
|
|
|
|
array_copy[Mesh::ARRAY_INDEX] = Variant();
|
|
|
|
if (t.has("POSITION")) {
|
|
Vector<Vector3> varr = _decode_accessor_as_vec3(state, t["POSITION"], true);
|
|
const Vector<Vector3> src_varr = array[Mesh::ARRAY_VERTEX];
|
|
const int size = src_varr.size();
|
|
ERR_FAIL_COND_V(size == 0, ERR_PARSE_ERROR);
|
|
{
|
|
const int max_idx = varr.size();
|
|
varr.resize(size);
|
|
|
|
Vector3 *w_varr = varr.ptrw();
|
|
const Vector3 *r_varr = varr.ptr();
|
|
const Vector3 *r_src_varr = src_varr.ptr();
|
|
for (int l = 0; l < size; l++) {
|
|
if (l < max_idx) {
|
|
w_varr[l] = r_varr[l] + r_src_varr[l];
|
|
} else {
|
|
w_varr[l] = r_src_varr[l];
|
|
}
|
|
}
|
|
}
|
|
array_copy[Mesh::ARRAY_VERTEX] = varr;
|
|
}
|
|
if (t.has("NORMAL")) {
|
|
Vector<Vector3> narr = _decode_accessor_as_vec3(state, t["NORMAL"], true);
|
|
const Vector<Vector3> src_narr = array[Mesh::ARRAY_NORMAL];
|
|
int size = src_narr.size();
|
|
ERR_FAIL_COND_V(size == 0, ERR_PARSE_ERROR);
|
|
{
|
|
int max_idx = narr.size();
|
|
narr.resize(size);
|
|
|
|
Vector3 *w_narr = narr.ptrw();
|
|
const Vector3 *r_narr = narr.ptr();
|
|
const Vector3 *r_src_narr = src_narr.ptr();
|
|
for (int l = 0; l < size; l++) {
|
|
if (l < max_idx) {
|
|
w_narr[l] = r_narr[l] + r_src_narr[l];
|
|
} else {
|
|
w_narr[l] = r_src_narr[l];
|
|
}
|
|
}
|
|
}
|
|
array_copy[Mesh::ARRAY_NORMAL] = narr;
|
|
}
|
|
if (t.has("TANGENT")) {
|
|
const Vector<Vector3> tangents_v3 = _decode_accessor_as_vec3(state, t["TANGENT"], true);
|
|
const Vector<float> src_tangents = array[Mesh::ARRAY_TANGENT];
|
|
ERR_FAIL_COND_V(src_tangents.size() == 0, ERR_PARSE_ERROR);
|
|
|
|
Vector<float> tangents_v4;
|
|
|
|
{
|
|
int max_idx = tangents_v3.size();
|
|
|
|
int size4 = src_tangents.size();
|
|
tangents_v4.resize(size4);
|
|
float *w4 = tangents_v4.ptrw();
|
|
|
|
const Vector3 *r3 = tangents_v3.ptr();
|
|
const float *r4 = src_tangents.ptr();
|
|
|
|
for (int l = 0; l < size4 / 4; l++) {
|
|
if (l < max_idx) {
|
|
w4[l * 4 + 0] = r3[l].x + r4[l * 4 + 0];
|
|
w4[l * 4 + 1] = r3[l].y + r4[l * 4 + 1];
|
|
w4[l * 4 + 2] = r3[l].z + r4[l * 4 + 2];
|
|
} else {
|
|
w4[l * 4 + 0] = r4[l * 4 + 0];
|
|
w4[l * 4 + 1] = r4[l * 4 + 1];
|
|
w4[l * 4 + 2] = r4[l * 4 + 2];
|
|
}
|
|
w4[l * 4 + 3] = r4[l * 4 + 3]; //copy flip value
|
|
}
|
|
}
|
|
|
|
array_copy[Mesh::ARRAY_TANGENT] = tangents_v4;
|
|
}
|
|
|
|
if (generate_tangents) {
|
|
Ref<SurfaceTool> st;
|
|
st.instance();
|
|
st->create_from_triangle_arrays(array_copy);
|
|
st->deindex();
|
|
st->generate_tangents();
|
|
array_copy = st->commit_to_arrays();
|
|
}
|
|
|
|
morphs.push_back(array_copy);
|
|
}
|
|
}
|
|
|
|
//just add it
|
|
|
|
Ref<SpatialMaterial> mat;
|
|
if (p.has("material")) {
|
|
const int material = p["material"];
|
|
ERR_FAIL_INDEX_V(material, state->materials.size(), ERR_FILE_CORRUPT);
|
|
Ref<SpatialMaterial> mat3d = state->materials[material];
|
|
if (has_vertex_color) {
|
|
mat3d->set_flag(SpatialMaterial::FLAG_ALBEDO_FROM_VERTEX_COLOR, true);
|
|
}
|
|
mat = mat3d;
|
|
|
|
} else if (has_vertex_color) {
|
|
Ref<SpatialMaterial> mat3d;
|
|
mat3d.instance();
|
|
mat3d->set_flag(SpatialMaterial::FLAG_ALBEDO_FROM_VERTEX_COLOR, true);
|
|
mat = mat3d;
|
|
}
|
|
int32_t mat_idx = import_mesh->get_surface_count();
|
|
import_mesh->add_surface_from_arrays(primitive, array, morphs);
|
|
import_mesh->surface_set_material(mat_idx, mat);
|
|
}
|
|
|
|
Vector<float> blend_weights;
|
|
blend_weights.resize(import_mesh->get_blend_shape_count());
|
|
for (int32_t weight_i = 0; weight_i < blend_weights.size(); weight_i++) {
|
|
blend_weights.write[weight_i] = 0.0f;
|
|
}
|
|
|
|
if (d.has("weights")) {
|
|
const Array &weights = d["weights"];
|
|
for (int j = 0; j < weights.size(); j++) {
|
|
if (j >= blend_weights.size()) {
|
|
break;
|
|
}
|
|
blend_weights.write[j] = weights[j];
|
|
}
|
|
}
|
|
mesh->set_blend_weights(blend_weights);
|
|
mesh->set_mesh(import_mesh);
|
|
|
|
state->meshes.push_back(mesh);
|
|
}
|
|
|
|
print_verbose("glTF: Total meshes: " + itos(state->meshes.size()));
|
|
|
|
return OK;
|
|
}
|
|
|
|
Error GLTFDocument::_serialize_images(Ref<GLTFState> state, const String &p_path) {
|
|
Array images;
|
|
for (int i = 0; i < state->images.size(); i++) {
|
|
Dictionary d;
|
|
|
|
ERR_CONTINUE(state->images[i].is_null());
|
|
|
|
Ref<Image> image = state->images[i]->get_data();
|
|
ERR_CONTINUE(image.is_null());
|
|
|
|
if (p_path.to_lower().ends_with("glb")) {
|
|
GLTFBufferViewIndex bvi;
|
|
|
|
Ref<GLTFBufferView> bv;
|
|
bv.instance();
|
|
|
|
const GLTFBufferIndex bi = 0;
|
|
bv->buffer = bi;
|
|
bv->byte_offset = state->buffers[bi].size();
|
|
ERR_FAIL_INDEX_V(bi, state->buffers.size(), ERR_PARAMETER_RANGE_ERROR);
|
|
|
|
PoolVector<uint8_t> buffer;
|
|
Ref<ImageTexture> img_tex = image;
|
|
if (img_tex.is_valid()) {
|
|
image = img_tex->get_data();
|
|
}
|
|
Error err = PNGDriverCommon::image_to_png(image, buffer);
|
|
ERR_FAIL_COND_V_MSG(err, err, "Can't convert image to PNG.");
|
|
|
|
bv->byte_length = buffer.size();
|
|
state->buffers.write[bi].resize(state->buffers[bi].size() + bv->byte_length);
|
|
memcpy(&state->buffers.write[bi].write[bv->byte_offset], buffer.read().ptr(), buffer.size());
|
|
ERR_FAIL_COND_V(bv->byte_offset + bv->byte_length > state->buffers[bi].size(), ERR_FILE_CORRUPT);
|
|
|
|
state->buffer_views.push_back(bv);
|
|
bvi = state->buffer_views.size() - 1;
|
|
d["bufferView"] = bvi;
|
|
d["mimeType"] = "image/png";
|
|
} else {
|
|
String name = state->images[i]->get_name();
|
|
if (name.empty()) {
|
|
name = itos(i);
|
|
}
|
|
name = _gen_unique_name(state, name);
|
|
name = name.pad_zeros(3);
|
|
Ref<_Directory> dir;
|
|
dir.instance();
|
|
String texture_dir = "textures";
|
|
String new_texture_dir = p_path.get_base_dir() + "/" + texture_dir;
|
|
dir->open(p_path.get_base_dir());
|
|
if (!dir->dir_exists(new_texture_dir)) {
|
|
dir->make_dir(new_texture_dir);
|
|
}
|
|
name = name + ".png";
|
|
image->save_png(new_texture_dir.plus_file(name));
|
|
d["uri"] = texture_dir.plus_file(name);
|
|
}
|
|
images.push_back(d);
|
|
}
|
|
|
|
print_verbose("Total images: " + itos(state->images.size()));
|
|
|
|
if (!images.size()) {
|
|
return OK;
|
|
}
|
|
state->json["images"] = images;
|
|
|
|
return OK;
|
|
}
|
|
|
|
Error GLTFDocument::_parse_images(Ref<GLTFState> state, const String &p_base_path) {
|
|
if (!state->json.has("images")) {
|
|
return OK;
|
|
}
|
|
|
|
// Ref: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#images
|
|
|
|
const Array &images = state->json["images"];
|
|
for (int i = 0; i < images.size(); i++) {
|
|
const Dictionary &d = images[i];
|
|
|
|
// glTF 2.0 supports PNG and JPEG types, which can be specified as (from spec):
|
|
// "- a URI to an external file in one of the supported images formats, or
|
|
// - a URI with embedded base64-encoded data, or
|
|
// - a reference to a bufferView; in that case mimeType must be defined."
|
|
// Since mimeType is optional for external files and base64 data, we'll have to
|
|
// fall back on letting Godot parse the data to figure out if it's PNG or JPEG.
|
|
|
|
// We'll assume that we use either URI or bufferView, so let's warn the user
|
|
// if their image somehow uses both. And fail if it has neither.
|
|
ERR_CONTINUE_MSG(!d.has("uri") && !d.has("bufferView"), "Invalid image definition in glTF file, it should specific an 'uri' or 'bufferView'.");
|
|
if (d.has("uri") && d.has("bufferView")) {
|
|
WARN_PRINT("Invalid image definition in glTF file using both 'uri' and 'bufferView'. 'bufferView' will take precedence.");
|
|
}
|
|
|
|
String mimetype;
|
|
if (d.has("mimeType")) { // Should be "image/png" or "image/jpeg".
|
|
mimetype = d["mimeType"];
|
|
}
|
|
|
|
Vector<uint8_t> data;
|
|
const uint8_t *data_ptr = nullptr;
|
|
int data_size = 0;
|
|
|
|
if (d.has("uri")) {
|
|
// Handles the first two bullet points from the spec (embedded data, or external file).
|
|
String uri = d["uri"];
|
|
|
|
if (uri.begins_with("data:")) { // Embedded data using base64.
|
|
// Validate data MIME types and throw a warning if it's one we don't know/support.
|
|
if (!uri.begins_with("data:application/octet-stream;base64") &&
|
|
!uri.begins_with("data:application/gltf-buffer;base64") &&
|
|
!uri.begins_with("data:image/png;base64") &&
|
|
!uri.begins_with("data:image/jpeg;base64")) {
|
|
WARN_PRINT(vformat("glTF: Image index '%d' uses an unsupported URI data type: %s. Skipping it.", i, uri));
|
|
state->images.push_back(Ref<Texture>()); // Placeholder to keep count.
|
|
continue;
|
|
}
|
|
data = _parse_base64_uri(uri);
|
|
data_ptr = data.ptr();
|
|
data_size = data.size();
|
|
// mimeType is optional, but if we have it defined in the URI, let's use it.
|
|
if (mimetype.empty()) {
|
|
if (uri.begins_with("data:image/png;base64")) {
|
|
mimetype = "image/png";
|
|
} else if (uri.begins_with("data:image/jpeg;base64")) {
|
|
mimetype = "image/jpeg";
|
|
}
|
|
}
|
|
} else { // Relative path to an external image file.
|
|
uri = p_base_path.plus_file(uri).replace("\\", "/"); // Fix for Windows.
|
|
// ResourceLoader will rely on the file extension to use the relevant loader.
|
|
// The spec says that if mimeType is defined, it should take precedence (e.g.
|
|
// there could be a `.png` image which is actually JPEG), but there's no easy
|
|
// API for that in Godot, so we'd have to load as a buffer (i.e. embedded in
|
|
// the material), so we do this only as fallback.
|
|
Ref<Texture> texture = ResourceLoader::load(uri);
|
|
if (texture.is_valid()) {
|
|
state->images.push_back(texture);
|
|
continue;
|
|
} else if (mimetype == "image/png" || mimetype == "image/jpeg") {
|
|
// Fallback to loading as byte array.
|
|
// This enables us to support the spec's requirement that we honor mimetype
|
|
// regardless of file URI.
|
|
data = FileAccess::get_file_as_array(uri);
|
|
if (data.size() == 0) {
|
|
WARN_PRINT(vformat("glTF: Image index '%d' couldn't be loaded as a buffer of MIME type '%s' from URI: %s. Skipping it.", i, mimetype, uri));
|
|
state->images.push_back(Ref<Texture>()); // Placeholder to keep count.
|
|
continue;
|
|
}
|
|
data_ptr = data.ptr();
|
|
data_size = data.size();
|
|
} else {
|
|
WARN_PRINT(vformat("glTF: Image index '%d' couldn't be loaded from URI: %s. Skipping it.", i, uri));
|
|
state->images.push_back(Ref<Texture>()); // Placeholder to keep count.
|
|
continue;
|
|
}
|
|
}
|
|
} else if (d.has("bufferView")) {
|
|
// Handles the third bullet point from the spec (bufferView).
|
|
ERR_FAIL_COND_V_MSG(mimetype.empty(), ERR_FILE_CORRUPT,
|
|
vformat("glTF: Image index '%d' specifies 'bufferView' but no 'mimeType', which is invalid.", i));
|
|
|
|
const GLTFBufferViewIndex bvi = d["bufferView"];
|
|
|
|
ERR_FAIL_INDEX_V(bvi, state->buffer_views.size(), ERR_PARAMETER_RANGE_ERROR);
|
|
|
|
Ref<GLTFBufferView> bv = state->buffer_views[bvi];
|
|
|
|
const GLTFBufferIndex bi = bv->buffer;
|
|
ERR_FAIL_INDEX_V(bi, state->buffers.size(), ERR_PARAMETER_RANGE_ERROR);
|
|
|
|
ERR_FAIL_COND_V(bv->byte_offset + bv->byte_length > state->buffers[bi].size(), ERR_FILE_CORRUPT);
|
|
|
|
data_ptr = &state->buffers[bi][bv->byte_offset];
|
|
data_size = bv->byte_length;
|
|
}
|
|
|
|
Ref<Image> img;
|
|
|
|
// First we honor the mime types if they were defined.
|
|
if (mimetype == "image/png") { // Load buffer as PNG.
|
|
ERR_FAIL_COND_V(Image::_png_mem_loader_func == nullptr, ERR_UNAVAILABLE);
|
|
img = Image::_png_mem_loader_func(data_ptr, data_size);
|
|
} else if (mimetype == "image/jpeg") { // Loader buffer as JPEG.
|
|
ERR_FAIL_COND_V(Image::_jpg_mem_loader_func == nullptr, ERR_UNAVAILABLE);
|
|
img = Image::_jpg_mem_loader_func(data_ptr, data_size);
|
|
}
|
|
|
|
// If we didn't pass the above tests, we attempt loading as PNG and then
|
|
// JPEG directly.
|
|
// This covers URIs with base64-encoded data with application/* type but
|
|
// no optional mimeType property, or bufferViews with a bogus mimeType
|
|
// (e.g. `image/jpeg` but the data is actually PNG).
|
|
// That's not *exactly* what the spec mandates but this lets us be
|
|
// lenient with bogus glb files which do exist in production.
|
|
if (img.is_null()) { // Try PNG first.
|
|
ERR_FAIL_COND_V(Image::_png_mem_loader_func == nullptr, ERR_UNAVAILABLE);
|
|
img = Image::_png_mem_loader_func(data_ptr, data_size);
|
|
}
|
|
if (img.is_null()) { // And then JPEG.
|
|
ERR_FAIL_COND_V(Image::_jpg_mem_loader_func == nullptr, ERR_UNAVAILABLE);
|
|
img = Image::_jpg_mem_loader_func(data_ptr, data_size);
|
|
}
|
|
// Now we've done our best, fix your scenes.
|
|
if (img.is_null()) {
|
|
ERR_PRINT(vformat("glTF: Couldn't load image index '%d' with its given mimetype: %s.", i, mimetype));
|
|
state->images.push_back(Ref<Texture>());
|
|
continue;
|
|
}
|
|
|
|
Ref<ImageTexture> t;
|
|
t.instance();
|
|
t->create_from_image(img);
|
|
|
|
state->images.push_back(t);
|
|
}
|
|
|
|
print_verbose("glTF: Total images: " + itos(state->images.size()));
|
|
|
|
return OK;
|
|
}
|
|
|
|
Error GLTFDocument::_serialize_textures(Ref<GLTFState> state) {
|
|
if (!state->textures.size()) {
|
|
return OK;
|
|
}
|
|
|
|
Array textures;
|
|
for (int32_t i = 0; i < state->textures.size(); i++) {
|
|
Dictionary d;
|
|
Ref<GLTFTexture> t = state->textures[i];
|
|
ERR_CONTINUE(t->get_src_image() == -1);
|
|
d["source"] = t->get_src_image();
|
|
textures.push_back(d);
|
|
}
|
|
state->json["textures"] = textures;
|
|
|
|
return OK;
|
|
}
|
|
|
|
Error GLTFDocument::_parse_textures(Ref<GLTFState> state) {
|
|
if (!state->json.has("textures")) {
|
|
return OK;
|
|
}
|
|
|
|
const Array &textures = state->json["textures"];
|
|
for (GLTFTextureIndex i = 0; i < textures.size(); i++) {
|
|
const Dictionary &d = textures[i];
|
|
|
|
ERR_FAIL_COND_V(!d.has("source"), ERR_PARSE_ERROR);
|
|
|
|
Ref<GLTFTexture> t;
|
|
t.instance();
|
|
t->set_src_image(d["source"]);
|
|
state->textures.push_back(t);
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
GLTFTextureIndex GLTFDocument::_set_texture(Ref<GLTFState> state, Ref<Texture> p_texture) {
|
|
ERR_FAIL_COND_V(p_texture.is_null(), -1);
|
|
Ref<GLTFTexture> gltf_texture;
|
|
gltf_texture.instance();
|
|
ERR_FAIL_COND_V(p_texture->get_data().is_null(), -1);
|
|
GLTFImageIndex gltf_src_image_i = state->images.size();
|
|
state->images.push_back(p_texture);
|
|
gltf_texture->set_src_image(gltf_src_image_i);
|
|
GLTFTextureIndex gltf_texture_i = state->textures.size();
|
|
state->textures.push_back(gltf_texture);
|
|
return gltf_texture_i;
|
|
}
|
|
|
|
Ref<Texture> GLTFDocument::_get_texture(Ref<GLTFState> state, const GLTFTextureIndex p_texture) {
|
|
ERR_FAIL_INDEX_V(p_texture, state->textures.size(), Ref<Texture>());
|
|
const GLTFImageIndex image = state->textures[p_texture]->get_src_image();
|
|
|
|
ERR_FAIL_INDEX_V(image, state->images.size(), Ref<Texture>());
|
|
|
|
return state->images[image];
|
|
}
|
|
|
|
Error GLTFDocument::_serialize_materials(Ref<GLTFState> state) {
|
|
Array materials;
|
|
for (int32_t i = 0; i < state->materials.size(); i++) {
|
|
Dictionary d;
|
|
|
|
Ref<SpatialMaterial> material = state->materials[i];
|
|
if (material.is_null()) {
|
|
materials.push_back(d);
|
|
continue;
|
|
}
|
|
if (!material->get_name().empty()) {
|
|
d["name"] = _gen_unique_name(state, material->get_name());
|
|
}
|
|
{
|
|
Dictionary mr;
|
|
{
|
|
Array arr;
|
|
const Color c = material->get_albedo().to_linear();
|
|
arr.push_back(c.r);
|
|
arr.push_back(c.g);
|
|
arr.push_back(c.b);
|
|
arr.push_back(c.a);
|
|
mr["baseColorFactor"] = arr;
|
|
}
|
|
{
|
|
Dictionary bct;
|
|
Ref<Texture> albedo_texture = material->get_texture(SpatialMaterial::TEXTURE_ALBEDO);
|
|
GLTFTextureIndex gltf_texture_index = -1;
|
|
|
|
if (albedo_texture.is_valid() && albedo_texture->get_data().is_valid()) {
|
|
albedo_texture->set_name(material->get_name() + "_albedo");
|
|
gltf_texture_index = _set_texture(state, albedo_texture);
|
|
}
|
|
if (gltf_texture_index != -1) {
|
|
bct["index"] = gltf_texture_index;
|
|
bct["extensions"] = _serialize_texture_transform_uv1(material);
|
|
mr["baseColorTexture"] = bct;
|
|
}
|
|
}
|
|
|
|
mr["metallicFactor"] = material->get_metallic();
|
|
mr["roughnessFactor"] = material->get_roughness();
|
|
bool has_roughness = material->get_texture(SpatialMaterial::TEXTURE_ROUGHNESS).is_valid() && material->get_texture(SpatialMaterial::TEXTURE_ROUGHNESS)->get_data().is_valid();
|
|
bool has_ao = material->get_feature(SpatialMaterial::FEATURE_AMBIENT_OCCLUSION) && material->get_texture(SpatialMaterial::TEXTURE_AMBIENT_OCCLUSION).is_valid();
|
|
bool has_metalness = material->get_texture(SpatialMaterial::TEXTURE_METALLIC).is_valid() && material->get_texture(SpatialMaterial::TEXTURE_METALLIC)->get_data().is_valid();
|
|
if (has_ao || has_roughness || has_metalness) {
|
|
Dictionary mrt;
|
|
Ref<Texture> roughness_texture = material->get_texture(SpatialMaterial::TEXTURE_ROUGHNESS);
|
|
SpatialMaterial::TextureChannel roughness_channel = material->get_roughness_texture_channel();
|
|
Ref<Texture> metallic_texture = material->get_texture(SpatialMaterial::TEXTURE_METALLIC);
|
|
SpatialMaterial::TextureChannel metalness_channel = material->get_metallic_texture_channel();
|
|
Ref<Texture> ao_texture = material->get_texture(SpatialMaterial::TEXTURE_AMBIENT_OCCLUSION);
|
|
SpatialMaterial::TextureChannel ao_channel = material->get_ao_texture_channel();
|
|
Ref<ImageTexture> orm_texture;
|
|
orm_texture.instance();
|
|
Ref<Image> orm_image;
|
|
orm_image.instance();
|
|
int32_t height = 0;
|
|
int32_t width = 0;
|
|
Ref<Image> ao_image;
|
|
if (has_ao) {
|
|
height = ao_texture->get_height();
|
|
width = ao_texture->get_width();
|
|
ao_image = ao_texture->get_data();
|
|
Ref<ImageTexture> img_tex = ao_image;
|
|
if (img_tex.is_valid()) {
|
|
ao_image = img_tex->get_data();
|
|
}
|
|
if (ao_image->is_compressed()) {
|
|
ao_image->decompress();
|
|
}
|
|
}
|
|
Ref<Image> roughness_image;
|
|
if (has_roughness) {
|
|
height = roughness_texture->get_height();
|
|
width = roughness_texture->get_width();
|
|
roughness_image = roughness_texture->get_data();
|
|
Ref<ImageTexture> img_tex = roughness_image;
|
|
if (img_tex.is_valid()) {
|
|
roughness_image = img_tex->get_data();
|
|
}
|
|
if (roughness_image->is_compressed()) {
|
|
roughness_image->decompress();
|
|
}
|
|
}
|
|
Ref<Image> metallness_image;
|
|
if (has_metalness) {
|
|
height = metallic_texture->get_height();
|
|
width = metallic_texture->get_width();
|
|
metallness_image = metallic_texture->get_data();
|
|
Ref<ImageTexture> img_tex = metallness_image;
|
|
if (img_tex.is_valid()) {
|
|
metallness_image = img_tex->get_data();
|
|
}
|
|
if (metallness_image->is_compressed()) {
|
|
metallness_image->decompress();
|
|
}
|
|
}
|
|
Ref<Texture> albedo_texture = material->get_texture(SpatialMaterial::TEXTURE_ALBEDO);
|
|
if (albedo_texture.is_valid() && albedo_texture->get_data().is_valid()) {
|
|
height = albedo_texture->get_height();
|
|
width = albedo_texture->get_width();
|
|
}
|
|
orm_image->create(width, height, false, Image::FORMAT_RGBA8);
|
|
if (ao_image.is_valid() && ao_image->get_size() != Vector2(width, height)) {
|
|
ao_image->resize(width, height, Image::INTERPOLATE_LANCZOS);
|
|
}
|
|
if (roughness_image.is_valid() && roughness_image->get_size() != Vector2(width, height)) {
|
|
roughness_image->resize(width, height, Image::INTERPOLATE_LANCZOS);
|
|
}
|
|
if (metallness_image.is_valid() && metallness_image->get_size() != Vector2(width, height)) {
|
|
metallness_image->resize(width, height, Image::INTERPOLATE_LANCZOS);
|
|
}
|
|
orm_image->lock();
|
|
for (int32_t h = 0; h < height; h++) {
|
|
for (int32_t w = 0; w < width; w++) {
|
|
Color c = Color(1.0f, 1.0f, 1.0f);
|
|
if (has_ao) {
|
|
ao_image->lock();
|
|
if (SpatialMaterial::TextureChannel::TEXTURE_CHANNEL_RED == ao_channel) {
|
|
c.r = ao_image->get_pixel(w, h).r;
|
|
} else if (SpatialMaterial::TextureChannel::TEXTURE_CHANNEL_GREEN == ao_channel) {
|
|
c.r = ao_image->get_pixel(w, h).g;
|
|
} else if (SpatialMaterial::TextureChannel::TEXTURE_CHANNEL_BLUE == ao_channel) {
|
|
c.r = ao_image->get_pixel(w, h).b;
|
|
} else if (SpatialMaterial::TextureChannel::TEXTURE_CHANNEL_ALPHA == ao_channel) {
|
|
c.r = ao_image->get_pixel(w, h).a;
|
|
}
|
|
ao_image->lock();
|
|
}
|
|
if (has_roughness) {
|
|
roughness_image->lock();
|
|
if (SpatialMaterial::TextureChannel::TEXTURE_CHANNEL_RED == roughness_channel) {
|
|
c.g = roughness_image->get_pixel(w, h).r;
|
|
} else if (SpatialMaterial::TextureChannel::TEXTURE_CHANNEL_GREEN == roughness_channel) {
|
|
c.g = roughness_image->get_pixel(w, h).g;
|
|
} else if (SpatialMaterial::TextureChannel::TEXTURE_CHANNEL_BLUE == roughness_channel) {
|
|
c.g = roughness_image->get_pixel(w, h).b;
|
|
} else if (SpatialMaterial::TextureChannel::TEXTURE_CHANNEL_ALPHA == roughness_channel) {
|
|
c.g = roughness_image->get_pixel(w, h).a;
|
|
}
|
|
roughness_image->unlock();
|
|
}
|
|
if (has_metalness) {
|
|
metallness_image->lock();
|
|
if (SpatialMaterial::TextureChannel::TEXTURE_CHANNEL_RED == metalness_channel) {
|
|
c.b = metallness_image->get_pixel(w, h).r;
|
|
} else if (SpatialMaterial::TextureChannel::TEXTURE_CHANNEL_GREEN == metalness_channel) {
|
|
c.b = metallness_image->get_pixel(w, h).g;
|
|
} else if (SpatialMaterial::TextureChannel::TEXTURE_CHANNEL_BLUE == metalness_channel) {
|
|
c.b = metallness_image->get_pixel(w, h).b;
|
|
} else if (SpatialMaterial::TextureChannel::TEXTURE_CHANNEL_ALPHA == metalness_channel) {
|
|
c.b = metallness_image->get_pixel(w, h).a;
|
|
}
|
|
metallness_image->unlock();
|
|
}
|
|
orm_image->set_pixel(w, h, c);
|
|
}
|
|
}
|
|
orm_image->unlock();
|
|
orm_image->generate_mipmaps();
|
|
orm_texture->create_from_image(orm_image);
|
|
GLTFTextureIndex orm_texture_index = -1;
|
|
if (has_ao || has_roughness || has_metalness) {
|
|
orm_texture->set_name(material->get_name() + "_orm");
|
|
orm_texture_index = _set_texture(state, orm_texture);
|
|
}
|
|
if (has_ao) {
|
|
Dictionary ot;
|
|
ot["index"] = orm_texture_index;
|
|
d["occlusionTexture"] = ot;
|
|
}
|
|
if (has_roughness || has_metalness) {
|
|
mrt["index"] = orm_texture_index;
|
|
mrt["extensions"] = _serialize_texture_transform_uv1(material);
|
|
mr["metallicRoughnessTexture"] = mrt;
|
|
}
|
|
}
|
|
d["pbrMetallicRoughness"] = mr;
|
|
}
|
|
|
|
if (material->get_feature(SpatialMaterial::FEATURE_NORMAL_MAPPING)) {
|
|
Dictionary nt;
|
|
Ref<ImageTexture> tex;
|
|
tex.instance();
|
|
{
|
|
Ref<Texture> normal_texture = material->get_texture(SpatialMaterial::TEXTURE_NORMAL);
|
|
// Code for uncompressing RG normal maps
|
|
Ref<Image> img = normal_texture->get_data();
|
|
Ref<ImageTexture> img_tex = img;
|
|
if (img_tex.is_valid()) {
|
|
img = img_tex->get_data();
|
|
}
|
|
img->decompress();
|
|
img->convert(Image::FORMAT_RGBA8);
|
|
img->lock();
|
|
for (int32_t y = 0; y < img->get_height(); y++) {
|
|
for (int32_t x = 0; x < img->get_width(); x++) {
|
|
Color c = img->get_pixel(x, y);
|
|
Vector2 red_green = Vector2(c.r, c.g);
|
|
red_green = red_green * Vector2(2.0f, 2.0f) - Vector2(1.0f, 1.0f);
|
|
float blue = 1.0f - red_green.dot(red_green);
|
|
blue = MAX(0.0f, blue);
|
|
c.b = Math::sqrt(blue);
|
|
img->set_pixel(x, y, c);
|
|
}
|
|
}
|
|
img->unlock();
|
|
tex->create_from_image(img);
|
|
}
|
|
Ref<Texture> normal_texture = material->get_texture(SpatialMaterial::TEXTURE_NORMAL);
|
|
GLTFTextureIndex gltf_texture_index = -1;
|
|
if (tex.is_valid() && tex->get_data().is_valid()) {
|
|
tex->set_name(material->get_name() + "_normal");
|
|
gltf_texture_index = _set_texture(state, tex);
|
|
}
|
|
nt["scale"] = material->get_normal_scale();
|
|
if (gltf_texture_index != -1) {
|
|
nt["index"] = gltf_texture_index;
|
|
d["normalTexture"] = nt;
|
|
}
|
|
}
|
|
|
|
if (material->get_feature(SpatialMaterial::FEATURE_EMISSION)) {
|
|
const Color c = material->get_emission().to_srgb();
|
|
Array arr;
|
|
arr.push_back(c.r);
|
|
arr.push_back(c.g);
|
|
arr.push_back(c.b);
|
|
d["emissiveFactor"] = arr;
|
|
}
|
|
if (material->get_feature(SpatialMaterial::FEATURE_EMISSION)) {
|
|
Dictionary et;
|
|
Ref<Texture> emission_texture = material->get_texture(SpatialMaterial::TEXTURE_EMISSION);
|
|
GLTFTextureIndex gltf_texture_index = -1;
|
|
if (emission_texture.is_valid() && emission_texture->get_data().is_valid()) {
|
|
emission_texture->set_name(material->get_name() + "_emission");
|
|
gltf_texture_index = _set_texture(state, emission_texture);
|
|
}
|
|
|
|
if (gltf_texture_index != -1) {
|
|
et["index"] = gltf_texture_index;
|
|
d["emissiveTexture"] = et;
|
|
}
|
|
}
|
|
const bool ds = material->get_cull_mode() == SpatialMaterial::CULL_DISABLED;
|
|
if (ds) {
|
|
d["doubleSided"] = ds;
|
|
}
|
|
if (material->get_feature(SpatialMaterial::FEATURE_TRANSPARENT)) {
|
|
if (material->get_flag(SpatialMaterial::FLAG_USE_ALPHA_SCISSOR)) {
|
|
d["alphaMode"] = "MASK";
|
|
d["alphaCutoff"] = material->get_alpha_scissor_threshold();
|
|
} else {
|
|
d["alphaMode"] = "BLEND";
|
|
}
|
|
}
|
|
materials.push_back(d);
|
|
}
|
|
state->json["materials"] = materials;
|
|
print_verbose("Total materials: " + itos(state->materials.size()));
|
|
|
|
return OK;
|
|
}
|
|
|
|
Error GLTFDocument::_parse_materials(Ref<GLTFState> state) {
|
|
if (!state->json.has("materials")) {
|
|
return OK;
|
|
}
|
|
|
|
const Array &materials = state->json["materials"];
|
|
for (GLTFMaterialIndex i = 0; i < materials.size(); i++) {
|
|
const Dictionary &d = materials[i];
|
|
|
|
Ref<SpatialMaterial> material;
|
|
material.instance();
|
|
if (d.has("name") && !String(d["name"]).empty()) {
|
|
material->set_name(d["name"]);
|
|
} else {
|
|
material->set_name(vformat("material_%s", itos(i)));
|
|
}
|
|
|
|
material->set_flag(SpatialMaterial::FLAG_ALBEDO_FROM_VERTEX_COLOR, true);
|
|
Dictionary pbr_spec_gloss_extensions;
|
|
if (d.has("extensions")) {
|
|
pbr_spec_gloss_extensions = d["extensions"];
|
|
}
|
|
if (pbr_spec_gloss_extensions.has("KHR_materials_pbrSpecularGlossiness")) {
|
|
WARN_PRINT("Material uses a specular and glossiness workflow. Textures will be converted to roughness and metallic workflow, which may not be 100% accurate.");
|
|
Dictionary sgm = pbr_spec_gloss_extensions["KHR_materials_pbrSpecularGlossiness"];
|
|
|
|
Ref<GLTFSpecGloss> spec_gloss;
|
|
spec_gloss.instance();
|
|
if (sgm.has("diffuseTexture")) {
|
|
const Dictionary &diffuse_texture_dict = sgm["diffuseTexture"];
|
|
if (diffuse_texture_dict.has("index")) {
|
|
Ref<Texture> diffuse_texture = _get_texture(state, diffuse_texture_dict["index"]);
|
|
if (diffuse_texture.is_valid()) {
|
|
spec_gloss->diffuse_img = diffuse_texture->get_data();
|
|
material->set_texture(SpatialMaterial::TEXTURE_ALBEDO, diffuse_texture);
|
|
}
|
|
}
|
|
}
|
|
if (sgm.has("diffuseFactor")) {
|
|
const Array &arr = sgm["diffuseFactor"];
|
|
ERR_FAIL_COND_V(arr.size() != 4, ERR_PARSE_ERROR);
|
|
const Color c = Color(arr[0], arr[1], arr[2], arr[3]).to_srgb();
|
|
spec_gloss->diffuse_factor = c;
|
|
material->set_albedo(spec_gloss->diffuse_factor);
|
|
}
|
|
|
|
if (sgm.has("specularFactor")) {
|
|
const Array &arr = sgm["specularFactor"];
|
|
ERR_FAIL_COND_V(arr.size() != 3, ERR_PARSE_ERROR);
|
|
spec_gloss->specular_factor = Color(arr[0], arr[1], arr[2]);
|
|
}
|
|
|
|
if (sgm.has("glossinessFactor")) {
|
|
spec_gloss->gloss_factor = sgm["glossinessFactor"];
|
|
material->set_roughness(1.0f - CLAMP(spec_gloss->gloss_factor, 0.0f, 1.0f));
|
|
}
|
|
if (sgm.has("specularGlossinessTexture")) {
|
|
const Dictionary &spec_gloss_texture = sgm["specularGlossinessTexture"];
|
|
if (spec_gloss_texture.has("index")) {
|
|
const Ref<Texture> orig_texture = _get_texture(state, spec_gloss_texture["index"]);
|
|
if (orig_texture.is_valid()) {
|
|
spec_gloss->spec_gloss_img = orig_texture->get_data();
|
|
}
|
|
}
|
|
}
|
|
spec_gloss_to_rough_metal(spec_gloss, material);
|
|
|
|
} else if (d.has("pbrMetallicRoughness")) {
|
|
const Dictionary &mr = d["pbrMetallicRoughness"];
|
|
if (mr.has("baseColorFactor")) {
|
|
const Array &arr = mr["baseColorFactor"];
|
|
ERR_FAIL_COND_V(arr.size() != 4, ERR_PARSE_ERROR);
|
|
const Color c = Color(arr[0], arr[1], arr[2], arr[3]).to_srgb();
|
|
material->set_albedo(c);
|
|
}
|
|
|
|
if (mr.has("baseColorTexture")) {
|
|
const Dictionary &bct = mr["baseColorTexture"];
|
|
if (bct.has("index")) {
|
|
material->set_texture(SpatialMaterial::TEXTURE_ALBEDO, _get_texture(state, bct["index"]));
|
|
}
|
|
if (!mr.has("baseColorFactor")) {
|
|
material->set_albedo(Color(1, 1, 1));
|
|
}
|
|
_set_texture_transform_uv1(bct, material);
|
|
}
|
|
|
|
if (mr.has("metallicFactor")) {
|
|
material->set_metallic(mr["metallicFactor"]);
|
|
} else {
|
|
material->set_metallic(1.0);
|
|
}
|
|
|
|
if (mr.has("roughnessFactor")) {
|
|
material->set_roughness(mr["roughnessFactor"]);
|
|
} else {
|
|
material->set_roughness(1.0);
|
|
}
|
|
|
|
if (mr.has("metallicRoughnessTexture")) {
|
|
const Dictionary &bct = mr["metallicRoughnessTexture"];
|
|
if (bct.has("index")) {
|
|
const Ref<Texture> t = _get_texture(state, bct["index"]);
|
|
material->set_texture(SpatialMaterial::TEXTURE_METALLIC, t);
|
|
material->set_metallic_texture_channel(SpatialMaterial::TEXTURE_CHANNEL_BLUE);
|
|
material->set_texture(SpatialMaterial::TEXTURE_ROUGHNESS, t);
|
|
material->set_roughness_texture_channel(SpatialMaterial::TEXTURE_CHANNEL_GREEN);
|
|
if (!mr.has("metallicFactor")) {
|
|
material->set_metallic(1);
|
|
}
|
|
if (!mr.has("roughnessFactor")) {
|
|
material->set_roughness(1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (d.has("normalTexture")) {
|
|
const Dictionary &bct = d["normalTexture"];
|
|
if (bct.has("index")) {
|
|
material->set_texture(SpatialMaterial::TEXTURE_NORMAL, _get_texture(state, bct["index"]));
|
|
material->set_feature(SpatialMaterial::FEATURE_NORMAL_MAPPING, true);
|
|
}
|
|
if (bct.has("scale")) {
|
|
material->set_normal_scale(bct["scale"]);
|
|
}
|
|
}
|
|
if (d.has("occlusionTexture")) {
|
|
const Dictionary &bct = d["occlusionTexture"];
|
|
if (bct.has("index")) {
|
|
material->set_texture(SpatialMaterial::TEXTURE_AMBIENT_OCCLUSION, _get_texture(state, bct["index"]));
|
|
material->set_ao_texture_channel(SpatialMaterial::TEXTURE_CHANNEL_RED);
|
|
material->set_feature(SpatialMaterial::FEATURE_AMBIENT_OCCLUSION, true);
|
|
}
|
|
}
|
|
|
|
if (d.has("emissiveFactor")) {
|
|
const Array &arr = d["emissiveFactor"];
|
|
ERR_FAIL_COND_V(arr.size() != 3, ERR_PARSE_ERROR);
|
|
const Color c = Color(arr[0], arr[1], arr[2]).to_srgb();
|
|
material->set_feature(SpatialMaterial::FEATURE_EMISSION, true);
|
|
|
|
material->set_emission(c);
|
|
}
|
|
|
|
if (d.has("emissiveTexture")) {
|
|
const Dictionary &bct = d["emissiveTexture"];
|
|
if (bct.has("index")) {
|
|
material->set_texture(SpatialMaterial::TEXTURE_EMISSION, _get_texture(state, bct["index"]));
|
|
material->set_feature(SpatialMaterial::FEATURE_EMISSION, true);
|
|
material->set_emission(Color(0, 0, 0));
|
|
}
|
|
}
|
|
|
|
if (d.has("doubleSided")) {
|
|
const bool ds = d["doubleSided"];
|
|
if (ds) {
|
|
material->set_cull_mode(SpatialMaterial::CULL_DISABLED);
|
|
}
|
|
}
|
|
|
|
if (d.has("alphaMode")) {
|
|
const String &am = d["alphaMode"];
|
|
if (am == "BLEND") {
|
|
material->set_feature(SpatialMaterial::FEATURE_TRANSPARENT, true);
|
|
material->set_depth_draw_mode(SpatialMaterial::DEPTH_DRAW_ALPHA_OPAQUE_PREPASS);
|
|
} else if (am == "MASK") {
|
|
material->set_flag(SpatialMaterial::FLAG_USE_ALPHA_SCISSOR, true);
|
|
if (d.has("alphaCutoff")) {
|
|
material->set_alpha_scissor_threshold(d["alphaCutoff"]);
|
|
} else {
|
|
material->set_alpha_scissor_threshold(0.5f);
|
|
}
|
|
}
|
|
}
|
|
state->materials.push_back(material);
|
|
}
|
|
|
|
print_verbose("Total materials: " + itos(state->materials.size()));
|
|
|
|
return OK;
|
|
}
|
|
|
|
void GLTFDocument::_set_texture_transform_uv1(const Dictionary &d, Ref<SpatialMaterial> material) {
|
|
if (d.has("extensions")) {
|
|
const Dictionary &extensions = d["extensions"];
|
|
if (extensions.has("KHR_texture_transform")) {
|
|
const Dictionary &texture_transform = extensions["KHR_texture_transform"];
|
|
const Array &offset_arr = texture_transform["offset"];
|
|
if (offset_arr.size() == 2) {
|
|
const Vector3 offset_vector3 = Vector3(offset_arr[0], offset_arr[1], 0.0f);
|
|
material->set_uv1_offset(offset_vector3);
|
|
}
|
|
|
|
const Array &scale_arr = texture_transform["scale"];
|
|
if (scale_arr.size() == 2) {
|
|
const Vector3 scale_vector3 = Vector3(scale_arr[0], scale_arr[1], 1.0f);
|
|
material->set_uv1_scale(scale_vector3);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void GLTFDocument::spec_gloss_to_rough_metal(Ref<GLTFSpecGloss> r_spec_gloss, Ref<SpatialMaterial> p_material) {
|
|
if (r_spec_gloss->spec_gloss_img.is_null()) {
|
|
return;
|
|
}
|
|
if (r_spec_gloss->diffuse_img.is_null()) {
|
|
return;
|
|
}
|
|
Ref<Image> rm_img;
|
|
rm_img.instance();
|
|
bool has_roughness = false;
|
|
bool has_metal = false;
|
|
p_material->set_roughness(1.0f);
|
|
p_material->set_metallic(1.0f);
|
|
rm_img->create(r_spec_gloss->spec_gloss_img->get_width(), r_spec_gloss->spec_gloss_img->get_height(), false, Image::FORMAT_RGBA8);
|
|
rm_img->lock();
|
|
r_spec_gloss->spec_gloss_img->decompress();
|
|
if (r_spec_gloss->diffuse_img.is_valid()) {
|
|
r_spec_gloss->diffuse_img->decompress();
|
|
r_spec_gloss->diffuse_img->resize(r_spec_gloss->spec_gloss_img->get_width(), r_spec_gloss->spec_gloss_img->get_height(), Image::INTERPOLATE_LANCZOS);
|
|
r_spec_gloss->spec_gloss_img->resize(r_spec_gloss->diffuse_img->get_width(), r_spec_gloss->diffuse_img->get_height(), Image::INTERPOLATE_LANCZOS);
|
|
}
|
|
for (int32_t y = 0; y < r_spec_gloss->spec_gloss_img->get_height(); y++) {
|
|
for (int32_t x = 0; x < r_spec_gloss->spec_gloss_img->get_width(); x++) {
|
|
const Color specular_pixel = r_spec_gloss->spec_gloss_img->get_pixel(x, y).to_linear();
|
|
Color specular = Color(specular_pixel.r, specular_pixel.g, specular_pixel.b);
|
|
specular *= r_spec_gloss->specular_factor;
|
|
Color diffuse = Color(1.0f, 1.0f, 1.0f);
|
|
r_spec_gloss->diffuse_img->lock();
|
|
diffuse *= r_spec_gloss->diffuse_img->get_pixel(x, y).to_linear();
|
|
float metallic = 0.0f;
|
|
Color base_color;
|
|
spec_gloss_to_metal_base_color(specular, diffuse, base_color, metallic);
|
|
Color mr = Color(1.0f, 1.0f, 1.0f);
|
|
mr.g = specular_pixel.a;
|
|
mr.b = metallic;
|
|
if (!Math::is_equal_approx(mr.g, 1.0f)) {
|
|
has_roughness = true;
|
|
}
|
|
if (!Math::is_equal_approx(mr.b, 0.0f)) {
|
|
has_metal = true;
|
|
}
|
|
mr.g *= r_spec_gloss->gloss_factor;
|
|
mr.g = 1.0f - mr.g;
|
|
rm_img->set_pixel(x, y, mr);
|
|
r_spec_gloss->diffuse_img->set_pixel(x, y, base_color.to_srgb());
|
|
r_spec_gloss->diffuse_img->unlock();
|
|
}
|
|
}
|
|
rm_img->unlock();
|
|
rm_img->generate_mipmaps();
|
|
r_spec_gloss->diffuse_img->generate_mipmaps();
|
|
Ref<ImageTexture> diffuse_image_texture;
|
|
diffuse_image_texture.instance();
|
|
diffuse_image_texture->create_from_image(r_spec_gloss->diffuse_img);
|
|
p_material->set_texture(SpatialMaterial::TEXTURE_ALBEDO, diffuse_image_texture);
|
|
Ref<ImageTexture> rm_image_texture;
|
|
rm_image_texture.instance();
|
|
rm_image_texture->create_from_image(rm_img);
|
|
if (has_roughness) {
|
|
p_material->set_texture(SpatialMaterial::TEXTURE_ROUGHNESS, rm_image_texture);
|
|
p_material->set_roughness_texture_channel(SpatialMaterial::TEXTURE_CHANNEL_GREEN);
|
|
}
|
|
|
|
if (has_metal) {
|
|
p_material->set_texture(SpatialMaterial::TEXTURE_METALLIC, rm_image_texture);
|
|
p_material->set_metallic_texture_channel(SpatialMaterial::TEXTURE_CHANNEL_BLUE);
|
|
}
|
|
}
|
|
|
|
void GLTFDocument::spec_gloss_to_metal_base_color(const Color &p_specular_factor, const Color &p_diffuse, Color &r_base_color, float &r_metallic) {
|
|
const Color DIELECTRIC_SPECULAR = Color(0.04f, 0.04f, 0.04f);
|
|
Color specular = Color(p_specular_factor.r, p_specular_factor.g, p_specular_factor.b);
|
|
const float one_minus_specular_strength = 1.0f - get_max_component(specular);
|
|
const float dielectric_specular_red = DIELECTRIC_SPECULAR.r;
|
|
float brightness_diffuse = get_perceived_brightness(p_diffuse);
|
|
const float brightness_specular = get_perceived_brightness(specular);
|
|
r_metallic = solve_metallic(dielectric_specular_red, brightness_diffuse, brightness_specular, one_minus_specular_strength);
|
|
const float one_minus_metallic = 1.0f - r_metallic;
|
|
const Color base_color_from_diffuse = p_diffuse * (one_minus_specular_strength / (1.0f - dielectric_specular_red) / MAX(one_minus_metallic, CMP_EPSILON));
|
|
const Color base_color_from_specular = (specular - (DIELECTRIC_SPECULAR * (one_minus_metallic))) * (1.0f / MAX(r_metallic, CMP_EPSILON));
|
|
r_base_color.r = Math::lerp(base_color_from_diffuse.r, base_color_from_specular.r, r_metallic * r_metallic);
|
|
r_base_color.g = Math::lerp(base_color_from_diffuse.g, base_color_from_specular.g, r_metallic * r_metallic);
|
|
r_base_color.b = Math::lerp(base_color_from_diffuse.b, base_color_from_specular.b, r_metallic * r_metallic);
|
|
r_base_color.a = p_diffuse.a;
|
|
r_base_color.r = CLAMP(r_base_color.r, 0.0f, 1.0f);
|
|
r_base_color.g = CLAMP(r_base_color.g, 0.0f, 1.0f);
|
|
r_base_color.b = CLAMP(r_base_color.b, 0.0f, 1.0f);
|
|
r_base_color.a = CLAMP(r_base_color.a, 0.0f, 1.0f);
|
|
}
|
|
|
|
GLTFNodeIndex GLTFDocument::_find_highest_node(Ref<GLTFState> state, const Vector<GLTFNodeIndex> &subset) {
|
|
int highest = -1;
|
|
GLTFNodeIndex best_node = -1;
|
|
|
|
for (int i = 0; i < subset.size(); ++i) {
|
|
const GLTFNodeIndex node_i = subset[i];
|
|
const Ref<GLTFNode> node = state->nodes[node_i];
|
|
|
|
if (highest == -1 || node->height < highest) {
|
|
highest = node->height;
|
|
best_node = node_i;
|
|
}
|
|
}
|
|
|
|
return best_node;
|
|
}
|
|
|
|
bool GLTFDocument::_capture_nodes_in_skin(Ref<GLTFState> state, Ref<GLTFSkin> skin, const GLTFNodeIndex node_index) {
|
|
bool found_joint = false;
|
|
|
|
for (int i = 0; i < state->nodes[node_index]->children.size(); ++i) {
|
|
found_joint |= _capture_nodes_in_skin(state, skin, state->nodes[node_index]->children[i]);
|
|
}
|
|
|
|
if (found_joint) {
|
|
// Mark it if we happen to find another skins joint...
|
|
if (state->nodes[node_index]->joint && skin->joints.find(node_index) < 0) {
|
|
skin->joints.push_back(node_index);
|
|
} else if (skin->non_joints.find(node_index) < 0) {
|
|
skin->non_joints.push_back(node_index);
|
|
}
|
|
}
|
|
|
|
if (skin->joints.find(node_index) > 0) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void GLTFDocument::_capture_nodes_for_multirooted_skin(Ref<GLTFState> state, Ref<GLTFSkin> skin) {
|
|
DisjointSet<GLTFNodeIndex> disjoint_set;
|
|
|
|
for (int i = 0; i < skin->joints.size(); ++i) {
|
|
const GLTFNodeIndex node_index = skin->joints[i];
|
|
const GLTFNodeIndex parent = state->nodes[node_index]->parent;
|
|
disjoint_set.insert(node_index);
|
|
|
|
if (skin->joints.find(parent) >= 0) {
|
|
disjoint_set.create_union(parent, node_index);
|
|
}
|
|
}
|
|
|
|
Vector<GLTFNodeIndex> roots;
|
|
disjoint_set.get_representatives(roots);
|
|
|
|
if (roots.size() <= 1) {
|
|
return;
|
|
}
|
|
|
|
int maxHeight = -1;
|
|
|
|
// Determine the max height rooted tree
|
|
for (int i = 0; i < roots.size(); ++i) {
|
|
const GLTFNodeIndex root = roots[i];
|
|
|
|
if (maxHeight == -1 || state->nodes[root]->height < maxHeight) {
|
|
maxHeight = state->nodes[root]->height;
|
|
}
|
|
}
|
|
|
|
// Go up the tree till all of the multiple roots of the skin are at the same hierarchy level.
|
|
// This sucks, but 99% of all game engines (not just Godot) would have this same issue.
|
|
for (int i = 0; i < roots.size(); ++i) {
|
|
GLTFNodeIndex current_node = roots[i];
|
|
while (state->nodes[current_node]->height > maxHeight) {
|
|
GLTFNodeIndex parent = state->nodes[current_node]->parent;
|
|
|
|
if (state->nodes[parent]->joint && skin->joints.find(parent) < 0) {
|
|
skin->joints.push_back(parent);
|
|
} else if (skin->non_joints.find(parent) < 0) {
|
|
skin->non_joints.push_back(parent);
|
|
}
|
|
|
|
current_node = parent;
|
|
}
|
|
|
|
// replace the roots
|
|
roots.write[i] = current_node;
|
|
}
|
|
|
|
// Climb up the tree until they all have the same parent
|
|
bool all_same;
|
|
|
|
do {
|
|
all_same = true;
|
|
const GLTFNodeIndex first_parent = state->nodes[roots[0]]->parent;
|
|
|
|
for (int i = 1; i < roots.size(); ++i) {
|
|
all_same &= (first_parent == state->nodes[roots[i]]->parent);
|
|
}
|
|
|
|
if (!all_same) {
|
|
for (int i = 0; i < roots.size(); ++i) {
|
|
const GLTFNodeIndex current_node = roots[i];
|
|
const GLTFNodeIndex parent = state->nodes[current_node]->parent;
|
|
|
|
if (state->nodes[parent]->joint && skin->joints.find(parent) < 0) {
|
|
skin->joints.push_back(parent);
|
|
} else if (skin->non_joints.find(parent) < 0) {
|
|
skin->non_joints.push_back(parent);
|
|
}
|
|
|
|
roots.write[i] = parent;
|
|
}
|
|
}
|
|
|
|
} while (!all_same);
|
|
}
|
|
|
|
Error GLTFDocument::_expand_skin(Ref<GLTFState> state, Ref<GLTFSkin> skin) {
|
|
_capture_nodes_for_multirooted_skin(state, skin);
|
|
|
|
// Grab all nodes that lay in between skin joints/nodes
|
|
DisjointSet<GLTFNodeIndex> disjoint_set;
|
|
|
|
Vector<GLTFNodeIndex> all_skin_nodes;
|
|
all_skin_nodes.append_array(skin->joints);
|
|
all_skin_nodes.append_array(skin->non_joints);
|
|
|
|
for (int i = 0; i < all_skin_nodes.size(); ++i) {
|
|
const GLTFNodeIndex node_index = all_skin_nodes[i];
|
|
const GLTFNodeIndex parent = state->nodes[node_index]->parent;
|
|
disjoint_set.insert(node_index);
|
|
|
|
if (all_skin_nodes.find(parent) >= 0) {
|
|
disjoint_set.create_union(parent, node_index);
|
|
}
|
|
}
|
|
|
|
Vector<GLTFNodeIndex> out_owners;
|
|
disjoint_set.get_representatives(out_owners);
|
|
|
|
Vector<GLTFNodeIndex> out_roots;
|
|
|
|
for (int i = 0; i < out_owners.size(); ++i) {
|
|
Vector<GLTFNodeIndex> set;
|
|
disjoint_set.get_members(set, out_owners[i]);
|
|
|
|
const GLTFNodeIndex root = _find_highest_node(state, set);
|
|
ERR_FAIL_COND_V(root < 0, FAILED);
|
|
out_roots.push_back(root);
|
|
}
|
|
|
|
out_roots.sort();
|
|
|
|
for (int i = 0; i < out_roots.size(); ++i) {
|
|
_capture_nodes_in_skin(state, skin, out_roots[i]);
|
|
}
|
|
|
|
skin->roots = out_roots;
|
|
|
|
return OK;
|
|
}
|
|
|
|
Error GLTFDocument::_verify_skin(Ref<GLTFState> state, Ref<GLTFSkin> skin) {
|
|
// This may seem duplicated from expand_skins, but this is really a sanity check! (so it kinda is)
|
|
// In case additional interpolating logic is added to the skins, this will help ensure that you
|
|
// do not cause it to self implode into a fiery blaze
|
|
|
|
// We are going to re-calculate the root nodes and compare them to the ones saved in the skin,
|
|
// then ensure the multiple trees (if they exist) are on the same sublevel
|
|
|
|
// Grab all nodes that lay in between skin joints/nodes
|
|
DisjointSet<GLTFNodeIndex> disjoint_set;
|
|
|
|
Vector<GLTFNodeIndex> all_skin_nodes;
|
|
all_skin_nodes.append_array(skin->joints);
|
|
all_skin_nodes.append_array(skin->non_joints);
|
|
|
|
for (int i = 0; i < all_skin_nodes.size(); ++i) {
|
|
const GLTFNodeIndex node_index = all_skin_nodes[i];
|
|
const GLTFNodeIndex parent = state->nodes[node_index]->parent;
|
|
disjoint_set.insert(node_index);
|
|
|
|
if (all_skin_nodes.find(parent) >= 0) {
|
|
disjoint_set.create_union(parent, node_index);
|
|
}
|
|
}
|
|
|
|
Vector<GLTFNodeIndex> out_owners;
|
|
disjoint_set.get_representatives(out_owners);
|
|
|
|
Vector<GLTFNodeIndex> out_roots;
|
|
|
|
for (int i = 0; i < out_owners.size(); ++i) {
|
|
Vector<GLTFNodeIndex> set;
|
|
disjoint_set.get_members(set, out_owners[i]);
|
|
|
|
const GLTFNodeIndex root = _find_highest_node(state, set);
|
|
ERR_FAIL_COND_V(root < 0, FAILED);
|
|
out_roots.push_back(root);
|
|
}
|
|
|
|
out_roots.sort();
|
|
|
|
ERR_FAIL_COND_V(out_roots.size() == 0, FAILED);
|
|
|
|
// Make sure the roots are the exact same (they better be)
|
|
ERR_FAIL_COND_V(out_roots.size() != skin->roots.size(), FAILED);
|
|
for (int i = 0; i < out_roots.size(); ++i) {
|
|
ERR_FAIL_COND_V(out_roots[i] != skin->roots[i], FAILED);
|
|
}
|
|
|
|
// Single rooted skin? Perfectly ok!
|
|
if (out_roots.size() == 1) {
|
|
return OK;
|
|
}
|
|
|
|
// Make sure all parents of a multi-rooted skin are the SAME
|
|
const GLTFNodeIndex parent = state->nodes[out_roots[0]]->parent;
|
|
for (int i = 1; i < out_roots.size(); ++i) {
|
|
if (state->nodes[out_roots[i]]->parent != parent) {
|
|
return FAILED;
|
|
}
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
Error GLTFDocument::_parse_skins(Ref<GLTFState> state) {
|
|
if (!state->json.has("skins")) {
|
|
return OK;
|
|
}
|
|
|
|
const Array &skins = state->json["skins"];
|
|
|
|
// Create the base skins, and mark nodes that are joints
|
|
for (int i = 0; i < skins.size(); i++) {
|
|
const Dictionary &d = skins[i];
|
|
|
|
Ref<GLTFSkin> skin;
|
|
skin.instance();
|
|
|
|
ERR_FAIL_COND_V(!d.has("joints"), ERR_PARSE_ERROR);
|
|
|
|
const Array &joints = d["joints"];
|
|
|
|
if (d.has("inverseBindMatrices")) {
|
|
skin->inverse_binds = _decode_accessor_as_xform(state, d["inverseBindMatrices"], false);
|
|
ERR_FAIL_COND_V(skin->inverse_binds.size() != joints.size(), ERR_PARSE_ERROR);
|
|
}
|
|
|
|
for (int j = 0; j < joints.size(); j++) {
|
|
const GLTFNodeIndex node = joints[j];
|
|
ERR_FAIL_INDEX_V(node, state->nodes.size(), ERR_PARSE_ERROR);
|
|
|
|
skin->joints.push_back(node);
|
|
skin->joints_original.push_back(node);
|
|
|
|
state->nodes.write[node]->joint = true;
|
|
}
|
|
|
|
if (d.has("name") && !String(d["name"]).empty()) {
|
|
skin->set_name(d["name"]);
|
|
} else {
|
|
skin->set_name(vformat("skin_%s", itos(i)));
|
|
}
|
|
|
|
if (d.has("skeleton")) {
|
|
skin->skin_root = d["skeleton"];
|
|
}
|
|
|
|
state->skins.push_back(skin);
|
|
}
|
|
|
|
for (GLTFSkinIndex i = 0; i < state->skins.size(); ++i) {
|
|
Ref<GLTFSkin> skin = state->skins.write[i];
|
|
|
|
// Expand the skin to capture all the extra non-joints that lie in between the actual joints,
|
|
// and expand the hierarchy to ensure multi-rooted trees lie on the same height level
|
|
ERR_FAIL_COND_V(_expand_skin(state, skin), ERR_PARSE_ERROR);
|
|
ERR_FAIL_COND_V(_verify_skin(state, skin), ERR_PARSE_ERROR);
|
|
}
|
|
|
|
print_verbose("glTF: Total skins: " + itos(state->skins.size()));
|
|
|
|
return OK;
|
|
}
|
|
|
|
Error GLTFDocument::_determine_skeletons(Ref<GLTFState> state) {
|
|
// Using a disjoint set, we are going to potentially combine all skins that are actually branches
|
|
// of a main skeleton, or treat skins defining the same set of nodes as ONE skeleton.
|
|
// This is another unclear issue caused by the current glTF specification.
|
|
|
|
DisjointSet<GLTFNodeIndex> skeleton_sets;
|
|
|
|
for (GLTFSkinIndex skin_i = 0; skin_i < state->skins.size(); ++skin_i) {
|
|
const Ref<GLTFSkin> skin = state->skins[skin_i];
|
|
|
|
Vector<GLTFNodeIndex> all_skin_nodes;
|
|
all_skin_nodes.append_array(skin->joints);
|
|
all_skin_nodes.append_array(skin->non_joints);
|
|
|
|
for (int i = 0; i < all_skin_nodes.size(); ++i) {
|
|
const GLTFNodeIndex node_index = all_skin_nodes[i];
|
|
const GLTFNodeIndex parent = state->nodes[node_index]->parent;
|
|
skeleton_sets.insert(node_index);
|
|
|
|
if (all_skin_nodes.find(parent) >= 0) {
|
|
skeleton_sets.create_union(parent, node_index);
|
|
}
|
|
}
|
|
|
|
// We are going to connect the separate skin subtrees in each skin together
|
|
// so that the final roots are entire sets of valid skin trees
|
|
for (int i = 1; i < skin->roots.size(); ++i) {
|
|
skeleton_sets.create_union(skin->roots[0], skin->roots[i]);
|
|
}
|
|
}
|
|
|
|
{ // attempt to joint all touching subsets (siblings/parent are part of another skin)
|
|
Vector<GLTFNodeIndex> groups_representatives;
|
|
skeleton_sets.get_representatives(groups_representatives);
|
|
|
|
Vector<GLTFNodeIndex> highest_group_members;
|
|
Vector<Vector<GLTFNodeIndex>> groups;
|
|
for (int i = 0; i < groups_representatives.size(); ++i) {
|
|
Vector<GLTFNodeIndex> group;
|
|
skeleton_sets.get_members(group, groups_representatives[i]);
|
|
highest_group_members.push_back(_find_highest_node(state, group));
|
|
groups.push_back(group);
|
|
}
|
|
|
|
for (int i = 0; i < highest_group_members.size(); ++i) {
|
|
const GLTFNodeIndex node_i = highest_group_members[i];
|
|
|
|
// Attach any siblings together (this needs to be done n^2/2 times)
|
|
for (int j = i + 1; j < highest_group_members.size(); ++j) {
|
|
const GLTFNodeIndex node_j = highest_group_members[j];
|
|
|
|
// Even if they are siblings under the root! :)
|
|
if (state->nodes[node_i]->parent == state->nodes[node_j]->parent) {
|
|
skeleton_sets.create_union(node_i, node_j);
|
|
}
|
|
}
|
|
|
|
// Attach any parenting going on together (we need to do this n^2 times)
|
|
const GLTFNodeIndex node_i_parent = state->nodes[node_i]->parent;
|
|
if (node_i_parent >= 0) {
|
|
for (int j = 0; j < groups.size() && i != j; ++j) {
|
|
const Vector<GLTFNodeIndex> &group = groups[j];
|
|
|
|
if (group.find(node_i_parent) >= 0) {
|
|
const GLTFNodeIndex node_j = highest_group_members[j];
|
|
skeleton_sets.create_union(node_i, node_j);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// At this point, the skeleton groups should be finalized
|
|
Vector<GLTFNodeIndex> skeleton_owners;
|
|
skeleton_sets.get_representatives(skeleton_owners);
|
|
|
|
// Mark all the skins actual skeletons, after we have merged them
|
|
for (GLTFSkeletonIndex skel_i = 0; skel_i < skeleton_owners.size(); ++skel_i) {
|
|
const GLTFNodeIndex skeleton_owner = skeleton_owners[skel_i];
|
|
Ref<GLTFSkeleton> skeleton;
|
|
skeleton.instance();
|
|
|
|
Vector<GLTFNodeIndex> skeleton_nodes;
|
|
skeleton_sets.get_members(skeleton_nodes, skeleton_owner);
|
|
|
|
for (GLTFSkinIndex skin_i = 0; skin_i < state->skins.size(); ++skin_i) {
|
|
Ref<GLTFSkin> skin = state->skins.write[skin_i];
|
|
|
|
// If any of the the skeletons nodes exist in a skin, that skin now maps to the skeleton
|
|
for (int i = 0; i < skeleton_nodes.size(); ++i) {
|
|
GLTFNodeIndex skel_node_i = skeleton_nodes[i];
|
|
if (skin->joints.find(skel_node_i) >= 0 || skin->non_joints.find(skel_node_i) >= 0) {
|
|
skin->skeleton = skel_i;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
Vector<GLTFNodeIndex> non_joints;
|
|
for (int i = 0; i < skeleton_nodes.size(); ++i) {
|
|
const GLTFNodeIndex node_i = skeleton_nodes[i];
|
|
|
|
if (state->nodes[node_i]->joint) {
|
|
skeleton->joints.push_back(node_i);
|
|
} else {
|
|
non_joints.push_back(node_i);
|
|
}
|
|
}
|
|
|
|
state->skeletons.push_back(skeleton);
|
|
|
|
_reparent_non_joint_skeleton_subtrees(state, state->skeletons.write[skel_i], non_joints);
|
|
}
|
|
|
|
for (GLTFSkeletonIndex skel_i = 0; skel_i < state->skeletons.size(); ++skel_i) {
|
|
Ref<GLTFSkeleton> skeleton = state->skeletons.write[skel_i];
|
|
|
|
for (int i = 0; i < skeleton->joints.size(); ++i) {
|
|
const GLTFNodeIndex node_i = skeleton->joints[i];
|
|
Ref<GLTFNode> node = state->nodes[node_i];
|
|
|
|
ERR_FAIL_COND_V(!node->joint, ERR_PARSE_ERROR);
|
|
ERR_FAIL_COND_V(node->skeleton >= 0, ERR_PARSE_ERROR);
|
|
node->skeleton = skel_i;
|
|
}
|
|
|
|
ERR_FAIL_COND_V(_determine_skeleton_roots(state, skel_i), ERR_PARSE_ERROR);
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
Error GLTFDocument::_reparent_non_joint_skeleton_subtrees(Ref<GLTFState> state, Ref<GLTFSkeleton> skeleton, const Vector<GLTFNodeIndex> &non_joints) {
|
|
DisjointSet<GLTFNodeIndex> subtree_set;
|
|
|
|
// Populate the disjoint set with ONLY non joints that are in the skeleton hierarchy (non_joints vector)
|
|
// This way we can find any joints that lie in between joints, as the current glTF specification
|
|
// mentions nothing about non-joints being in between joints of the same skin. Hopefully one day we
|
|
// can remove this code.
|
|
|
|
// skinD depicted here explains this issue:
|
|
// https://github.com/KhronosGroup/glTF-Asset-Generator/blob/master/Output/Positive/Animation_Skin
|
|
|
|
for (int i = 0; i < non_joints.size(); ++i) {
|
|
const GLTFNodeIndex node_i = non_joints[i];
|
|
|
|
subtree_set.insert(node_i);
|
|
|
|
const GLTFNodeIndex parent_i = state->nodes[node_i]->parent;
|
|
if (parent_i >= 0 && non_joints.find(parent_i) >= 0 && !state->nodes[parent_i]->joint) {
|
|
subtree_set.create_union(parent_i, node_i);
|
|
}
|
|
}
|
|
|
|
// Find all the non joint subtrees and re-parent them to a new "fake" joint
|
|
|
|
Vector<GLTFNodeIndex> non_joint_subtree_roots;
|
|
subtree_set.get_representatives(non_joint_subtree_roots);
|
|
|
|
for (int root_i = 0; root_i < non_joint_subtree_roots.size(); ++root_i) {
|
|
const GLTFNodeIndex subtree_root = non_joint_subtree_roots[root_i];
|
|
|
|
Vector<GLTFNodeIndex> subtree_nodes;
|
|
subtree_set.get_members(subtree_nodes, subtree_root);
|
|
|
|
for (int subtree_i = 0; subtree_i < subtree_nodes.size(); ++subtree_i) {
|
|
Ref<GLTFNode> node = state->nodes[subtree_nodes[subtree_i]];
|
|
node->joint = true;
|
|
// Add the joint to the skeletons joints
|
|
skeleton->joints.push_back(subtree_nodes[subtree_i]);
|
|
}
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
Error GLTFDocument::_determine_skeleton_roots(Ref<GLTFState> state, const GLTFSkeletonIndex skel_i) {
|
|
DisjointSet<GLTFNodeIndex> disjoint_set;
|
|
|
|
for (GLTFNodeIndex i = 0; i < state->nodes.size(); ++i) {
|
|
const Ref<GLTFNode> node = state->nodes[i];
|
|
|
|
if (node->skeleton != skel_i) {
|
|
continue;
|
|
}
|
|
|
|
disjoint_set.insert(i);
|
|
|
|
if (node->parent >= 0 && state->nodes[node->parent]->skeleton == skel_i) {
|
|
disjoint_set.create_union(node->parent, i);
|
|
}
|
|
}
|
|
|
|
Ref<GLTFSkeleton> skeleton = state->skeletons.write[skel_i];
|
|
|
|
Vector<GLTFNodeIndex> owners;
|
|
disjoint_set.get_representatives(owners);
|
|
|
|
Vector<GLTFNodeIndex> roots;
|
|
|
|
for (int i = 0; i < owners.size(); ++i) {
|
|
Vector<GLTFNodeIndex> set;
|
|
disjoint_set.get_members(set, owners[i]);
|
|
const GLTFNodeIndex root = _find_highest_node(state, set);
|
|
ERR_FAIL_COND_V(root < 0, FAILED);
|
|
roots.push_back(root);
|
|
}
|
|
|
|
roots.sort();
|
|
PoolVector<GLTFNodeIndex> roots_array;
|
|
roots_array.resize(roots.size());
|
|
PoolVector<GLTFNodeIndex>::Write write_roots = roots_array.write();
|
|
for (int32_t root_i = 0; root_i < roots_array.size(); root_i++) {
|
|
write_roots[root_i] = roots[root_i];
|
|
}
|
|
skeleton->roots = roots_array;
|
|
|
|
if (roots.size() == 0) {
|
|
return FAILED;
|
|
} else if (roots.size() == 1) {
|
|
return OK;
|
|
}
|
|
|
|
// Check that the subtrees have the same parent root
|
|
const GLTFNodeIndex parent = state->nodes[roots[0]]->parent;
|
|
for (int i = 1; i < roots.size(); ++i) {
|
|
if (state->nodes[roots[i]]->parent != parent) {
|
|
return FAILED;
|
|
}
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
Error GLTFDocument::_create_skeletons(Ref<GLTFState> state) {
|
|
for (GLTFSkeletonIndex skel_i = 0; skel_i < state->skeletons.size(); ++skel_i) {
|
|
Ref<GLTFSkeleton> gltf_skeleton = state->skeletons.write[skel_i];
|
|
|
|
Skeleton *skeleton = memnew(Skeleton);
|
|
gltf_skeleton->godot_skeleton = skeleton;
|
|
|
|
// Make a unique name, no gltf node represents this skeleton
|
|
skeleton->set_name(_gen_unique_name(state, "Skeleton"));
|
|
|
|
List<GLTFNodeIndex> bones;
|
|
|
|
for (int i = 0; i < gltf_skeleton->roots.size(); ++i) {
|
|
bones.push_back(gltf_skeleton->roots[i]);
|
|
}
|
|
|
|
// Make the skeleton creation deterministic by going through the roots in
|
|
// a sorted order, and DEPTH FIRST
|
|
bones.sort();
|
|
|
|
while (!bones.empty()) {
|
|
const GLTFNodeIndex node_i = bones.front()->get();
|
|
bones.pop_front();
|
|
|
|
Ref<GLTFNode> node = state->nodes[node_i];
|
|
ERR_FAIL_COND_V(node->skeleton != skel_i, FAILED);
|
|
|
|
{ // Add all child nodes to the stack (deterministically)
|
|
Vector<GLTFNodeIndex> child_nodes;
|
|
for (int i = 0; i < node->children.size(); ++i) {
|
|
const GLTFNodeIndex child_i = node->children[i];
|
|
if (state->nodes[child_i]->skeleton == skel_i) {
|
|
child_nodes.push_back(child_i);
|
|
}
|
|
}
|
|
|
|
// Depth first insertion
|
|
child_nodes.sort();
|
|
for (int i = child_nodes.size() - 1; i >= 0; --i) {
|
|
bones.push_front(child_nodes[i]);
|
|
}
|
|
}
|
|
|
|
const int bone_index = skeleton->get_bone_count();
|
|
|
|
if (node->get_name().empty()) {
|
|
node->set_name("bone");
|
|
}
|
|
|
|
node->set_name(_gen_unique_bone_name(state, skel_i, node->get_name()));
|
|
|
|
skeleton->add_bone(node->get_name());
|
|
skeleton->set_bone_rest(bone_index, node->xform);
|
|
|
|
if (node->parent >= 0 && state->nodes[node->parent]->skeleton == skel_i) {
|
|
const int bone_parent = skeleton->find_bone(state->nodes[node->parent]->get_name());
|
|
ERR_FAIL_COND_V(bone_parent < 0, FAILED);
|
|
skeleton->set_bone_parent(bone_index, skeleton->find_bone(state->nodes[node->parent]->get_name()));
|
|
}
|
|
|
|
state->scene_nodes.insert(node_i, skeleton);
|
|
}
|
|
}
|
|
|
|
ERR_FAIL_COND_V(_map_skin_joints_indices_to_skeleton_bone_indices(state), ERR_PARSE_ERROR);
|
|
|
|
return OK;
|
|
}
|
|
|
|
Error GLTFDocument::_map_skin_joints_indices_to_skeleton_bone_indices(Ref<GLTFState> state) {
|
|
for (GLTFSkinIndex skin_i = 0; skin_i < state->skins.size(); ++skin_i) {
|
|
Ref<GLTFSkin> skin = state->skins.write[skin_i];
|
|
|
|
Ref<GLTFSkeleton> skeleton = state->skeletons[skin->skeleton];
|
|
|
|
for (int joint_index = 0; joint_index < skin->joints_original.size(); ++joint_index) {
|
|
const GLTFNodeIndex node_i = skin->joints_original[joint_index];
|
|
const Ref<GLTFNode> node = state->nodes[node_i];
|
|
|
|
const int bone_index = skeleton->godot_skeleton->find_bone(node->get_name());
|
|
ERR_FAIL_COND_V(bone_index < 0, FAILED);
|
|
|
|
skin->joint_i_to_bone_i.insert(joint_index, bone_index);
|
|
}
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
Error GLTFDocument::_serialize_skins(Ref<GLTFState> state) {
|
|
_remove_duplicate_skins(state);
|
|
return OK;
|
|
}
|
|
|
|
Error GLTFDocument::_create_skins(Ref<GLTFState> state) {
|
|
for (GLTFSkinIndex skin_i = 0; skin_i < state->skins.size(); ++skin_i) {
|
|
Ref<GLTFSkin> gltf_skin = state->skins.write[skin_i];
|
|
|
|
Ref<Skin> skin;
|
|
skin.instance();
|
|
|
|
// Some skins don't have IBM's! What absolute monsters!
|
|
const bool has_ibms = !gltf_skin->inverse_binds.empty();
|
|
|
|
for (int joint_i = 0; joint_i < gltf_skin->joints_original.size(); ++joint_i) {
|
|
GLTFNodeIndex node = gltf_skin->joints_original[joint_i];
|
|
String bone_name = state->nodes[node]->get_name();
|
|
|
|
Transform xform;
|
|
if (has_ibms) {
|
|
xform = gltf_skin->inverse_binds[joint_i];
|
|
}
|
|
|
|
if (state->use_named_skin_binds) {
|
|
skin->add_named_bind(bone_name, xform);
|
|
} else {
|
|
int32_t bone_i = gltf_skin->joint_i_to_bone_i[joint_i];
|
|
skin->add_bind(bone_i, xform);
|
|
}
|
|
}
|
|
|
|
gltf_skin->godot_skin = skin;
|
|
}
|
|
|
|
// Purge the duplicates!
|
|
_remove_duplicate_skins(state);
|
|
|
|
// Create unique names now, after removing duplicates
|
|
for (GLTFSkinIndex skin_i = 0; skin_i < state->skins.size(); ++skin_i) {
|
|
Ref<Skin> skin = state->skins.write[skin_i]->godot_skin;
|
|
if (skin->get_name().empty()) {
|
|
// Make a unique name, no gltf node represents this skin
|
|
skin->set_name(_gen_unique_name(state, "Skin"));
|
|
}
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
bool GLTFDocument::_skins_are_same(const Ref<Skin> skin_a, const Ref<Skin> skin_b) {
|
|
if (skin_a->get_bind_count() != skin_b->get_bind_count()) {
|
|
return false;
|
|
}
|
|
|
|
for (int i = 0; i < skin_a->get_bind_count(); ++i) {
|
|
if (skin_a->get_bind_bone(i) != skin_b->get_bind_bone(i)) {
|
|
return false;
|
|
}
|
|
if (skin_a->get_bind_name(i) != skin_b->get_bind_name(i)) {
|
|
return false;
|
|
}
|
|
|
|
Transform a_xform = skin_a->get_bind_pose(i);
|
|
Transform b_xform = skin_b->get_bind_pose(i);
|
|
|
|
if (a_xform != b_xform) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void GLTFDocument::_remove_duplicate_skins(Ref<GLTFState> state) {
|
|
for (int i = 0; i < state->skins.size(); ++i) {
|
|
for (int j = i + 1; j < state->skins.size(); ++j) {
|
|
const Ref<Skin> skin_i = state->skins[i]->godot_skin;
|
|
const Ref<Skin> skin_j = state->skins[j]->godot_skin;
|
|
|
|
if (_skins_are_same(skin_i, skin_j)) {
|
|
// replace it and delete the old
|
|
state->skins.write[j]->godot_skin = skin_i;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Error GLTFDocument::_serialize_lights(Ref<GLTFState> state) {
|
|
Array lights;
|
|
for (GLTFLightIndex i = 0; i < state->lights.size(); i++) {
|
|
Dictionary d;
|
|
Ref<GLTFLight> light = state->lights[i];
|
|
Array color;
|
|
color.resize(3);
|
|
color[0] = light->color.r;
|
|
color[1] = light->color.g;
|
|
color[2] = light->color.b;
|
|
d["color"] = color;
|
|
d["type"] = light->type;
|
|
if (light->type == "spot") {
|
|
Dictionary s;
|
|
float inner_cone_angle = light->inner_cone_angle;
|
|
s["innerConeAngle"] = inner_cone_angle;
|
|
float outer_cone_angle = light->outer_cone_angle;
|
|
s["outerConeAngle"] = outer_cone_angle;
|
|
d["spot"] = s;
|
|
}
|
|
float intensity = light->intensity;
|
|
d["intensity"] = intensity;
|
|
float range = light->range;
|
|
d["range"] = range;
|
|
lights.push_back(d);
|
|
}
|
|
|
|
if (!state->lights.size()) {
|
|
return OK;
|
|
}
|
|
|
|
Dictionary extensions;
|
|
if (state->json.has("extensions")) {
|
|
extensions = state->json["extensions"];
|
|
} else {
|
|
state->json["extensions"] = extensions;
|
|
}
|
|
Dictionary lights_punctual;
|
|
extensions["KHR_lights_punctual"] = lights_punctual;
|
|
lights_punctual["lights"] = lights;
|
|
|
|
print_verbose("glTF: Total lights: " + itos(state->lights.size()));
|
|
|
|
return OK;
|
|
}
|
|
|
|
Error GLTFDocument::_serialize_cameras(Ref<GLTFState> state) {
|
|
Array cameras;
|
|
cameras.resize(state->cameras.size());
|
|
for (GLTFCameraIndex i = 0; i < state->cameras.size(); i++) {
|
|
Dictionary d;
|
|
|
|
Ref<GLTFCamera> camera = state->cameras[i];
|
|
|
|
if (camera->get_perspective() == false) {
|
|
Dictionary og;
|
|
og["ymag"] = Math::deg2rad(camera->get_fov_size());
|
|
og["xmag"] = Math::deg2rad(camera->get_fov_size());
|
|
og["zfar"] = camera->get_zfar();
|
|
og["znear"] = camera->get_znear();
|
|
d["orthographic"] = og;
|
|
d["type"] = "orthographic";
|
|
} else if (camera->get_perspective()) {
|
|
Dictionary ppt;
|
|
// GLTF spec is in radians, Godot's camera is in degrees.
|
|
ppt["yfov"] = Math::deg2rad(camera->get_fov_size());
|
|
ppt["zfar"] = camera->get_zfar();
|
|
ppt["znear"] = camera->get_znear();
|
|
d["perspective"] = ppt;
|
|
d["type"] = "perspective";
|
|
}
|
|
cameras[i] = d;
|
|
}
|
|
|
|
if (!state->cameras.size()) {
|
|
return OK;
|
|
}
|
|
|
|
state->json["cameras"] = cameras;
|
|
|
|
print_verbose("glTF: Total cameras: " + itos(state->cameras.size()));
|
|
|
|
return OK;
|
|
}
|
|
|
|
Error GLTFDocument::_parse_lights(Ref<GLTFState> state) {
|
|
if (!state->json.has("extensions")) {
|
|
return OK;
|
|
}
|
|
Dictionary extensions = state->json["extensions"];
|
|
if (!extensions.has("KHR_lights_punctual")) {
|
|
return OK;
|
|
}
|
|
Dictionary lights_punctual = extensions["KHR_lights_punctual"];
|
|
if (!lights_punctual.has("lights")) {
|
|
return OK;
|
|
}
|
|
|
|
const Array &lights = lights_punctual["lights"];
|
|
|
|
for (GLTFLightIndex light_i = 0; light_i < lights.size(); light_i++) {
|
|
const Dictionary &d = lights[light_i];
|
|
|
|
Ref<GLTFLight> light;
|
|
light.instance();
|
|
ERR_FAIL_COND_V(!d.has("type"), ERR_PARSE_ERROR);
|
|
const String &type = d["type"];
|
|
light->type = type;
|
|
|
|
if (d.has("color")) {
|
|
const Array &arr = d["color"];
|
|
ERR_FAIL_COND_V(arr.size() != 3, ERR_PARSE_ERROR);
|
|
const Color c = Color(arr[0], arr[1], arr[2]).to_srgb();
|
|
light->color = c;
|
|
}
|
|
if (d.has("intensity")) {
|
|
light->intensity = d["intensity"];
|
|
}
|
|
if (d.has("range")) {
|
|
light->range = d["range"];
|
|
}
|
|
if (type == "spot") {
|
|
const Dictionary &spot = d["spot"];
|
|
light->inner_cone_angle = spot["innerConeAngle"];
|
|
light->outer_cone_angle = spot["outerConeAngle"];
|
|
ERR_CONTINUE_MSG(light->inner_cone_angle >= light->outer_cone_angle, "The inner angle must be smaller than the outer angle.");
|
|
} else if (type != "point" && type != "directional") {
|
|
ERR_CONTINUE_MSG(ERR_PARSE_ERROR, "Light type is unknown.");
|
|
}
|
|
|
|
state->lights.push_back(light);
|
|
}
|
|
|
|
print_verbose("glTF: Total lights: " + itos(state->lights.size()));
|
|
|
|
return OK;
|
|
}
|
|
|
|
Error GLTFDocument::_parse_cameras(Ref<GLTFState> state) {
|
|
if (!state->json.has("cameras")) {
|
|
return OK;
|
|
}
|
|
|
|
const Array cameras = state->json["cameras"];
|
|
|
|
for (GLTFCameraIndex i = 0; i < cameras.size(); i++) {
|
|
const Dictionary &d = cameras[i];
|
|
|
|
Ref<GLTFCamera> camera;
|
|
camera.instance();
|
|
ERR_FAIL_COND_V(!d.has("type"), ERR_PARSE_ERROR);
|
|
const String &type = d["type"];
|
|
if (type == "orthographic") {
|
|
camera->set_perspective(false);
|
|
if (d.has("orthographic")) {
|
|
const Dictionary &og = d["orthographic"];
|
|
// GLTF spec is in radians, Godot's camera is in degrees.
|
|
camera->set_fov_size(Math::rad2deg(real_t(og["ymag"])));
|
|
camera->set_zfar(og["zfar"]);
|
|
camera->set_znear(og["znear"]);
|
|
} else {
|
|
camera->set_fov_size(10);
|
|
}
|
|
} else if (type == "perspective") {
|
|
camera->set_perspective(true);
|
|
if (d.has("perspective")) {
|
|
const Dictionary &ppt = d["perspective"];
|
|
// GLTF spec is in radians, Godot's camera is in degrees.
|
|
camera->set_fov_size(Math::rad2deg(real_t(ppt["yfov"])));
|
|
camera->set_zfar(ppt["zfar"]);
|
|
camera->set_znear(ppt["znear"]);
|
|
} else {
|
|
camera->set_fov_size(10);
|
|
}
|
|
} else {
|
|
ERR_FAIL_V_MSG(ERR_PARSE_ERROR, "Camera should be in 'orthographic' or 'perspective'");
|
|
}
|
|
|
|
state->cameras.push_back(camera);
|
|
}
|
|
|
|
print_verbose("glTF: Total cameras: " + itos(state->cameras.size()));
|
|
|
|
return OK;
|
|
}
|
|
|
|
String GLTFDocument::interpolation_to_string(const GLTFAnimation::Interpolation p_interp) {
|
|
String interp = "LINEAR";
|
|
if (p_interp == GLTFAnimation::INTERP_STEP) {
|
|
interp = "STEP";
|
|
} else if (p_interp == GLTFAnimation::INTERP_LINEAR) {
|
|
interp = "LINEAR";
|
|
} else if (p_interp == GLTFAnimation::INTERP_CATMULLROMSPLINE) {
|
|
interp = "CATMULLROMSPLINE";
|
|
} else if (p_interp == GLTFAnimation::INTERP_CUBIC_SPLINE) {
|
|
interp = "CUBICSPLINE";
|
|
}
|
|
|
|
return interp;
|
|
}
|
|
|
|
Error GLTFDocument::_serialize_animations(Ref<GLTFState> state) {
|
|
if (!state->animation_players.size()) {
|
|
return OK;
|
|
}
|
|
for (int32_t player_i = 0; player_i < state->animation_players.size(); player_i++) {
|
|
List<StringName> animation_names;
|
|
AnimationPlayer *animation_player = state->animation_players[player_i];
|
|
animation_player->get_animation_list(&animation_names);
|
|
if (animation_names.size()) {
|
|
for (int animation_name_i = 0; animation_name_i < animation_names.size(); animation_name_i++) {
|
|
_convert_animation(state, animation_player, animation_names[animation_name_i]);
|
|
}
|
|
}
|
|
}
|
|
Array animations;
|
|
for (GLTFAnimationIndex animation_i = 0; animation_i < state->animations.size(); animation_i++) {
|
|
Dictionary d;
|
|
Ref<GLTFAnimation> gltf_animation = state->animations[animation_i];
|
|
if (!gltf_animation->get_tracks().size()) {
|
|
continue;
|
|
}
|
|
|
|
if (!gltf_animation->get_name().empty()) {
|
|
d["name"] = gltf_animation->get_name();
|
|
}
|
|
Array channels;
|
|
Array samplers;
|
|
|
|
for (Map<int, GLTFAnimation::Track>::Element *track_i = gltf_animation->get_tracks().front(); track_i; track_i = track_i->next()) {
|
|
GLTFAnimation::Track track = track_i->get();
|
|
if (track.translation_track.times.size()) {
|
|
Dictionary t;
|
|
t["sampler"] = samplers.size();
|
|
Dictionary s;
|
|
|
|
s["interpolation"] = interpolation_to_string(track.translation_track.interpolation);
|
|
Vector<real_t> times = Variant(track.translation_track.times);
|
|
s["input"] = _encode_accessor_as_floats(state, times, false);
|
|
Vector<Vector3> values = Variant(track.translation_track.values);
|
|
s["output"] = _encode_accessor_as_vec3(state, values, false);
|
|
|
|
samplers.push_back(s);
|
|
|
|
Dictionary target;
|
|
target["path"] = "translation";
|
|
target["node"] = track_i->key();
|
|
|
|
t["target"] = target;
|
|
channels.push_back(t);
|
|
}
|
|
if (track.rotation_track.times.size()) {
|
|
Dictionary t;
|
|
t["sampler"] = samplers.size();
|
|
Dictionary s;
|
|
|
|
s["interpolation"] = interpolation_to_string(track.rotation_track.interpolation);
|
|
Vector<real_t> times = Variant(track.rotation_track.times);
|
|
s["input"] = _encode_accessor_as_floats(state, times, false);
|
|
Vector<Quat> values = track.rotation_track.values;
|
|
s["output"] = _encode_accessor_as_quats(state, values, false);
|
|
|
|
samplers.push_back(s);
|
|
|
|
Dictionary target;
|
|
target["path"] = "rotation";
|
|
target["node"] = track_i->key();
|
|
|
|
t["target"] = target;
|
|
channels.push_back(t);
|
|
}
|
|
if (track.scale_track.times.size()) {
|
|
Dictionary t;
|
|
t["sampler"] = samplers.size();
|
|
Dictionary s;
|
|
|
|
s["interpolation"] = interpolation_to_string(track.scale_track.interpolation);
|
|
Vector<real_t> times = Variant(track.scale_track.times);
|
|
s["input"] = _encode_accessor_as_floats(state, times, false);
|
|
Vector<Vector3> values = Variant(track.scale_track.values);
|
|
s["output"] = _encode_accessor_as_vec3(state, values, false);
|
|
|
|
samplers.push_back(s);
|
|
|
|
Dictionary target;
|
|
target["path"] = "scale";
|
|
target["node"] = track_i->key();
|
|
|
|
t["target"] = target;
|
|
channels.push_back(t);
|
|
}
|
|
if (track.weight_tracks.size()) {
|
|
Dictionary t;
|
|
t["sampler"] = samplers.size();
|
|
Dictionary s;
|
|
|
|
Vector<real_t> times;
|
|
Vector<real_t> values;
|
|
|
|
for (int32_t times_i = 0; times_i < track.weight_tracks[0].times.size(); times_i++) {
|
|
real_t time = track.weight_tracks[0].times[times_i];
|
|
times.push_back(time);
|
|
}
|
|
|
|
values.resize(times.size() * track.weight_tracks.size());
|
|
// TODO Sort by order in blend shapes
|
|
for (int k = 0; k < track.weight_tracks.size(); k++) {
|
|
Vector<float> wdata = track.weight_tracks[k].values;
|
|
for (int l = 0; l < wdata.size(); l++) {
|
|
values.write[l * track.weight_tracks.size() + k] = wdata.write[l];
|
|
}
|
|
}
|
|
|
|
s["interpolation"] = interpolation_to_string(track.weight_tracks[track.weight_tracks.size() - 1].interpolation);
|
|
s["input"] = _encode_accessor_as_floats(state, times, false);
|
|
s["output"] = _encode_accessor_as_floats(state, values, false);
|
|
|
|
samplers.push_back(s);
|
|
|
|
Dictionary target;
|
|
target["path"] = "weights";
|
|
target["node"] = track_i->key();
|
|
|
|
t["target"] = target;
|
|
channels.push_back(t);
|
|
}
|
|
}
|
|
if (channels.size() && samplers.size()) {
|
|
d["channels"] = channels;
|
|
d["samplers"] = samplers;
|
|
animations.push_back(d);
|
|
}
|
|
}
|
|
|
|
state->json["animations"] = animations;
|
|
|
|
print_verbose("glTF: Total animations '" + itos(state->animations.size()) + "'.");
|
|
|
|
return OK;
|
|
}
|
|
|
|
Error GLTFDocument::_parse_animations(Ref<GLTFState> state) {
|
|
if (!state->json.has("animations")) {
|
|
return OK;
|
|
}
|
|
|
|
const Array &animations = state->json["animations"];
|
|
|
|
for (GLTFAnimationIndex i = 0; i < animations.size(); i++) {
|
|
const Dictionary &d = animations[i];
|
|
|
|
Ref<GLTFAnimation> animation;
|
|
animation.instance();
|
|
|
|
if (!d.has("channels") || !d.has("samplers")) {
|
|
continue;
|
|
}
|
|
|
|
Array channels = d["channels"];
|
|
Array samplers = d["samplers"];
|
|
|
|
if (d.has("name")) {
|
|
const String name = d["name"];
|
|
if (name.begins_with("loop") || name.ends_with("loop") || name.begins_with("cycle") || name.ends_with("cycle")) {
|
|
animation->set_loop(true);
|
|
}
|
|
if (state->use_legacy_names) {
|
|
animation->set_name(_sanitize_scene_name(state, name));
|
|
} else {
|
|
animation->set_name(_gen_unique_animation_name(state, name));
|
|
}
|
|
}
|
|
|
|
for (int j = 0; j < channels.size(); j++) {
|
|
const Dictionary &c = channels[j];
|
|
if (!c.has("target")) {
|
|
continue;
|
|
}
|
|
|
|
const Dictionary &t = c["target"];
|
|
if (!t.has("node") || !t.has("path")) {
|
|
continue;
|
|
}
|
|
|
|
ERR_FAIL_COND_V(!c.has("sampler"), ERR_PARSE_ERROR);
|
|
const int sampler = c["sampler"];
|
|
ERR_FAIL_INDEX_V(sampler, samplers.size(), ERR_PARSE_ERROR);
|
|
|
|
GLTFNodeIndex node = t["node"];
|
|
String path = t["path"];
|
|
|
|
ERR_FAIL_INDEX_V(node, state->nodes.size(), ERR_PARSE_ERROR);
|
|
|
|
GLTFAnimation::Track *track = nullptr;
|
|
|
|
if (!animation->get_tracks().has(node)) {
|
|
animation->get_tracks()[node] = GLTFAnimation::Track();
|
|
}
|
|
|
|
track = &animation->get_tracks()[node];
|
|
|
|
const Dictionary &s = samplers[sampler];
|
|
|
|
ERR_FAIL_COND_V(!s.has("input"), ERR_PARSE_ERROR);
|
|
ERR_FAIL_COND_V(!s.has("output"), ERR_PARSE_ERROR);
|
|
|
|
const int input = s["input"];
|
|
const int output = s["output"];
|
|
|
|
GLTFAnimation::Interpolation interp = GLTFAnimation::INTERP_LINEAR;
|
|
int output_count = 1;
|
|
if (s.has("interpolation")) {
|
|
const String &in = s["interpolation"];
|
|
if (in == "STEP") {
|
|
interp = GLTFAnimation::INTERP_STEP;
|
|
} else if (in == "LINEAR") {
|
|
interp = GLTFAnimation::INTERP_LINEAR;
|
|
} else if (in == "CATMULLROMSPLINE") {
|
|
interp = GLTFAnimation::INTERP_CATMULLROMSPLINE;
|
|
output_count = 3;
|
|
} else if (in == "CUBICSPLINE") {
|
|
interp = GLTFAnimation::INTERP_CUBIC_SPLINE;
|
|
output_count = 3;
|
|
}
|
|
}
|
|
|
|
const Vector<float> times = _decode_accessor_as_floats(state, input, false);
|
|
if (path == "translation") {
|
|
const Vector<Vector3> translations = _decode_accessor_as_vec3(state, output, false);
|
|
track->translation_track.interpolation = interp;
|
|
track->translation_track.times = Variant(times); //convert via variant
|
|
track->translation_track.values = Variant(translations); //convert via variant
|
|
} else if (path == "rotation") {
|
|
const Vector<Quat> rotations = _decode_accessor_as_quat(state, output, false);
|
|
track->rotation_track.interpolation = interp;
|
|
track->rotation_track.times = Variant(times); //convert via variant
|
|
track->rotation_track.values = rotations;
|
|
} else if (path == "scale") {
|
|
const Vector<Vector3> scales = _decode_accessor_as_vec3(state, output, false);
|
|
track->scale_track.interpolation = interp;
|
|
track->scale_track.times = Variant(times); //convert via variant
|
|
track->scale_track.values = Variant(scales); //convert via variant
|
|
} else if (path == "weights") {
|
|
const Vector<float> weights = _decode_accessor_as_floats(state, output, false);
|
|
|
|
ERR_FAIL_INDEX_V(state->nodes[node]->mesh, state->meshes.size(), ERR_PARSE_ERROR);
|
|
Ref<GLTFMesh> mesh = state->meshes[state->nodes[node]->mesh];
|
|
ERR_CONTINUE(!mesh->get_blend_weights().size());
|
|
const int wc = mesh->get_blend_weights().size();
|
|
|
|
track->weight_tracks.resize(wc);
|
|
|
|
const int expected_value_count = times.size() * output_count * wc;
|
|
ERR_FAIL_COND_V_MSG(weights.size() != expected_value_count, ERR_PARSE_ERROR, "Invalid weight data, expected " + itos(expected_value_count) + " weight values, got " + itos(weights.size()) + " instead.");
|
|
|
|
const int wlen = weights.size() / wc;
|
|
for (int k = 0; k < wc; k++) { //separate tracks, having them together is not such a good idea
|
|
GLTFAnimation::Channel<float> cf;
|
|
cf.interpolation = interp;
|
|
cf.times = Variant(times);
|
|
Vector<float> wdata;
|
|
wdata.resize(wlen);
|
|
for (int l = 0; l < wlen; l++) {
|
|
wdata.write[l] = weights[l * wc + k];
|
|
}
|
|
|
|
cf.values = wdata;
|
|
track->weight_tracks.write[k] = cf;
|
|
}
|
|
} else {
|
|
WARN_PRINT("Invalid path '" + path + "'.");
|
|
}
|
|
}
|
|
|
|
state->animations.push_back(animation);
|
|
}
|
|
|
|
print_verbose("glTF: Total animations '" + itos(state->animations.size()) + "'.");
|
|
|
|
return OK;
|
|
}
|
|
|
|
void GLTFDocument::_assign_scene_names(Ref<GLTFState> state) {
|
|
for (int i = 0; i < state->nodes.size(); i++) {
|
|
Ref<GLTFNode> n = state->nodes[i];
|
|
|
|
// Any joints get unique names generated when the skeleton is made, unique to the skeleton
|
|
if (n->skeleton >= 0) {
|
|
continue;
|
|
}
|
|
|
|
if (n->get_name().empty()) {
|
|
if (n->mesh >= 0) {
|
|
n->set_name(_gen_unique_name(state, "Mesh"));
|
|
} else if (n->camera >= 0) {
|
|
n->set_name(_gen_unique_name(state, "Camera"));
|
|
} else {
|
|
n->set_name(_gen_unique_name(state, "Node"));
|
|
}
|
|
}
|
|
|
|
n->set_name(_gen_unique_name(state, n->get_name()));
|
|
}
|
|
}
|
|
|
|
BoneAttachment *GLTFDocument::_generate_bone_attachment(Ref<GLTFState> state, Skeleton *skeleton, const GLTFNodeIndex node_index, const GLTFNodeIndex bone_index) {
|
|
Ref<GLTFNode> gltf_node = state->nodes[node_index];
|
|
Ref<GLTFNode> bone_node = state->nodes[bone_index];
|
|
|
|
BoneAttachment *bone_attachment = memnew(BoneAttachment);
|
|
print_verbose("glTF: Creating bone attachment for: " + gltf_node->get_name());
|
|
|
|
ERR_FAIL_COND_V(!bone_node->joint, nullptr);
|
|
|
|
bone_attachment->set_bone_name(bone_node->get_name());
|
|
|
|
return bone_attachment;
|
|
}
|
|
|
|
GLTFMeshIndex GLTFDocument::_convert_mesh_instance(Ref<GLTFState> state, MeshInstance *p_mesh_instance) {
|
|
ERR_FAIL_NULL_V(p_mesh_instance, -1);
|
|
if (p_mesh_instance->get_mesh().is_null()) {
|
|
return -1;
|
|
}
|
|
Ref<ArrayMesh> import_mesh;
|
|
import_mesh.instance();
|
|
Ref<Mesh> godot_mesh = p_mesh_instance->get_mesh();
|
|
if (godot_mesh.is_null()) {
|
|
return -1;
|
|
}
|
|
Vector<float> blend_weights;
|
|
Vector<String> blend_names;
|
|
int32_t blend_count = godot_mesh->get_blend_shape_count();
|
|
blend_names.resize(blend_count);
|
|
blend_weights.resize(blend_count);
|
|
for (int32_t blend_i = 0; blend_i < godot_mesh->get_blend_shape_count(); blend_i++) {
|
|
String blend_name = godot_mesh->get_blend_shape_name(blend_i);
|
|
blend_names.write[blend_i] = blend_name;
|
|
import_mesh->add_blend_shape(blend_name);
|
|
}
|
|
for (int32_t surface_i = 0; surface_i < godot_mesh->get_surface_count(); surface_i++) {
|
|
Mesh::PrimitiveType primitive_type = godot_mesh->surface_get_primitive_type(surface_i);
|
|
Array arrays = godot_mesh->surface_get_arrays(surface_i);
|
|
Array blend_shape_arrays = godot_mesh->surface_get_blend_shape_arrays(surface_i);
|
|
Ref<Material> mat = godot_mesh->surface_get_material(surface_i);
|
|
Ref<ArrayMesh> godot_array_mesh = godot_mesh;
|
|
String surface_name;
|
|
if (godot_array_mesh.is_valid()) {
|
|
surface_name = godot_array_mesh->surface_get_name(surface_i);
|
|
}
|
|
if (p_mesh_instance->get_surface_material(surface_i).is_valid()) {
|
|
mat = p_mesh_instance->get_surface_material(surface_i);
|
|
}
|
|
if (p_mesh_instance->get_material_override().is_valid()) {
|
|
mat = p_mesh_instance->get_material_override();
|
|
}
|
|
int32_t mat_idx = import_mesh->get_surface_count();
|
|
import_mesh->add_surface_from_arrays(primitive_type, arrays, blend_shape_arrays);
|
|
import_mesh->surface_set_material(mat_idx, mat);
|
|
}
|
|
for (int32_t blend_i = 0; blend_i < blend_count; blend_i++) {
|
|
blend_weights.write[blend_i] = 0.0f;
|
|
}
|
|
Ref<GLTFMesh> gltf_mesh;
|
|
gltf_mesh.instance();
|
|
gltf_mesh->set_mesh(import_mesh);
|
|
gltf_mesh->set_blend_weights(blend_weights);
|
|
GLTFMeshIndex mesh_i = state->meshes.size();
|
|
state->meshes.push_back(gltf_mesh);
|
|
return mesh_i;
|
|
}
|
|
|
|
Spatial *GLTFDocument::_generate_mesh_instance(Ref<GLTFState> state, Node *scene_parent, const GLTFNodeIndex node_index) {
|
|
Ref<GLTFNode> gltf_node = state->nodes[node_index];
|
|
|
|
ERR_FAIL_INDEX_V(gltf_node->mesh, state->meshes.size(), nullptr);
|
|
|
|
MeshInstance *mi = memnew(MeshInstance);
|
|
print_verbose("glTF: Creating mesh for: " + gltf_node->get_name());
|
|
|
|
Ref<GLTFMesh> mesh = state->meshes.write[gltf_node->mesh];
|
|
if (mesh.is_null()) {
|
|
return mi;
|
|
}
|
|
Ref<ArrayMesh> import_mesh = mesh->get_mesh();
|
|
if (import_mesh.is_null()) {
|
|
return mi;
|
|
}
|
|
mi->set_mesh(import_mesh);
|
|
for (int i = 0; i < mesh->get_blend_weights().size(); i++) {
|
|
mi->set("blend_shapes/" + mesh->get_mesh()->get_blend_shape_name(i), mesh->get_blend_weights()[i]);
|
|
}
|
|
return mi;
|
|
}
|
|
|
|
Spatial *GLTFDocument::_generate_light(Ref<GLTFState> state, Node *scene_parent, const GLTFNodeIndex node_index) {
|
|
Ref<GLTFNode> gltf_node = state->nodes[node_index];
|
|
|
|
ERR_FAIL_INDEX_V(gltf_node->light, state->lights.size(), nullptr);
|
|
|
|
print_verbose("glTF: Creating light for: " + gltf_node->get_name());
|
|
|
|
Ref<GLTFLight> l = state->lights[gltf_node->light];
|
|
|
|
float intensity = l->intensity;
|
|
if (intensity > 10) {
|
|
// GLTF spec has the default around 1, but Blender defaults lights to 100.
|
|
// The only sane way to handle this is to check where it came from and
|
|
// handle it accordingly. If it's over 10, it probably came from Blender.
|
|
intensity /= 100;
|
|
}
|
|
|
|
if (l->type == "directional") {
|
|
DirectionalLight *light = memnew(DirectionalLight);
|
|
light->set_param(Light::PARAM_ENERGY, intensity);
|
|
light->set_color(l->color);
|
|
return light;
|
|
}
|
|
|
|
const float range = CLAMP(l->range, 0, 4096);
|
|
// Doubling the range will double the effective brightness, so we need double attenuation (half brightness).
|
|
// We want to have double intensity give double brightness, so we need half the attenuation.
|
|
const float attenuation = range / intensity;
|
|
if (l->type == "point") {
|
|
OmniLight *light = memnew(OmniLight);
|
|
light->set_param(OmniLight::PARAM_ATTENUATION, attenuation);
|
|
light->set_param(OmniLight::PARAM_RANGE, range);
|
|
light->set_color(l->color);
|
|
return light;
|
|
}
|
|
if (l->type == "spot") {
|
|
SpotLight *light = memnew(SpotLight);
|
|
light->set_param(SpotLight::PARAM_ATTENUATION, attenuation);
|
|
light->set_param(SpotLight::PARAM_RANGE, range);
|
|
light->set_param(SpotLight::PARAM_SPOT_ANGLE, Math::rad2deg(l->outer_cone_angle));
|
|
light->set_color(l->color);
|
|
|
|
// Line of best fit derived from guessing, see https://www.desmos.com/calculator/biiflubp8b
|
|
// The points in desmos are not exact, except for (1, infinity).
|
|
float angle_ratio = l->inner_cone_angle / l->outer_cone_angle;
|
|
float angle_attenuation = 0.2 / (1 - angle_ratio) - 0.1;
|
|
light->set_param(SpotLight::PARAM_SPOT_ATTENUATION, angle_attenuation);
|
|
return light;
|
|
}
|
|
return memnew(Spatial);
|
|
}
|
|
|
|
Camera *GLTFDocument::_generate_camera(Ref<GLTFState> state, Node *scene_parent, const GLTFNodeIndex node_index) {
|
|
Ref<GLTFNode> gltf_node = state->nodes[node_index];
|
|
|
|
ERR_FAIL_INDEX_V(gltf_node->camera, state->cameras.size(), nullptr);
|
|
|
|
Camera *camera = memnew(Camera);
|
|
print_verbose("glTF: Creating camera for: " + gltf_node->get_name());
|
|
|
|
Ref<GLTFCamera> c = state->cameras[gltf_node->camera];
|
|
if (c->get_perspective()) {
|
|
camera->set_perspective(c->get_fov_size(), c->get_znear(), c->get_zfar());
|
|
} else {
|
|
camera->set_orthogonal(c->get_fov_size(), c->get_znear(), c->get_zfar());
|
|
}
|
|
|
|
return camera;
|
|
}
|
|
|
|
GLTFCameraIndex GLTFDocument::_convert_camera(Ref<GLTFState> state, Camera *p_camera) {
|
|
print_verbose("glTF: Converting camera: " + p_camera->get_name());
|
|
|
|
Ref<GLTFCamera> c;
|
|
c.instance();
|
|
|
|
if (p_camera->get_projection() == Camera::Projection::PROJECTION_PERSPECTIVE) {
|
|
c->set_perspective(true);
|
|
c->set_fov_size(p_camera->get_fov());
|
|
c->set_zfar(p_camera->get_zfar());
|
|
c->set_znear(p_camera->get_znear());
|
|
} else {
|
|
c->set_fov_size(p_camera->get_fov());
|
|
c->set_zfar(p_camera->get_zfar());
|
|
c->set_znear(p_camera->get_znear());
|
|
}
|
|
GLTFCameraIndex camera_index = state->cameras.size();
|
|
state->cameras.push_back(c);
|
|
return camera_index;
|
|
}
|
|
|
|
GLTFLightIndex GLTFDocument::_convert_light(Ref<GLTFState> state, Light *p_light) {
|
|
print_verbose("glTF: Converting light: " + p_light->get_name());
|
|
|
|
Ref<GLTFLight> l;
|
|
l.instance();
|
|
l->color = p_light->get_color();
|
|
if (cast_to<DirectionalLight>(p_light)) {
|
|
l->type = "directional";
|
|
DirectionalLight *light = cast_to<DirectionalLight>(p_light);
|
|
l->intensity = light->get_param(DirectionalLight::PARAM_ENERGY);
|
|
l->range = FLT_MAX; // Range for directional lights is infinite in Godot.
|
|
} else if (cast_to<OmniLight>(p_light)) {
|
|
l->type = "point";
|
|
OmniLight *light = cast_to<OmniLight>(p_light);
|
|
l->range = light->get_param(OmniLight::PARAM_RANGE);
|
|
float attenuation = p_light->get_param(OmniLight::PARAM_ATTENUATION);
|
|
l->intensity = l->range / attenuation;
|
|
} else if (cast_to<SpotLight>(p_light)) {
|
|
l->type = "spot";
|
|
SpotLight *light = cast_to<SpotLight>(p_light);
|
|
l->range = light->get_param(SpotLight::PARAM_RANGE);
|
|
float attenuation = light->get_param(SpotLight::PARAM_ATTENUATION);
|
|
l->intensity = l->range / attenuation;
|
|
l->outer_cone_angle = Math::deg2rad(light->get_param(SpotLight::PARAM_SPOT_ANGLE));
|
|
|
|
// This equation is the inverse of the import equation (which has a desmos link).
|
|
float angle_ratio = 1 - (0.2 / (0.1 + light->get_param(SpotLight::PARAM_SPOT_ATTENUATION)));
|
|
angle_ratio = MAX(0, angle_ratio);
|
|
l->inner_cone_angle = l->outer_cone_angle * angle_ratio;
|
|
}
|
|
|
|
GLTFLightIndex light_index = state->lights.size();
|
|
state->lights.push_back(l);
|
|
return light_index;
|
|
}
|
|
|
|
GLTFSkeletonIndex GLTFDocument::_convert_skeleton(Ref<GLTFState> state, Skeleton *p_skeleton) {
|
|
print_verbose("glTF: Converting skeleton: " + p_skeleton->get_name());
|
|
Ref<GLTFSkeleton> gltf_skeleton;
|
|
gltf_skeleton.instance();
|
|
gltf_skeleton->set_name(_gen_unique_name(state, p_skeleton->get_name()));
|
|
gltf_skeleton->godot_skeleton = p_skeleton;
|
|
GLTFSkeletonIndex skeleton_i = state->skeletons.size();
|
|
state->skeletons.push_back(gltf_skeleton);
|
|
return skeleton_i;
|
|
}
|
|
|
|
void GLTFDocument::_convert_spatial(Ref<GLTFState> state, Spatial *p_spatial, Ref<GLTFNode> p_node) {
|
|
Transform xform = p_spatial->get_transform();
|
|
p_node->scale = xform.basis.get_scale();
|
|
p_node->rotation = xform.basis.get_rotation_quat();
|
|
p_node->translation = xform.origin;
|
|
}
|
|
|
|
Spatial *GLTFDocument::_generate_spatial(Ref<GLTFState> state, Node *scene_parent, const GLTFNodeIndex node_index) {
|
|
Ref<GLTFNode> gltf_node = state->nodes[node_index];
|
|
|
|
Spatial *spatial = memnew(Spatial);
|
|
print_verbose("glTF: Converting spatial: " + gltf_node->get_name());
|
|
|
|
return spatial;
|
|
}
|
|
void GLTFDocument::_convert_scene_node(Ref<GLTFState> state, Node *p_current, Node *p_root, const GLTFNodeIndex p_gltf_parent, const GLTFNodeIndex p_gltf_root) {
|
|
bool retflag = true;
|
|
_check_visibility(p_current, retflag);
|
|
if (retflag) {
|
|
return;
|
|
}
|
|
Ref<GLTFNode> gltf_node;
|
|
gltf_node.instance();
|
|
gltf_node->set_name(_gen_unique_name(state, p_current->get_name()));
|
|
if (cast_to<Spatial>(p_current)) {
|
|
Spatial *spatial = cast_to<Spatial>(p_current);
|
|
_convert_spatial(state, spatial, gltf_node);
|
|
}
|
|
if (cast_to<MeshInstance>(p_current)) {
|
|
Spatial *spatial = cast_to<Spatial>(p_current);
|
|
_convert_mesh_to_gltf(p_current, state, spatial, gltf_node);
|
|
} else if (cast_to<BoneAttachment>(p_current)) {
|
|
_convert_bone_attachment_to_gltf(p_current, state, gltf_node, retflag);
|
|
// TODO 2020-12-21 iFire Handle the case of objects under the bone attachment.
|
|
return;
|
|
} else if (cast_to<Skeleton>(p_current)) {
|
|
_convert_skeleton_to_gltf(p_current, state, p_gltf_parent, p_gltf_root, gltf_node, p_root);
|
|
// We ignore the Godot Engine node that is the skeleton.
|
|
return;
|
|
} else if (cast_to<MultiMeshInstance>(p_current)) {
|
|
_convert_mult_mesh_instance_to_gltf(p_current, p_gltf_parent, p_gltf_root, gltf_node, state, p_root);
|
|
#ifdef MODULE_CSG_ENABLED
|
|
} else if (cast_to<CSGShape>(p_current)) {
|
|
if (p_current->get_parent() && cast_to<CSGShape>(p_current)->is_root_shape()) {
|
|
_convert_csg_shape_to_gltf(p_current, p_gltf_parent, gltf_node, state);
|
|
}
|
|
#endif // MODULE_CSG_ENABLED
|
|
#ifdef MODULE_GRIDMAP_ENABLED
|
|
} else if (cast_to<GridMap>(p_current)) {
|
|
_convert_grid_map_to_gltf(p_current, p_gltf_parent, p_gltf_root, gltf_node, state, p_root);
|
|
#endif // MODULE_GRIDMAP_ENABLED
|
|
} else if (cast_to<Camera>(p_current)) {
|
|
Camera *camera = Object::cast_to<Camera>(p_current);
|
|
_convert_camera_to_gltf(camera, state, camera, gltf_node);
|
|
} else if (cast_to<Light>(p_current)) {
|
|
Light *light = Object::cast_to<Light>(p_current);
|
|
_convert_light_to_gltf(light, state, light, gltf_node);
|
|
} else if (cast_to<AnimationPlayer>(p_current)) {
|
|
AnimationPlayer *animation_player = Object::cast_to<AnimationPlayer>(p_current);
|
|
_convert_animation_player_to_gltf(animation_player, state, p_gltf_parent, p_gltf_root, gltf_node, p_current, p_root);
|
|
}
|
|
GLTFNodeIndex current_node_i = state->nodes.size();
|
|
GLTFNodeIndex gltf_root = p_gltf_root;
|
|
if (gltf_root == -1) {
|
|
gltf_root = current_node_i;
|
|
Array scenes;
|
|
scenes.push_back(gltf_root);
|
|
state->json["scene"] = scenes;
|
|
}
|
|
_create_gltf_node(state, p_current, current_node_i, p_gltf_parent, gltf_root, gltf_node);
|
|
for (int node_i = 0; node_i < p_current->get_child_count(); node_i++) {
|
|
_convert_scene_node(state, p_current->get_child(node_i), p_root, current_node_i, gltf_root);
|
|
}
|
|
}
|
|
|
|
#ifdef MODULE_CSG_ENABLED
|
|
void GLTFDocument::_convert_csg_shape_to_gltf(Node *p_current, GLTFNodeIndex p_gltf_parent, Ref<GLTFNode> gltf_node, Ref<GLTFState> state) {
|
|
CSGShape *csg = Object::cast_to<CSGShape>(p_current);
|
|
csg->call("_update_shape");
|
|
Array meshes = csg->get_meshes();
|
|
if (meshes.size() != 2) {
|
|
return;
|
|
}
|
|
Ref<Material> mat;
|
|
if (csg->get_material_override().is_valid()) {
|
|
mat = csg->get_material_override();
|
|
}
|
|
Ref<GLTFMesh> gltf_mesh;
|
|
gltf_mesh.instance();
|
|
Ref<ArrayMesh> import_mesh;
|
|
import_mesh.instance();
|
|
Ref<ArrayMesh> array_mesh = csg->get_meshes()[1];
|
|
for (int32_t surface_i = 0; surface_i < array_mesh->get_surface_count(); surface_i++) {
|
|
import_mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES, array_mesh->surface_get_arrays(surface_i));
|
|
}
|
|
gltf_mesh->set_mesh(import_mesh);
|
|
GLTFMeshIndex mesh_i = state->meshes.size();
|
|
state->meshes.push_back(gltf_mesh);
|
|
gltf_node->mesh = mesh_i;
|
|
gltf_node->xform = csg->get_meshes()[0];
|
|
gltf_node->set_name(_gen_unique_name(state, csg->get_name()));
|
|
}
|
|
#endif // MODULE_CSG_ENABLED
|
|
|
|
void GLTFDocument::_create_gltf_node(Ref<GLTFState> state, Node *p_scene_parent, GLTFNodeIndex current_node_i,
|
|
GLTFNodeIndex p_parent_node_index, GLTFNodeIndex p_root_gltf_node, Ref<GLTFNode> gltf_node) {
|
|
state->scene_nodes.insert(current_node_i, p_scene_parent);
|
|
state->nodes.push_back(gltf_node);
|
|
if (current_node_i == p_parent_node_index) {
|
|
return;
|
|
}
|
|
if (p_parent_node_index == -1) {
|
|
return;
|
|
}
|
|
state->nodes.write[p_parent_node_index]->children.push_back(current_node_i);
|
|
}
|
|
|
|
void GLTFDocument::_convert_animation_player_to_gltf(AnimationPlayer *animation_player, Ref<GLTFState> state, const GLTFNodeIndex &p_gltf_current, const GLTFNodeIndex &p_gltf_root_index, Ref<GLTFNode> p_gltf_node, Node *p_scene_parent, Node *p_root) {
|
|
ERR_FAIL_COND(!animation_player);
|
|
state->animation_players.push_back(animation_player);
|
|
print_verbose(String("glTF: Converting animation player: ") + animation_player->get_name());
|
|
}
|
|
|
|
void GLTFDocument::_check_visibility(Node *p_node, bool &retflag) {
|
|
retflag = true;
|
|
Spatial *spatial = Object::cast_to<Spatial>(p_node);
|
|
Node2D *node_2d = Object::cast_to<Node2D>(p_node);
|
|
if (node_2d && !node_2d->is_visible()) {
|
|
return;
|
|
}
|
|
if (spatial && !spatial->is_visible()) {
|
|
return;
|
|
}
|
|
retflag = false;
|
|
}
|
|
|
|
void GLTFDocument::_convert_camera_to_gltf(Camera *camera, Ref<GLTFState> state, Spatial *spatial, Ref<GLTFNode> gltf_node) {
|
|
ERR_FAIL_COND(!camera);
|
|
GLTFCameraIndex camera_index = _convert_camera(state, camera);
|
|
if (camera_index != -1) {
|
|
gltf_node->camera = camera_index;
|
|
}
|
|
}
|
|
|
|
void GLTFDocument::_convert_light_to_gltf(Light *light, Ref<GLTFState> state, Spatial *spatial, Ref<GLTFNode> gltf_node) {
|
|
ERR_FAIL_COND(!light);
|
|
GLTFLightIndex light_index = _convert_light(state, light);
|
|
if (light_index != -1) {
|
|
gltf_node->light = light_index;
|
|
}
|
|
}
|
|
|
|
#ifdef MODULE_GRIDMAP_ENABLED
|
|
void GLTFDocument::_convert_grid_map_to_gltf(Node *p_scene_parent, const GLTFNodeIndex &p_parent_node_index, const GLTFNodeIndex &p_root_node_index, Ref<GLTFNode> gltf_node, Ref<GLTFState> state, Node *p_root_node) {
|
|
GridMap *grid_map = Object::cast_to<GridMap>(p_scene_parent);
|
|
ERR_FAIL_COND(!grid_map);
|
|
Array cells = grid_map->get_used_cells();
|
|
for (int32_t k = 0; k < cells.size(); k++) {
|
|
GLTFNode *new_gltf_node = memnew(GLTFNode);
|
|
gltf_node->children.push_back(state->nodes.size());
|
|
state->nodes.push_back(new_gltf_node);
|
|
Vector3 cell_location = cells[k];
|
|
int32_t cell = grid_map->get_cell_item(
|
|
Vector3(cell_location.x, cell_location.y, cell_location.z));
|
|
MeshInstance *import_mesh_node = memnew(MeshInstance);
|
|
import_mesh_node->set_mesh(grid_map->get_mesh_library()->get_item_mesh(cell));
|
|
Transform cell_xform;
|
|
cell_xform.basis.set_orthogonal_index(
|
|
grid_map->get_cell_item_orientation(
|
|
Vector3(cell_location.x, cell_location.y, cell_location.z)));
|
|
cell_xform.basis.scale(Vector3(grid_map->get_cell_scale(),
|
|
grid_map->get_cell_scale(),
|
|
grid_map->get_cell_scale()));
|
|
cell_xform.set_origin(grid_map->map_to_world(
|
|
Vector3(cell_location.x, cell_location.y, cell_location.z)));
|
|
Ref<GLTFMesh> gltf_mesh;
|
|
gltf_mesh.instance();
|
|
gltf_mesh = import_mesh_node;
|
|
new_gltf_node->mesh = state->meshes.size();
|
|
state->meshes.push_back(gltf_mesh);
|
|
new_gltf_node->xform = cell_xform * grid_map->get_transform();
|
|
new_gltf_node->set_name(_gen_unique_name(state, grid_map->get_mesh_library()->get_item_name(cell)));
|
|
}
|
|
}
|
|
#endif // MODULE_GRIDMAP_ENABLED
|
|
|
|
void GLTFDocument::_convert_mult_mesh_instance_to_gltf(Node *p_scene_parent, const GLTFNodeIndex &p_parent_node_index, const GLTFNodeIndex &p_root_node_index, Ref<GLTFNode> gltf_node, Ref<GLTFState> state, Node *p_root_node) {
|
|
MultiMeshInstance *multi_mesh_instance = Object::cast_to<MultiMeshInstance>(p_scene_parent);
|
|
ERR_FAIL_COND(!multi_mesh_instance);
|
|
Ref<MultiMesh> multi_mesh = multi_mesh_instance->get_multimesh();
|
|
if (multi_mesh.is_valid()) {
|
|
for (int32_t instance_i = 0; instance_i < multi_mesh->get_instance_count();
|
|
instance_i++) {
|
|
GLTFNode *new_gltf_node = memnew(GLTFNode);
|
|
Transform transform;
|
|
if (multi_mesh->get_transform_format() == MultiMesh::TRANSFORM_2D) {
|
|
Transform2D xform_2d = multi_mesh->get_instance_transform_2d(instance_i);
|
|
transform.origin =
|
|
Vector3(xform_2d.get_origin().x, 0, xform_2d.get_origin().y);
|
|
real_t rotation = xform_2d.get_rotation();
|
|
Quat quat(Vector3(0, 1, 0), rotation);
|
|
Size2 scale = xform_2d.get_scale();
|
|
transform.basis.set_quat_scale(quat,
|
|
Vector3(scale.x, 0, scale.y));
|
|
transform =
|
|
multi_mesh_instance->get_transform() * transform;
|
|
} else if (multi_mesh->get_transform_format() == MultiMesh::TRANSFORM_3D) {
|
|
transform = multi_mesh_instance->get_transform() *
|
|
multi_mesh->get_instance_transform(instance_i);
|
|
}
|
|
Ref<ArrayMesh> mm = multi_mesh->get_mesh();
|
|
if (mm.is_valid()) {
|
|
Ref<ArrayMesh> mesh;
|
|
mesh.instance();
|
|
for (int32_t surface_i = 0; surface_i < mm->get_surface_count(); surface_i++) {
|
|
Array surface = mm->surface_get_arrays(surface_i);
|
|
mesh->add_surface_from_arrays(mm->surface_get_primitive_type(surface_i), surface);
|
|
}
|
|
Ref<GLTFMesh> gltf_mesh;
|
|
gltf_mesh.instance();
|
|
gltf_mesh->set_name(multi_mesh->get_name());
|
|
gltf_mesh->set_mesh(mesh);
|
|
new_gltf_node->mesh = state->meshes.size();
|
|
state->meshes.push_back(gltf_mesh);
|
|
}
|
|
new_gltf_node->xform = transform;
|
|
new_gltf_node->set_name(_gen_unique_name(state, multi_mesh_instance->get_name()));
|
|
gltf_node->children.push_back(state->nodes.size());
|
|
state->nodes.push_back(new_gltf_node);
|
|
}
|
|
}
|
|
}
|
|
|
|
void GLTFDocument::_convert_skeleton_to_gltf(Node *p_scene_parent, Ref<GLTFState> state, const GLTFNodeIndex &p_parent_node_index, const GLTFNodeIndex &p_root_node_index, Ref<GLTFNode> gltf_node, Node *p_root_node) {
|
|
Skeleton *skeleton = Object::cast_to<Skeleton>(p_scene_parent);
|
|
if (skeleton) {
|
|
// Remove placeholder skeleton3d node by not creating the gltf node
|
|
// Skins are per mesh
|
|
for (int node_i = 0; node_i < skeleton->get_child_count(); node_i++) {
|
|
_convert_scene_node(state, skeleton->get_child(node_i), p_root_node, p_parent_node_index, p_root_node_index);
|
|
}
|
|
}
|
|
}
|
|
|
|
void GLTFDocument::_convert_bone_attachment_to_gltf(Node *p_scene_parent, Ref<GLTFState> state, Ref<GLTFNode> gltf_node, bool &retflag) {
|
|
retflag = true;
|
|
BoneAttachment *bone_attachment = Object::cast_to<BoneAttachment>(p_scene_parent);
|
|
if (bone_attachment) {
|
|
Node *node = bone_attachment->get_parent();
|
|
while (node) {
|
|
Skeleton *bone_attachment_skeleton = Object::cast_to<Skeleton>(node);
|
|
if (bone_attachment_skeleton) {
|
|
for (GLTFSkeletonIndex skeleton_i = 0; skeleton_i < state->skeletons.size(); skeleton_i++) {
|
|
if (state->skeletons[skeleton_i]->godot_skeleton != bone_attachment_skeleton) {
|
|
continue;
|
|
}
|
|
state->skeletons.write[skeleton_i]->bone_attachments.push_back(bone_attachment);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
node = node->get_parent();
|
|
}
|
|
gltf_node.unref();
|
|
return;
|
|
}
|
|
retflag = false;
|
|
}
|
|
|
|
void GLTFDocument::_convert_mesh_to_gltf(Node *p_scene_parent, Ref<GLTFState> state, Spatial *spatial, Ref<GLTFNode> gltf_node) {
|
|
MeshInstance *mi = Object::cast_to<MeshInstance>(p_scene_parent);
|
|
if (mi) {
|
|
GLTFMeshIndex gltf_mesh_index = _convert_mesh_instance(state, mi);
|
|
if (gltf_mesh_index != -1) {
|
|
gltf_node->mesh = gltf_mesh_index;
|
|
}
|
|
}
|
|
}
|
|
|
|
void GLTFDocument::_generate_scene_node(Ref<GLTFState> state, Node *scene_parent, Spatial *scene_root, const GLTFNodeIndex node_index) {
|
|
Ref<GLTFNode> gltf_node = state->nodes[node_index];
|
|
|
|
if (gltf_node->skeleton >= 0) {
|
|
_generate_skeleton_bone_node(state, scene_parent, scene_root, node_index);
|
|
return;
|
|
}
|
|
|
|
Spatial *current_node = nullptr;
|
|
|
|
// Is our parent a skeleton
|
|
Skeleton *active_skeleton = Object::cast_to<Skeleton>(scene_parent);
|
|
|
|
const bool non_bone_parented_to_skeleton = active_skeleton;
|
|
|
|
// If we have an active skeleton, and the node is node skinned, we need to create a bone attachment
|
|
if (non_bone_parented_to_skeleton && gltf_node->skin < 0) {
|
|
// Bone Attachment - Parent Case
|
|
BoneAttachment *bone_attachment = _generate_bone_attachment(state, active_skeleton, node_index, gltf_node->parent);
|
|
|
|
scene_parent->add_child(bone_attachment);
|
|
bone_attachment->set_owner(scene_root);
|
|
|
|
// There is no gltf_node that represent this, so just directly create a unique name
|
|
bone_attachment->set_name(_gen_unique_name(state, "BoneAttachment"));
|
|
|
|
// We change the scene_parent to our bone attachment now. We do not set current_node because we want to make the node
|
|
// and attach it to the bone_attachment
|
|
scene_parent = bone_attachment;
|
|
}
|
|
if (gltf_node->mesh >= 0) {
|
|
current_node = _generate_mesh_instance(state, scene_parent, node_index);
|
|
} else if (gltf_node->camera >= 0) {
|
|
current_node = _generate_camera(state, scene_parent, node_index);
|
|
} else if (gltf_node->light >= 0) {
|
|
current_node = _generate_light(state, scene_parent, node_index);
|
|
}
|
|
|
|
// We still have not managed to make a node.
|
|
if (!current_node) {
|
|
current_node = _generate_spatial(state, scene_parent, node_index);
|
|
}
|
|
|
|
scene_parent->add_child(current_node);
|
|
if (current_node != scene_root) {
|
|
current_node->set_owner(scene_root);
|
|
}
|
|
current_node->set_transform(gltf_node->xform);
|
|
current_node->set_name(gltf_node->get_name());
|
|
|
|
state->scene_nodes.insert(node_index, current_node);
|
|
|
|
for (int i = 0; i < gltf_node->children.size(); ++i) {
|
|
_generate_scene_node(state, current_node, scene_root, gltf_node->children[i]);
|
|
}
|
|
}
|
|
|
|
void GLTFDocument::_generate_skeleton_bone_node(Ref<GLTFState> state, Node *scene_parent, Spatial *scene_root, const GLTFNodeIndex node_index) {
|
|
Ref<GLTFNode> gltf_node = state->nodes[node_index];
|
|
|
|
Spatial *current_node = nullptr;
|
|
|
|
Skeleton *skeleton = state->skeletons[gltf_node->skeleton]->godot_skeleton;
|
|
// In this case, this node is already a bone in skeleton.
|
|
const bool is_skinned_mesh = (gltf_node->skin >= 0 && gltf_node->mesh >= 0);
|
|
const bool requires_extra_node = (gltf_node->mesh >= 0 || gltf_node->camera >= 0 || gltf_node->light >= 0);
|
|
|
|
Skeleton *active_skeleton = Object::cast_to<Skeleton>(scene_parent);
|
|
if (active_skeleton != skeleton) {
|
|
if (active_skeleton) {
|
|
// Bone Attachment - Direct Parented Skeleton Case
|
|
BoneAttachment *bone_attachment = _generate_bone_attachment(state, active_skeleton, node_index, gltf_node->parent);
|
|
|
|
scene_parent->add_child(bone_attachment);
|
|
bone_attachment->set_owner(scene_root);
|
|
|
|
// There is no gltf_node that represent this, so just directly create a unique name
|
|
bone_attachment->set_name(_gen_unique_name(state, "BoneAttachment"));
|
|
|
|
// We change the scene_parent to our bone attachment now. We do not set current_node because we want to make the node
|
|
// and attach it to the bone_attachment
|
|
scene_parent = bone_attachment;
|
|
WARN_PRINT(vformat("glTF: Generating scene detected direct parented Skeletons at node %d", node_index));
|
|
}
|
|
|
|
// Add it to the scene if it has not already been added
|
|
if (skeleton->get_parent() == nullptr) {
|
|
scene_parent->add_child(skeleton);
|
|
skeleton->set_owner(scene_root);
|
|
}
|
|
}
|
|
|
|
active_skeleton = skeleton;
|
|
current_node = skeleton;
|
|
|
|
if (requires_extra_node) {
|
|
// skinned meshes must not be placed in a bone attachment.
|
|
if (!is_skinned_mesh) {
|
|
// Bone Attachment - Same Node Case
|
|
BoneAttachment *bone_attachment = _generate_bone_attachment(state, active_skeleton, node_index, node_index);
|
|
|
|
scene_parent->add_child(bone_attachment);
|
|
bone_attachment->set_owner(scene_root);
|
|
|
|
// There is no gltf_node that represent this, so just directly create a unique name
|
|
bone_attachment->set_name(_gen_unique_name(state, "BoneAttachment"));
|
|
|
|
// We change the scene_parent to our bone attachment now. We do not set current_node because we want to make the node
|
|
// and attach it to the bone_attachment
|
|
scene_parent = bone_attachment;
|
|
}
|
|
|
|
// We still have not managed to make a node
|
|
if (gltf_node->mesh >= 0) {
|
|
current_node = _generate_mesh_instance(state, scene_parent, node_index);
|
|
} else if (gltf_node->camera >= 0) {
|
|
current_node = _generate_camera(state, scene_parent, node_index);
|
|
} else if (gltf_node->light >= 0) {
|
|
current_node = _generate_light(state, scene_parent, node_index);
|
|
}
|
|
|
|
scene_parent->add_child(current_node);
|
|
if (current_node != scene_root) {
|
|
current_node->set_owner(scene_root);
|
|
}
|
|
// Do not set transform here. Transform is already applied to our bone.
|
|
if (state->use_legacy_names) {
|
|
current_node->set_name(_legacy_validate_node_name(gltf_node->get_name()));
|
|
} else {
|
|
current_node->set_name(gltf_node->get_name());
|
|
}
|
|
}
|
|
|
|
state->scene_nodes.insert(node_index, current_node);
|
|
|
|
for (int i = 0; i < gltf_node->children.size(); ++i) {
|
|
_generate_scene_node(state, active_skeleton, scene_root, gltf_node->children[i]);
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
struct EditorSceneImporterGLTFInterpolate {
|
|
T lerp(const T &a, const T &b, float c) const {
|
|
return a + (b - a) * c;
|
|
}
|
|
|
|
T catmull_rom(const T &p0, const T &p1, const T &p2, const T &p3, float t) {
|
|
const float t2 = t * t;
|
|
const float t3 = t2 * t;
|
|
|
|
return 0.5f * ((2.0f * p1) + (-p0 + p2) * t + (2.0f * p0 - 5.0f * p1 + 4.0f * p2 - p3) * t2 + (-p0 + 3.0f * p1 - 3.0f * p2 + p3) * t3);
|
|
}
|
|
|
|
T bezier(T start, T control_1, T control_2, T end, float t) {
|
|
/* Formula from Wikipedia article on Bezier curves. */
|
|
const real_t omt = (1.0 - t);
|
|
const real_t omt2 = omt * omt;
|
|
const real_t omt3 = omt2 * omt;
|
|
const real_t t2 = t * t;
|
|
const real_t t3 = t2 * t;
|
|
|
|
return start * omt3 + control_1 * omt2 * t * 3.0 + control_2 * omt * t2 * 3.0 + end * t3;
|
|
}
|
|
};
|
|
|
|
// thank you for existing, partial specialization
|
|
template <>
|
|
struct EditorSceneImporterGLTFInterpolate<Quat> {
|
|
Quat lerp(const Quat &a, const Quat &b, const float c) const {
|
|
ERR_FAIL_COND_V_MSG(!a.is_normalized(), Quat(), "The quaternion \"a\" must be normalized.");
|
|
ERR_FAIL_COND_V_MSG(!b.is_normalized(), Quat(), "The quaternion \"b\" must be normalized.");
|
|
|
|
return a.slerp(b, c).normalized();
|
|
}
|
|
|
|
Quat catmull_rom(const Quat &p0, const Quat &p1, const Quat &p2, const Quat &p3, const float c) {
|
|
ERR_FAIL_COND_V_MSG(!p1.is_normalized(), Quat(), "The quaternion \"p1\" must be normalized.");
|
|
ERR_FAIL_COND_V_MSG(!p2.is_normalized(), Quat(), "The quaternion \"p2\" must be normalized.");
|
|
|
|
return p1.slerp(p2, c).normalized();
|
|
}
|
|
|
|
Quat bezier(const Quat start, const Quat control_1, const Quat control_2, const Quat end, const float t) {
|
|
ERR_FAIL_COND_V_MSG(!start.is_normalized(), Quat(), "The start quaternion must be normalized.");
|
|
ERR_FAIL_COND_V_MSG(!end.is_normalized(), Quat(), "The end quaternion must be normalized.");
|
|
|
|
return start.slerp(end, t).normalized();
|
|
}
|
|
};
|
|
|
|
template <class T>
|
|
T GLTFDocument::_interpolate_track(const Vector<float> &p_times, const Vector<T> &p_values, const float p_time, const GLTFAnimation::Interpolation p_interp) {
|
|
ERR_FAIL_COND_V(!p_values.size(), T());
|
|
if (p_times.size() != p_values.size()) {
|
|
ERR_PRINT_ONCE("The interpolated values are not corresponding to its times.");
|
|
return p_values[0];
|
|
}
|
|
//could use binary search, worth it?
|
|
int idx = -1;
|
|
for (int i = 0; i < p_times.size(); i++) {
|
|
if (p_times[i] > p_time) {
|
|
break;
|
|
}
|
|
idx++;
|
|
}
|
|
|
|
EditorSceneImporterGLTFInterpolate<T> interp;
|
|
|
|
switch (p_interp) {
|
|
case GLTFAnimation::INTERP_LINEAR: {
|
|
if (idx == -1) {
|
|
return p_values[0];
|
|
} else if (idx >= p_times.size() - 1) {
|
|
return p_values[p_times.size() - 1];
|
|
}
|
|
|
|
const float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]);
|
|
|
|
return interp.lerp(p_values[idx], p_values[idx + 1], c);
|
|
} break;
|
|
case GLTFAnimation::INTERP_STEP: {
|
|
if (idx == -1) {
|
|
return p_values[0];
|
|
} else if (idx >= p_times.size() - 1) {
|
|
return p_values[p_times.size() - 1];
|
|
}
|
|
|
|
return p_values[idx];
|
|
} break;
|
|
case GLTFAnimation::INTERP_CATMULLROMSPLINE: {
|
|
if (idx == -1) {
|
|
return p_values[1];
|
|
} else if (idx >= p_times.size() - 1) {
|
|
return p_values[1 + p_times.size() - 1];
|
|
}
|
|
|
|
const float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]);
|
|
|
|
return interp.catmull_rom(p_values[idx - 1], p_values[idx], p_values[idx + 1], p_values[idx + 3], c);
|
|
} break;
|
|
case GLTFAnimation::INTERP_CUBIC_SPLINE: {
|
|
if (idx == -1) {
|
|
return p_values[1];
|
|
} else if (idx >= p_times.size() - 1) {
|
|
return p_values[(p_times.size() - 1) * 3 + 1];
|
|
}
|
|
|
|
const float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]);
|
|
|
|
const T from = p_values[idx * 3 + 1];
|
|
const T c1 = from + p_values[idx * 3 + 2];
|
|
const T to = p_values[idx * 3 + 4];
|
|
const T c2 = to + p_values[idx * 3 + 3];
|
|
|
|
return interp.bezier(from, c1, c2, to, c);
|
|
} break;
|
|
}
|
|
|
|
ERR_FAIL_V(p_values[0]);
|
|
}
|
|
|
|
void GLTFDocument::_import_animation(Ref<GLTFState> state, AnimationPlayer *ap, const GLTFAnimationIndex index, const int bake_fps) {
|
|
Ref<GLTFAnimation> anim = state->animations[index];
|
|
|
|
String name = anim->get_name();
|
|
if (name.empty()) {
|
|
// No node represent these, and they are not in the hierarchy, so just make a unique name
|
|
name = _gen_unique_name(state, "Animation");
|
|
}
|
|
|
|
Ref<Animation> animation;
|
|
animation.instance();
|
|
animation->set_name(name);
|
|
|
|
if (anim->get_loop()) {
|
|
animation->set_loop(true);
|
|
}
|
|
|
|
float length = 0.0;
|
|
|
|
for (Map<int, GLTFAnimation::Track>::Element *track_i = anim->get_tracks().front(); track_i; track_i = track_i->next()) {
|
|
const GLTFAnimation::Track &track = track_i->get();
|
|
//need to find the path: for skeletons, weight tracks will affect the mesh
|
|
NodePath node_path;
|
|
//for skeletons, transform tracks always affect bones
|
|
NodePath transform_node_path;
|
|
|
|
GLTFNodeIndex node_index = track_i->key();
|
|
|
|
const Ref<GLTFNode> gltf_node = state->nodes[track_i->key()];
|
|
|
|
Node *root = ap->get_parent();
|
|
ERR_FAIL_COND(root == nullptr);
|
|
Map<GLTFNodeIndex, Node *>::Element *node_element = state->scene_nodes.find(node_index);
|
|
ERR_CONTINUE_MSG(node_element == nullptr, vformat("Unable to find node %d for animation", node_index));
|
|
node_path = root->get_path_to(node_element->get());
|
|
|
|
if (gltf_node->skeleton >= 0) {
|
|
const Skeleton *sk = state->skeletons[gltf_node->skeleton]->godot_skeleton;
|
|
ERR_FAIL_COND(sk == nullptr);
|
|
|
|
const String path = ap->get_parent()->get_path_to(sk);
|
|
const String bone = gltf_node->get_name();
|
|
transform_node_path = path + ":" + bone;
|
|
} else {
|
|
transform_node_path = node_path;
|
|
}
|
|
|
|
for (int i = 0; i < track.rotation_track.times.size(); i++) {
|
|
length = MAX(length, track.rotation_track.times[i]);
|
|
}
|
|
for (int i = 0; i < track.translation_track.times.size(); i++) {
|
|
length = MAX(length, track.translation_track.times[i]);
|
|
}
|
|
for (int i = 0; i < track.scale_track.times.size(); i++) {
|
|
length = MAX(length, track.scale_track.times[i]);
|
|
}
|
|
|
|
for (int i = 0; i < track.weight_tracks.size(); i++) {
|
|
for (int j = 0; j < track.weight_tracks[i].times.size(); j++) {
|
|
length = MAX(length, track.weight_tracks[i].times[j]);
|
|
}
|
|
}
|
|
|
|
// Animated TRS properties will not affect a skinned mesh.
|
|
const bool transform_affects_skinned_mesh_instance = gltf_node->skeleton < 0 && gltf_node->skin >= 0;
|
|
if ((track.rotation_track.values.size() || track.translation_track.values.size() || track.scale_track.values.size()) && !transform_affects_skinned_mesh_instance) {
|
|
//make transform track
|
|
int track_idx = animation->get_track_count();
|
|
animation->add_track(Animation::TYPE_TRANSFORM);
|
|
animation->track_set_path(track_idx, transform_node_path);
|
|
//first determine animation length
|
|
|
|
const double increment = 1.0 / bake_fps;
|
|
double time = 0.0;
|
|
|
|
Vector3 base_pos;
|
|
Quat base_rot;
|
|
Vector3 base_scale = Vector3(1, 1, 1);
|
|
|
|
if (!track.rotation_track.values.size()) {
|
|
base_rot = state->nodes[track_i->key()]->rotation.normalized();
|
|
}
|
|
|
|
if (!track.translation_track.values.size()) {
|
|
base_pos = state->nodes[track_i->key()]->translation;
|
|
}
|
|
|
|
if (!track.scale_track.values.size()) {
|
|
base_scale = state->nodes[track_i->key()]->scale;
|
|
}
|
|
|
|
bool last = false;
|
|
while (true) {
|
|
Vector3 pos = base_pos;
|
|
Quat rot = base_rot;
|
|
Vector3 scale = base_scale;
|
|
|
|
if (track.translation_track.times.size()) {
|
|
pos = _interpolate_track<Vector3>(track.translation_track.times, track.translation_track.values, time, track.translation_track.interpolation);
|
|
}
|
|
|
|
if (track.rotation_track.times.size()) {
|
|
rot = _interpolate_track<Quat>(track.rotation_track.times, track.rotation_track.values, time, track.rotation_track.interpolation);
|
|
}
|
|
|
|
if (track.scale_track.times.size()) {
|
|
scale = _interpolate_track<Vector3>(track.scale_track.times, track.scale_track.values, time, track.scale_track.interpolation);
|
|
}
|
|
|
|
if (gltf_node->skeleton >= 0) {
|
|
Transform xform;
|
|
xform.basis.set_quat_scale(rot, scale);
|
|
xform.origin = pos;
|
|
|
|
const Skeleton *skeleton = state->skeletons[gltf_node->skeleton]->godot_skeleton;
|
|
const int bone_idx = skeleton->find_bone(gltf_node->get_name());
|
|
xform = skeleton->get_bone_rest(bone_idx).affine_inverse() * xform;
|
|
|
|
rot = xform.basis.get_rotation_quat();
|
|
rot.normalize();
|
|
scale = xform.basis.get_scale();
|
|
pos = xform.origin;
|
|
}
|
|
|
|
animation->transform_track_insert_key(track_idx, time, pos, rot, scale);
|
|
|
|
if (last) {
|
|
break;
|
|
}
|
|
time += increment;
|
|
if (time >= length) {
|
|
last = true;
|
|
time = length;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < track.weight_tracks.size(); i++) {
|
|
ERR_CONTINUE(gltf_node->mesh < 0 || gltf_node->mesh >= state->meshes.size());
|
|
Ref<GLTFMesh> mesh = state->meshes[gltf_node->mesh];
|
|
ERR_CONTINUE(mesh.is_null());
|
|
ERR_CONTINUE(mesh->get_mesh().is_null());
|
|
const String prop = "blend_shapes/" + mesh->get_mesh()->get_blend_shape_name(i);
|
|
|
|
const String blend_path = String(node_path) + ":" + prop;
|
|
|
|
const int track_idx = animation->get_track_count();
|
|
animation->add_track(Animation::TYPE_VALUE);
|
|
animation->track_set_path(track_idx, blend_path);
|
|
|
|
// Only LINEAR and STEP (NEAREST) can be supported out of the box by Godot's Animation,
|
|
// the other modes have to be baked.
|
|
GLTFAnimation::Interpolation gltf_interp = track.weight_tracks[i].interpolation;
|
|
if (gltf_interp == GLTFAnimation::INTERP_LINEAR || gltf_interp == GLTFAnimation::INTERP_STEP) {
|
|
animation->track_set_interpolation_type(track_idx, gltf_interp == GLTFAnimation::INTERP_STEP ? Animation::INTERPOLATION_NEAREST : Animation::INTERPOLATION_LINEAR);
|
|
for (int j = 0; j < track.weight_tracks[i].times.size(); j++) {
|
|
const float t = track.weight_tracks[i].times[j];
|
|
const float attribs = track.weight_tracks[i].values[j];
|
|
animation->track_insert_key(track_idx, t, attribs);
|
|
}
|
|
} else {
|
|
// CATMULLROMSPLINE or CUBIC_SPLINE have to be baked, apologies.
|
|
const double increment = 1.0 / bake_fps;
|
|
double time = 0.0;
|
|
bool last = false;
|
|
while (true) {
|
|
_interpolate_track<float>(track.weight_tracks[i].times, track.weight_tracks[i].values, time, gltf_interp);
|
|
if (last) {
|
|
break;
|
|
}
|
|
time += increment;
|
|
if (time >= length) {
|
|
last = true;
|
|
time = length;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
animation->set_length(length);
|
|
|
|
ap->add_animation(name, animation);
|
|
}
|
|
|
|
void GLTFDocument::_convert_mesh_instances(Ref<GLTFState> state) {
|
|
for (GLTFNodeIndex mi_node_i = 0; mi_node_i < state->nodes.size(); ++mi_node_i) {
|
|
Ref<GLTFNode> node = state->nodes[mi_node_i];
|
|
|
|
if (node->mesh < 0) {
|
|
continue;
|
|
}
|
|
Array json_skins;
|
|
if (state->json.has("skins")) {
|
|
json_skins = state->json["skins"];
|
|
}
|
|
Map<GLTFNodeIndex, Node *>::Element *mi_element = state->scene_nodes.find(mi_node_i);
|
|
if (!mi_element) {
|
|
continue;
|
|
}
|
|
MeshInstance *mi = Object::cast_to<MeshInstance>(mi_element->get());
|
|
ERR_CONTINUE(!mi);
|
|
Transform mi_xform = mi->get_transform();
|
|
node->scale = mi_xform.basis.get_scale();
|
|
node->rotation = mi_xform.basis.get_rotation_quat();
|
|
node->translation = mi_xform.origin;
|
|
|
|
Dictionary json_skin;
|
|
Skeleton *skeleton = Object::cast_to<Skeleton>(mi->get_node(mi->get_skeleton_path()));
|
|
if (!skeleton) {
|
|
continue;
|
|
}
|
|
if (!skeleton->get_bone_count()) {
|
|
continue;
|
|
}
|
|
Ref<Skin> skin = mi->get_skin();
|
|
if (skin.is_null()) {
|
|
skin = skeleton->register_skin(nullptr)->get_skin();
|
|
}
|
|
Ref<GLTFSkin> gltf_skin;
|
|
gltf_skin.instance();
|
|
Array json_joints;
|
|
GLTFSkeletonIndex skeleton_gltf_i = -1;
|
|
|
|
NodePath skeleton_path = mi->get_skeleton_path();
|
|
bool is_unique = true;
|
|
for (int32_t skin_i = 0; skin_i < state->skins.size(); skin_i++) {
|
|
Ref<GLTFSkin> prev_gltf_skin = state->skins.write[skin_i];
|
|
if (gltf_skin.is_null()) {
|
|
continue;
|
|
}
|
|
GLTFSkeletonIndex prev_skeleton = prev_gltf_skin->get_skeleton();
|
|
if (prev_skeleton == -1 || prev_skeleton >= state->skeletons.size()) {
|
|
continue;
|
|
}
|
|
if (prev_gltf_skin->get_godot_skin() == skin && state->skeletons[prev_skeleton]->godot_skeleton == skeleton) {
|
|
node->skin = skin_i;
|
|
node->skeleton = prev_skeleton;
|
|
is_unique = false;
|
|
break;
|
|
}
|
|
}
|
|
if (!is_unique) {
|
|
continue;
|
|
}
|
|
GLTFSkeletonIndex skeleton_i = _convert_skeleton(state, skeleton);
|
|
skeleton_gltf_i = skeleton_i;
|
|
ERR_CONTINUE(skeleton_gltf_i == -1);
|
|
gltf_skin->skeleton = skeleton_gltf_i;
|
|
Ref<GLTFSkeleton> gltf_skeleton = state->skeletons.write[skeleton_gltf_i];
|
|
for (int32_t bind_i = 0; bind_i < skin->get_bind_count(); bind_i++) {
|
|
String godot_bone_name = skin->get_bind_name(bind_i);
|
|
if (godot_bone_name.empty()) {
|
|
int32_t bone = skin->get_bind_bone(bind_i);
|
|
godot_bone_name = skeleton->get_bone_name(bone);
|
|
}
|
|
if (skeleton->find_bone(godot_bone_name) == -1) {
|
|
godot_bone_name = skeleton->get_bone_name(0);
|
|
}
|
|
BoneId bone_index = skeleton->find_bone(godot_bone_name);
|
|
ERR_CONTINUE(bone_index == -1);
|
|
Ref<GLTFNode> joint_node;
|
|
joint_node.instance();
|
|
String gltf_bone_name = _gen_unique_bone_name(state, skeleton_gltf_i, godot_bone_name);
|
|
joint_node->set_name(gltf_bone_name);
|
|
|
|
Transform bone_rest_xform = skeleton->get_bone_rest(bone_index);
|
|
joint_node->scale = bone_rest_xform.basis.get_scale();
|
|
joint_node->rotation = bone_rest_xform.basis.get_rotation_quat();
|
|
joint_node->translation = bone_rest_xform.origin;
|
|
joint_node->joint = true;
|
|
|
|
int32_t joint_node_i = state->nodes.size();
|
|
state->nodes.push_back(joint_node);
|
|
gltf_skeleton->godot_bone_node.insert(bone_index, joint_node_i);
|
|
int32_t joint_index = gltf_skin->joints.size();
|
|
gltf_skin->joint_i_to_bone_i.insert(joint_index, bone_index);
|
|
gltf_skin->joints.push_back(joint_node_i);
|
|
gltf_skin->joints_original.push_back(joint_node_i);
|
|
gltf_skin->inverse_binds.push_back(skin->get_bind_pose(bind_i));
|
|
json_joints.push_back(joint_node_i);
|
|
for (Map<GLTFNodeIndex, Node *>::Element *skin_scene_node_i = state->scene_nodes.front(); skin_scene_node_i; skin_scene_node_i = skin_scene_node_i->next()) {
|
|
if (skin_scene_node_i->get() == skeleton) {
|
|
gltf_skin->skin_root = skin_scene_node_i->key();
|
|
json_skin["skeleton"] = skin_scene_node_i->key();
|
|
}
|
|
}
|
|
gltf_skin->godot_skin = skin;
|
|
gltf_skin->set_name(_gen_unique_name(state, skin->get_name()));
|
|
}
|
|
for (int32_t bind_i = 0; bind_i < skin->get_bind_count(); bind_i++) {
|
|
String bone_name = skeleton->get_bone_name(bind_i);
|
|
String godot_bone_name = skin->get_bind_name(bind_i);
|
|
int32_t bone = -1;
|
|
if (skin->get_bind_bone(bind_i) != -1) {
|
|
bone = skin->get_bind_bone(bind_i);
|
|
godot_bone_name = skeleton->get_bone_name(bone);
|
|
}
|
|
bone = skeleton->find_bone(godot_bone_name);
|
|
if (bone == -1) {
|
|
continue;
|
|
}
|
|
BoneId bone_parent = skeleton->get_bone_parent(bone);
|
|
GLTFNodeIndex joint_node_i = gltf_skeleton->godot_bone_node[bone];
|
|
ERR_CONTINUE(joint_node_i >= state->nodes.size());
|
|
if (bone_parent != -1) {
|
|
GLTFNodeIndex parent_joint_gltf_node = gltf_skin->joints[bone_parent];
|
|
Ref<GLTFNode> parent_joint_node = state->nodes.write[parent_joint_gltf_node];
|
|
parent_joint_node->children.push_back(joint_node_i);
|
|
} else {
|
|
Node *node_parent = skeleton->get_parent();
|
|
ERR_CONTINUE(!node_parent);
|
|
for (Map<GLTFNodeIndex, Node *>::Element *E = state->scene_nodes.front(); E; E = E->next()) {
|
|
if (E->get() == node_parent) {
|
|
GLTFNodeIndex gltf_node_i = E->key();
|
|
Ref<GLTFNode> gltf_node = state->nodes.write[gltf_node_i];
|
|
gltf_node->children.push_back(joint_node_i);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
_expand_skin(state, gltf_skin);
|
|
node->skin = state->skins.size();
|
|
state->skins.push_back(gltf_skin);
|
|
|
|
json_skin["inverseBindMatrices"] = _encode_accessor_as_xform(state, gltf_skin->inverse_binds, false);
|
|
json_skin["joints"] = json_joints;
|
|
json_skin["name"] = gltf_skin->get_name();
|
|
json_skins.push_back(json_skin);
|
|
state->json["skins"] = json_skins;
|
|
}
|
|
}
|
|
|
|
float GLTFDocument::solve_metallic(float p_dielectric_specular, float diffuse, float specular, float p_one_minus_specular_strength) {
|
|
if (specular <= p_dielectric_specular) {
|
|
return 0.0f;
|
|
}
|
|
|
|
const float a = p_dielectric_specular;
|
|
const float b = diffuse * p_one_minus_specular_strength / (1.0f - p_dielectric_specular) + specular - 2.0f * p_dielectric_specular;
|
|
const float c = p_dielectric_specular - specular;
|
|
const float D = b * b - 4.0f * a * c;
|
|
return CLAMP((-b + Math::sqrt(D)) / (2.0f * a), 0.0f, 1.0f);
|
|
}
|
|
|
|
float GLTFDocument::get_perceived_brightness(const Color p_color) {
|
|
const Color coeff = Color(R_BRIGHTNESS_COEFF, G_BRIGHTNESS_COEFF, B_BRIGHTNESS_COEFF);
|
|
const Color value = coeff * (p_color * p_color);
|
|
|
|
const float r = value.r;
|
|
const float g = value.g;
|
|
const float b = value.b;
|
|
|
|
return Math::sqrt(r + g + b);
|
|
}
|
|
|
|
float GLTFDocument::get_max_component(const Color &p_color) {
|
|
const float r = p_color.r;
|
|
const float g = p_color.g;
|
|
const float b = p_color.b;
|
|
|
|
return MAX(MAX(r, g), b);
|
|
}
|
|
|
|
void GLTFDocument::_process_mesh_instances(Ref<GLTFState> state, Node *scene_root) {
|
|
for (GLTFNodeIndex node_i = 0; node_i < state->nodes.size(); ++node_i) {
|
|
Ref<GLTFNode> node = state->nodes[node_i];
|
|
|
|
if (node->skin >= 0 && node->mesh >= 0) {
|
|
const GLTFSkinIndex skin_i = node->skin;
|
|
|
|
Map<GLTFNodeIndex, Node *>::Element *mi_element = state->scene_nodes.find(node_i);
|
|
ERR_CONTINUE_MSG(mi_element == nullptr, vformat("Unable to find node %d", node_i));
|
|
|
|
MeshInstance *mi = Object::cast_to<MeshInstance>(mi_element->get());
|
|
ERR_CONTINUE_MSG(mi == nullptr, vformat("Unable to cast node %d of type %s to MeshInstance", node_i, mi_element->get()->get_class_name()));
|
|
|
|
const GLTFSkeletonIndex skel_i = state->skins.write[node->skin]->skeleton;
|
|
Ref<GLTFSkeleton> gltf_skeleton = state->skeletons.write[skel_i];
|
|
Skeleton *skeleton = gltf_skeleton->godot_skeleton;
|
|
ERR_CONTINUE_MSG(skeleton == nullptr, vformat("Unable to find Skeleton for node %d skin %d", node_i, skin_i));
|
|
|
|
mi->get_parent()->remove_child(mi);
|
|
skeleton->add_child(mi);
|
|
mi->set_owner(skeleton->get_owner());
|
|
|
|
mi->set_skin(state->skins.write[skin_i]->godot_skin);
|
|
mi->set_skeleton_path(mi->get_path_to(skeleton));
|
|
mi->set_transform(Transform());
|
|
}
|
|
}
|
|
}
|
|
|
|
GLTFAnimation::Track GLTFDocument::_convert_animation_track(Ref<GLTFState> state, GLTFAnimation::Track p_track, Ref<Animation> p_animation, Transform p_bone_rest, int32_t p_track_i, GLTFNodeIndex p_node_i) {
|
|
Animation::InterpolationType interpolation = p_animation->track_get_interpolation_type(p_track_i);
|
|
|
|
GLTFAnimation::Interpolation gltf_interpolation = GLTFAnimation::INTERP_LINEAR;
|
|
if (interpolation == Animation::InterpolationType::INTERPOLATION_LINEAR) {
|
|
gltf_interpolation = GLTFAnimation::INTERP_LINEAR;
|
|
} else if (interpolation == Animation::InterpolationType::INTERPOLATION_NEAREST) {
|
|
gltf_interpolation = GLTFAnimation::INTERP_STEP;
|
|
} else if (interpolation == Animation::InterpolationType::INTERPOLATION_CUBIC) {
|
|
gltf_interpolation = GLTFAnimation::INTERP_CUBIC_SPLINE;
|
|
}
|
|
Animation::TrackType track_type = p_animation->track_get_type(p_track_i);
|
|
int32_t key_count = p_animation->track_get_key_count(p_track_i);
|
|
Vector<float> times;
|
|
times.resize(key_count);
|
|
String path = p_animation->track_get_path(p_track_i);
|
|
for (int32_t key_i = 0; key_i < key_count; key_i++) {
|
|
times.write[key_i] = p_animation->track_get_key_time(p_track_i, key_i);
|
|
}
|
|
const float BAKE_FPS = 30.0f;
|
|
if (track_type == Animation::TYPE_TRANSFORM) {
|
|
p_track.translation_track.times = times;
|
|
p_track.translation_track.interpolation = gltf_interpolation;
|
|
p_track.rotation_track.times = times;
|
|
p_track.rotation_track.interpolation = gltf_interpolation;
|
|
p_track.scale_track.times = times;
|
|
p_track.scale_track.interpolation = gltf_interpolation;
|
|
|
|
p_track.scale_track.values.resize(key_count);
|
|
p_track.scale_track.interpolation = gltf_interpolation;
|
|
p_track.translation_track.values.resize(key_count);
|
|
p_track.translation_track.interpolation = gltf_interpolation;
|
|
p_track.rotation_track.values.resize(key_count);
|
|
p_track.rotation_track.interpolation = gltf_interpolation;
|
|
for (int32_t key_i = 0; key_i < key_count; key_i++) {
|
|
Vector3 translation;
|
|
Quat rotation;
|
|
Vector3 scale;
|
|
Error err = p_animation->transform_track_get_key(p_track_i, key_i, &translation, &rotation, &scale);
|
|
ERR_CONTINUE(err != OK);
|
|
Transform xform;
|
|
xform.basis.set_quat_scale(rotation, scale);
|
|
xform.origin = translation;
|
|
xform = p_bone_rest * xform;
|
|
p_track.translation_track.values.write[key_i] = xform.get_origin();
|
|
p_track.rotation_track.values.write[key_i] = xform.basis.get_rotation_quat();
|
|
p_track.scale_track.values.write[key_i] = xform.basis.get_scale();
|
|
}
|
|
} else if (path.find(":transform") != -1) {
|
|
p_track.translation_track.times = times;
|
|
p_track.translation_track.interpolation = gltf_interpolation;
|
|
p_track.rotation_track.times = times;
|
|
p_track.rotation_track.interpolation = gltf_interpolation;
|
|
p_track.scale_track.times = times;
|
|
p_track.scale_track.interpolation = gltf_interpolation;
|
|
|
|
p_track.scale_track.values.resize(key_count);
|
|
p_track.scale_track.interpolation = gltf_interpolation;
|
|
p_track.translation_track.values.resize(key_count);
|
|
p_track.translation_track.interpolation = gltf_interpolation;
|
|
p_track.rotation_track.values.resize(key_count);
|
|
p_track.rotation_track.interpolation = gltf_interpolation;
|
|
for (int32_t key_i = 0; key_i < key_count; key_i++) {
|
|
Transform xform = p_animation->track_get_key_value(p_track_i, key_i);
|
|
p_track.translation_track.values.write[key_i] = xform.get_origin();
|
|
p_track.rotation_track.values.write[key_i] = xform.basis.get_rotation_quat();
|
|
p_track.scale_track.values.write[key_i] = xform.basis.get_scale();
|
|
}
|
|
} else if (track_type == Animation::TYPE_VALUE) {
|
|
if (path.find("/rotation_quat") != -1) {
|
|
p_track.rotation_track.times = times;
|
|
p_track.rotation_track.interpolation = gltf_interpolation;
|
|
|
|
p_track.rotation_track.values.resize(key_count);
|
|
p_track.rotation_track.interpolation = gltf_interpolation;
|
|
|
|
for (int32_t key_i = 0; key_i < key_count; key_i++) {
|
|
Quat rotation_track = p_animation->track_get_key_value(p_track_i, key_i);
|
|
p_track.rotation_track.values.write[key_i] = rotation_track;
|
|
}
|
|
} else if (path.find(":translation") != -1) {
|
|
p_track.translation_track.times = times;
|
|
p_track.translation_track.interpolation = gltf_interpolation;
|
|
|
|
p_track.translation_track.values.resize(key_count);
|
|
p_track.translation_track.interpolation = gltf_interpolation;
|
|
|
|
for (int32_t key_i = 0; key_i < key_count; key_i++) {
|
|
Vector3 translation = p_animation->track_get_key_value(p_track_i, key_i);
|
|
p_track.translation_track.values.write[key_i] = translation;
|
|
}
|
|
} else if (path.find(":rotation_degrees") != -1) {
|
|
p_track.rotation_track.times = times;
|
|
p_track.rotation_track.interpolation = gltf_interpolation;
|
|
|
|
p_track.rotation_track.values.resize(key_count);
|
|
p_track.rotation_track.interpolation = gltf_interpolation;
|
|
|
|
for (int32_t key_i = 0; key_i < key_count; key_i++) {
|
|
Vector3 rotation_degrees = p_animation->track_get_key_value(p_track_i, key_i);
|
|
Vector3 rotation_radian;
|
|
rotation_radian.x = Math::deg2rad(rotation_degrees.x);
|
|
rotation_radian.y = Math::deg2rad(rotation_degrees.y);
|
|
rotation_radian.z = Math::deg2rad(rotation_degrees.z);
|
|
p_track.rotation_track.values.write[key_i] = Quat(rotation_radian);
|
|
}
|
|
} else if (path.find(":scale") != -1) {
|
|
p_track.scale_track.times = times;
|
|
p_track.scale_track.interpolation = gltf_interpolation;
|
|
|
|
p_track.scale_track.values.resize(key_count);
|
|
p_track.scale_track.interpolation = gltf_interpolation;
|
|
|
|
for (int32_t key_i = 0; key_i < key_count; key_i++) {
|
|
Vector3 scale_track = p_animation->track_get_key_value(p_track_i, key_i);
|
|
p_track.scale_track.values.write[key_i] = scale_track;
|
|
}
|
|
}
|
|
} else if (track_type == Animation::TYPE_BEZIER) {
|
|
if (path.find("/scale") != -1) {
|
|
const int32_t keys = p_animation->track_get_key_time(p_track_i, key_count - 1) * BAKE_FPS;
|
|
if (!p_track.scale_track.times.size()) {
|
|
Vector<float> new_times;
|
|
new_times.resize(keys);
|
|
for (int32_t key_i = 0; key_i < keys; key_i++) {
|
|
new_times.write[key_i] = key_i / BAKE_FPS;
|
|
}
|
|
p_track.scale_track.times = new_times;
|
|
p_track.scale_track.interpolation = gltf_interpolation;
|
|
|
|
p_track.scale_track.values.resize(keys);
|
|
|
|
for (int32_t key_i = 0; key_i < keys; key_i++) {
|
|
p_track.scale_track.values.write[key_i] = Vector3(1.0f, 1.0f, 1.0f);
|
|
}
|
|
p_track.scale_track.interpolation = gltf_interpolation;
|
|
}
|
|
|
|
for (int32_t key_i = 0; key_i < keys; key_i++) {
|
|
Vector3 bezier_track = p_track.scale_track.values[key_i];
|
|
if (path.find("/scale:x") != -1) {
|
|
bezier_track.x = p_animation->bezier_track_interpolate(p_track_i, key_i / BAKE_FPS);
|
|
bezier_track.x = p_bone_rest.affine_inverse().basis.get_scale().x * bezier_track.x;
|
|
} else if (path.find("/scale:y") != -1) {
|
|
bezier_track.y = p_animation->bezier_track_interpolate(p_track_i, key_i / BAKE_FPS);
|
|
bezier_track.y = p_bone_rest.affine_inverse().basis.get_scale().y * bezier_track.y;
|
|
} else if (path.find("/scale:z") != -1) {
|
|
bezier_track.z = p_animation->bezier_track_interpolate(p_track_i, key_i / BAKE_FPS);
|
|
bezier_track.z = p_bone_rest.affine_inverse().basis.get_scale().z * bezier_track.z;
|
|
}
|
|
p_track.scale_track.values.write[key_i] = bezier_track;
|
|
}
|
|
} else if (path.find("/translation") != -1) {
|
|
const int32_t keys = p_animation->track_get_key_time(p_track_i, key_count - 1) * BAKE_FPS;
|
|
if (!p_track.translation_track.times.size()) {
|
|
Vector<float> new_times;
|
|
new_times.resize(keys);
|
|
for (int32_t key_i = 0; key_i < keys; key_i++) {
|
|
new_times.write[key_i] = key_i / BAKE_FPS;
|
|
}
|
|
p_track.translation_track.times = new_times;
|
|
p_track.translation_track.interpolation = gltf_interpolation;
|
|
|
|
p_track.translation_track.values.resize(keys);
|
|
p_track.translation_track.interpolation = gltf_interpolation;
|
|
}
|
|
|
|
for (int32_t key_i = 0; key_i < keys; key_i++) {
|
|
Vector3 bezier_track = p_track.translation_track.values[key_i];
|
|
if (path.find("/translation:x") != -1) {
|
|
bezier_track.x = p_animation->bezier_track_interpolate(p_track_i, key_i / BAKE_FPS);
|
|
bezier_track.x = p_bone_rest.affine_inverse().origin.x * bezier_track.x;
|
|
} else if (path.find("/translation:y") != -1) {
|
|
bezier_track.y = p_animation->bezier_track_interpolate(p_track_i, key_i / BAKE_FPS);
|
|
bezier_track.y = p_bone_rest.affine_inverse().origin.y * bezier_track.y;
|
|
} else if (path.find("/translation:z") != -1) {
|
|
bezier_track.z = p_animation->bezier_track_interpolate(p_track_i, key_i / BAKE_FPS);
|
|
bezier_track.z = p_bone_rest.affine_inverse().origin.z * bezier_track.z;
|
|
}
|
|
p_track.translation_track.values.write[key_i] = bezier_track;
|
|
}
|
|
}
|
|
}
|
|
|
|
return p_track;
|
|
}
|
|
|
|
void GLTFDocument::_convert_animation(Ref<GLTFState> state, AnimationPlayer *ap, String p_animation_track_name) {
|
|
Ref<Animation> animation = ap->get_animation(p_animation_track_name);
|
|
Ref<GLTFAnimation> gltf_animation;
|
|
gltf_animation.instance();
|
|
gltf_animation->set_name(_gen_unique_name(state, p_animation_track_name));
|
|
|
|
for (int32_t track_i = 0; track_i < animation->get_track_count(); track_i++) {
|
|
if (!animation->track_is_enabled(track_i)) {
|
|
continue;
|
|
}
|
|
String orig_track_path = animation->track_get_path(track_i);
|
|
if (String(orig_track_path).find(":translation") != -1) {
|
|
const Vector<String> node_suffix = String(orig_track_path).split(":translation");
|
|
const NodePath path = node_suffix[0];
|
|
const Node *node = ap->get_parent()->get_node_or_null(path);
|
|
for (Map<GLTFNodeIndex, Node *>::Element *translation_scene_node_i = state->scene_nodes.front(); translation_scene_node_i; translation_scene_node_i = translation_scene_node_i->next()) {
|
|
if (translation_scene_node_i->get() == node) {
|
|
GLTFNodeIndex node_index = translation_scene_node_i->key();
|
|
Map<int, GLTFAnimation::Track>::Element *translation_track_i = gltf_animation->get_tracks().find(node_index);
|
|
GLTFAnimation::Track track;
|
|
if (translation_track_i) {
|
|
track = translation_track_i->get();
|
|
}
|
|
track = _convert_animation_track(state, track, animation, Transform(), track_i, node_index);
|
|
gltf_animation->get_tracks().insert(node_index, track);
|
|
}
|
|
}
|
|
} else if (String(orig_track_path).find(":rotation_degrees") != -1) {
|
|
const Vector<String> node_suffix = String(orig_track_path).split(":rotation_degrees");
|
|
const NodePath path = node_suffix[0];
|
|
const Node *node = ap->get_parent()->get_node_or_null(path);
|
|
for (Map<GLTFNodeIndex, Node *>::Element *rotation_degree_scene_node_i = state->scene_nodes.front(); rotation_degree_scene_node_i; rotation_degree_scene_node_i = rotation_degree_scene_node_i->next()) {
|
|
if (rotation_degree_scene_node_i->get() == node) {
|
|
GLTFNodeIndex node_index = rotation_degree_scene_node_i->key();
|
|
Map<int, GLTFAnimation::Track>::Element *rotation_degree_track_i = gltf_animation->get_tracks().find(node_index);
|
|
GLTFAnimation::Track track;
|
|
if (rotation_degree_track_i) {
|
|
track = rotation_degree_track_i->get();
|
|
}
|
|
track = _convert_animation_track(state, track, animation, Transform(), track_i, node_index);
|
|
gltf_animation->get_tracks().insert(node_index, track);
|
|
}
|
|
}
|
|
} else if (String(orig_track_path).find(":scale") != -1) {
|
|
const Vector<String> node_suffix = String(orig_track_path).split(":scale");
|
|
const NodePath path = node_suffix[0];
|
|
const Node *node = ap->get_parent()->get_node_or_null(path);
|
|
for (Map<GLTFNodeIndex, Node *>::Element *scale_scene_node_i = state->scene_nodes.front(); scale_scene_node_i; scale_scene_node_i = scale_scene_node_i->next()) {
|
|
if (scale_scene_node_i->get() == node) {
|
|
GLTFNodeIndex node_index = scale_scene_node_i->key();
|
|
Map<int, GLTFAnimation::Track>::Element *scale_track_i = gltf_animation->get_tracks().find(node_index);
|
|
GLTFAnimation::Track track;
|
|
if (scale_track_i) {
|
|
track = scale_track_i->get();
|
|
}
|
|
track = _convert_animation_track(state, track, animation, Transform(), track_i, node_index);
|
|
gltf_animation->get_tracks().insert(node_index, track);
|
|
}
|
|
}
|
|
} else if (String(orig_track_path).find(":transform") != -1) {
|
|
const Vector<String> node_suffix = String(orig_track_path).split(":transform");
|
|
const NodePath path = node_suffix[0];
|
|
const Node *node = ap->get_parent()->get_node_or_null(path);
|
|
for (Map<GLTFNodeIndex, Node *>::Element *transform_track_i = state->scene_nodes.front(); transform_track_i; transform_track_i = transform_track_i->next()) {
|
|
if (transform_track_i->get() == node) {
|
|
GLTFAnimation::Track track;
|
|
track = _convert_animation_track(state, track, animation, Transform(), track_i, transform_track_i->key());
|
|
gltf_animation->get_tracks().insert(transform_track_i->key(), track);
|
|
}
|
|
}
|
|
} else if (String(orig_track_path).find(":blend_shapes/") != -1) {
|
|
const Vector<String> node_suffix = String(orig_track_path).split(":blend_shapes/");
|
|
const NodePath path = node_suffix[0];
|
|
const String suffix = node_suffix[1];
|
|
const Node *node = ap->get_parent()->get_node_or_null(path);
|
|
for (Map<GLTFNodeIndex, Node *>::Element *transform_track_i = state->scene_nodes.front(); transform_track_i; transform_track_i = transform_track_i->next()) {
|
|
if (transform_track_i->get() == node) {
|
|
const MeshInstance *mi = Object::cast_to<MeshInstance>(node);
|
|
if (!mi) {
|
|
continue;
|
|
}
|
|
Ref<ArrayMesh> array_mesh = mi->get_mesh();
|
|
if (array_mesh.is_null()) {
|
|
continue;
|
|
}
|
|
if (node_suffix.size() != 2) {
|
|
continue;
|
|
}
|
|
GLTFNodeIndex mesh_index = -1;
|
|
for (GLTFNodeIndex node_i = 0; node_i < state->scene_nodes.size(); node_i++) {
|
|
if (state->scene_nodes[node_i] == node) {
|
|
mesh_index = node_i;
|
|
break;
|
|
}
|
|
}
|
|
ERR_CONTINUE(mesh_index == -1);
|
|
Ref<Mesh> mesh = mi->get_mesh();
|
|
ERR_CONTINUE(mesh.is_null());
|
|
for (int32_t shape_i = 0; shape_i < mesh->get_blend_shape_count(); shape_i++) {
|
|
if (mesh->get_blend_shape_name(shape_i) != suffix) {
|
|
continue;
|
|
}
|
|
GLTFAnimation::Track track;
|
|
Map<int, GLTFAnimation::Track>::Element *blend_shape_track_i = gltf_animation->get_tracks().find(mesh_index);
|
|
if (blend_shape_track_i) {
|
|
track = blend_shape_track_i->get();
|
|
}
|
|
Animation::InterpolationType interpolation = animation->track_get_interpolation_type(track_i);
|
|
|
|
GLTFAnimation::Interpolation gltf_interpolation = GLTFAnimation::INTERP_LINEAR;
|
|
if (interpolation == Animation::InterpolationType::INTERPOLATION_LINEAR) {
|
|
gltf_interpolation = GLTFAnimation::INTERP_LINEAR;
|
|
} else if (interpolation == Animation::InterpolationType::INTERPOLATION_NEAREST) {
|
|
gltf_interpolation = GLTFAnimation::INTERP_STEP;
|
|
} else if (interpolation == Animation::InterpolationType::INTERPOLATION_CUBIC) {
|
|
gltf_interpolation = GLTFAnimation::INTERP_CUBIC_SPLINE;
|
|
}
|
|
Animation::TrackType track_type = animation->track_get_type(track_i);
|
|
if (track_type == Animation::TYPE_VALUE) {
|
|
int32_t key_count = animation->track_get_key_count(track_i);
|
|
GLTFAnimation::Channel<float> weight;
|
|
weight.interpolation = gltf_interpolation;
|
|
weight.times.resize(key_count);
|
|
for (int32_t time_i = 0; time_i < key_count; time_i++) {
|
|
weight.times.write[time_i] = animation->track_get_key_time(track_i, time_i);
|
|
}
|
|
weight.values.resize(key_count);
|
|
for (int32_t value_i = 0; value_i < key_count; value_i++) {
|
|
weight.values.write[value_i] = animation->track_get_key_value(track_i, value_i);
|
|
}
|
|
track.weight_tracks.push_back(weight);
|
|
}
|
|
gltf_animation->get_tracks()[mesh_index] = track;
|
|
}
|
|
}
|
|
}
|
|
|
|
} else if (String(orig_track_path).find(":") != -1) {
|
|
//Process skeleton
|
|
const Vector<String> node_suffix = String(orig_track_path).split(":");
|
|
const String node = node_suffix[0];
|
|
const NodePath node_path = node;
|
|
const String suffix = node_suffix[1];
|
|
Node *godot_node = ap->get_parent()->get_node_or_null(node_path);
|
|
Skeleton *skeleton = nullptr;
|
|
GLTFSkeletonIndex skeleton_gltf_i = -1;
|
|
for (GLTFSkeletonIndex skeleton_i = 0; skeleton_i < state->skeletons.size(); skeleton_i++) {
|
|
if (state->skeletons[skeleton_i]->godot_skeleton == cast_to<Skeleton>(godot_node)) {
|
|
skeleton = state->skeletons[skeleton_i]->godot_skeleton;
|
|
skeleton_gltf_i = skeleton_i;
|
|
ERR_CONTINUE(!skeleton);
|
|
Ref<GLTFSkeleton> skeleton_gltf = state->skeletons[skeleton_gltf_i];
|
|
int32_t bone = skeleton->find_bone(suffix);
|
|
ERR_CONTINUE(bone == -1);
|
|
Transform xform = skeleton->get_bone_rest(bone);
|
|
if (!skeleton_gltf->godot_bone_node.has(bone)) {
|
|
continue;
|
|
}
|
|
GLTFNodeIndex node_i = skeleton_gltf->godot_bone_node[bone];
|
|
Map<int, GLTFAnimation::Track>::Element *property_track_i = gltf_animation->get_tracks().find(node_i);
|
|
GLTFAnimation::Track track;
|
|
if (property_track_i) {
|
|
track = property_track_i->get();
|
|
}
|
|
track = _convert_animation_track(state, track, animation, xform, track_i, node_i);
|
|
gltf_animation->get_tracks()[node_i] = track;
|
|
}
|
|
}
|
|
} else if (String(orig_track_path).find(":") == -1) {
|
|
ERR_CONTINUE(!ap->get_parent());
|
|
for (int32_t node_i = 0; node_i < ap->get_parent()->get_child_count(); node_i++) {
|
|
const Node *child = ap->get_parent()->get_child(node_i);
|
|
const Node *node = child->get_node_or_null(orig_track_path);
|
|
for (Map<GLTFNodeIndex, Node *>::Element *scene_node_i = state->scene_nodes.front(); scene_node_i; scene_node_i = scene_node_i->next()) {
|
|
if (scene_node_i->get() == node) {
|
|
GLTFNodeIndex node_index = scene_node_i->key();
|
|
Map<int, GLTFAnimation::Track>::Element *node_track_i = gltf_animation->get_tracks().find(node_index);
|
|
GLTFAnimation::Track track;
|
|
if (node_track_i) {
|
|
track = node_track_i->get();
|
|
}
|
|
track = _convert_animation_track(state, track, animation, Transform(), track_i, node_index);
|
|
gltf_animation->get_tracks().insert(node_index, track);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (gltf_animation->get_tracks().size()) {
|
|
state->animations.push_back(gltf_animation);
|
|
}
|
|
}
|
|
|
|
Error GLTFDocument::parse(Ref<GLTFState> state, String p_path, bool p_read_binary) {
|
|
Error err;
|
|
FileAccessRef f = FileAccess::open(p_path, FileAccess::READ, &err);
|
|
if (!f) {
|
|
return err;
|
|
}
|
|
uint32_t magic = f->get_32();
|
|
if (magic == 0x46546C67) {
|
|
//binary file
|
|
//text file
|
|
err = _parse_glb(p_path, state);
|
|
if (err) {
|
|
return FAILED;
|
|
}
|
|
} else {
|
|
//text file
|
|
err = _parse_json(p_path, state);
|
|
if (err) {
|
|
return FAILED;
|
|
}
|
|
}
|
|
f->close();
|
|
|
|
// get file's name, use for scene name if none
|
|
state->filename = p_path.get_file().get_slice(".", 0);
|
|
|
|
ERR_FAIL_COND_V(!state->json.has("asset"), Error::FAILED);
|
|
|
|
Dictionary asset = state->json["asset"];
|
|
|
|
ERR_FAIL_COND_V(!asset.has("version"), Error::FAILED);
|
|
|
|
String version = asset["version"];
|
|
|
|
state->major_version = version.get_slice(".", 0).to_int();
|
|
state->minor_version = version.get_slice(".", 1).to_int();
|
|
|
|
/* STEP 0 PARSE SCENE */
|
|
err = _parse_scenes(state);
|
|
if (err != OK) {
|
|
return Error::FAILED;
|
|
}
|
|
|
|
/* STEP 1 PARSE NODES */
|
|
err = _parse_nodes(state);
|
|
if (err != OK) {
|
|
return Error::FAILED;
|
|
}
|
|
|
|
/* STEP 2 PARSE BUFFERS */
|
|
err = _parse_buffers(state, p_path.get_base_dir());
|
|
if (err != OK) {
|
|
return Error::FAILED;
|
|
}
|
|
|
|
/* STEP 3 PARSE BUFFER VIEWS */
|
|
err = _parse_buffer_views(state);
|
|
if (err != OK) {
|
|
return Error::FAILED;
|
|
}
|
|
|
|
/* STEP 4 PARSE ACCESSORS */
|
|
err = _parse_accessors(state);
|
|
if (err != OK) {
|
|
return Error::FAILED;
|
|
}
|
|
|
|
/* STEP 5 PARSE IMAGES */
|
|
err = _parse_images(state, p_path.get_base_dir());
|
|
if (err != OK) {
|
|
return Error::FAILED;
|
|
}
|
|
|
|
/* STEP 6 PARSE TEXTURES */
|
|
err = _parse_textures(state);
|
|
if (err != OK) {
|
|
return Error::FAILED;
|
|
}
|
|
|
|
/* STEP 7 PARSE TEXTURES */
|
|
err = _parse_materials(state);
|
|
if (err != OK) {
|
|
return Error::FAILED;
|
|
}
|
|
|
|
/* STEP 9 PARSE SKINS */
|
|
err = _parse_skins(state);
|
|
if (err != OK) {
|
|
return Error::FAILED;
|
|
}
|
|
|
|
/* STEP 10 DETERMINE SKELETONS */
|
|
err = _determine_skeletons(state);
|
|
if (err != OK) {
|
|
return Error::FAILED;
|
|
}
|
|
|
|
/* STEP 11 CREATE SKELETONS */
|
|
err = _create_skeletons(state);
|
|
if (err != OK) {
|
|
return Error::FAILED;
|
|
}
|
|
|
|
/* STEP 12 CREATE SKINS */
|
|
err = _create_skins(state);
|
|
if (err != OK) {
|
|
return Error::FAILED;
|
|
}
|
|
|
|
/* STEP 13 PARSE MESHES (we have enough info now) */
|
|
err = _parse_meshes(state);
|
|
if (err != OK) {
|
|
return Error::FAILED;
|
|
}
|
|
|
|
/* STEP 14 PARSE LIGHTS */
|
|
err = _parse_lights(state);
|
|
if (err != OK) {
|
|
return Error::FAILED;
|
|
}
|
|
|
|
/* STEP 15 PARSE CAMERAS */
|
|
err = _parse_cameras(state);
|
|
if (err != OK) {
|
|
return Error::FAILED;
|
|
}
|
|
|
|
/* STEP 16 PARSE ANIMATIONS */
|
|
err = _parse_animations(state);
|
|
if (err != OK) {
|
|
return Error::FAILED;
|
|
}
|
|
|
|
/* STEP 17 ASSIGN SCENE NAMES */
|
|
_assign_scene_names(state);
|
|
|
|
return OK;
|
|
}
|
|
|
|
Dictionary GLTFDocument::_serialize_texture_transform_uv2(Ref<SpatialMaterial> p_material) {
|
|
Dictionary extension;
|
|
Ref<SpatialMaterial> mat = p_material;
|
|
if (mat.is_valid()) {
|
|
Dictionary texture_transform;
|
|
Array offset;
|
|
offset.resize(2);
|
|
offset[0] = mat->get_uv2_offset().x;
|
|
offset[1] = mat->get_uv2_offset().y;
|
|
texture_transform["offset"] = offset;
|
|
Array scale;
|
|
scale.resize(2);
|
|
scale[0] = mat->get_uv2_scale().x;
|
|
scale[1] = mat->get_uv2_scale().y;
|
|
texture_transform["scale"] = scale;
|
|
// Godot doesn't support texture rotation
|
|
extension["KHR_texture_transform"] = texture_transform;
|
|
}
|
|
return extension;
|
|
}
|
|
|
|
Dictionary GLTFDocument::_serialize_texture_transform_uv1(Ref<SpatialMaterial> p_material) {
|
|
Dictionary extension;
|
|
if (p_material.is_valid()) {
|
|
Dictionary texture_transform;
|
|
Array offset;
|
|
offset.resize(2);
|
|
offset[0] = p_material->get_uv1_offset().x;
|
|
offset[1] = p_material->get_uv1_offset().y;
|
|
texture_transform["offset"] = offset;
|
|
Array scale;
|
|
scale.resize(2);
|
|
scale[0] = p_material->get_uv1_scale().x;
|
|
scale[1] = p_material->get_uv1_scale().y;
|
|
texture_transform["scale"] = scale;
|
|
// Godot doesn't support texture rotation
|
|
extension["KHR_texture_transform"] = texture_transform;
|
|
}
|
|
return extension;
|
|
}
|
|
|
|
Error GLTFDocument::_serialize_version(Ref<GLTFState> state) {
|
|
const String version = "2.0";
|
|
state->major_version = version.get_slice(".", 0).to_int();
|
|
state->minor_version = version.get_slice(".", 1).to_int();
|
|
Dictionary asset;
|
|
asset["version"] = version;
|
|
|
|
String hash = VERSION_HASH;
|
|
asset["generator"] = String(VERSION_FULL_NAME) + String("@") + (hash.length() == 0 ? String("unknown") : hash);
|
|
state->json["asset"] = asset;
|
|
ERR_FAIL_COND_V(!asset.has("version"), Error::FAILED);
|
|
ERR_FAIL_COND_V(!state->json.has("asset"), Error::FAILED);
|
|
return OK;
|
|
}
|
|
|
|
Error GLTFDocument::_serialize_file(Ref<GLTFState> state, const String p_path) {
|
|
Error err = FAILED;
|
|
if (p_path.to_lower().ends_with("glb")) {
|
|
err = _encode_buffer_glb(state, p_path);
|
|
ERR_FAIL_COND_V(err != OK, err);
|
|
FileAccessRef f = FileAccess::open(p_path, FileAccess::WRITE, &err);
|
|
ERR_FAIL_COND_V(!f, FAILED);
|
|
|
|
String json = JSON::print(state->json);
|
|
|
|
const uint32_t magic = 0x46546C67; // GLTF
|
|
const int32_t header_size = 12;
|
|
const int32_t chunk_header_size = 8;
|
|
|
|
for (int32_t pad_i = 0; pad_i < (chunk_header_size + json.utf8().length()) % 4; pad_i++) {
|
|
json += " ";
|
|
}
|
|
CharString cs = json.utf8();
|
|
const uint32_t text_chunk_length = cs.length();
|
|
|
|
const uint32_t text_chunk_type = 0x4E4F534A; //JSON
|
|
int32_t binary_data_length = 0;
|
|
if (state->buffers.size()) {
|
|
binary_data_length = state->buffers[0].size();
|
|
}
|
|
const int32_t binary_chunk_length = binary_data_length;
|
|
const int32_t binary_chunk_type = 0x004E4942; //BIN
|
|
|
|
f->create(FileAccess::ACCESS_RESOURCES);
|
|
f->store_32(magic);
|
|
f->store_32(state->major_version); // version
|
|
f->store_32(header_size + chunk_header_size + text_chunk_length + chunk_header_size + binary_data_length); // length
|
|
f->store_32(text_chunk_length);
|
|
f->store_32(text_chunk_type);
|
|
f->store_buffer((uint8_t *)&cs[0], cs.length());
|
|
if (binary_chunk_length) {
|
|
f->store_32(binary_chunk_length);
|
|
f->store_32(binary_chunk_type);
|
|
f->store_buffer(state->buffers[0].ptr(), binary_data_length);
|
|
}
|
|
|
|
f->close();
|
|
} else {
|
|
err = _encode_buffer_bins(state, p_path);
|
|
ERR_FAIL_COND_V(err != OK, err);
|
|
FileAccessRef f = FileAccess::open(p_path, FileAccess::WRITE, &err);
|
|
ERR_FAIL_COND_V(!f, FAILED);
|
|
|
|
f->create(FileAccess::ACCESS_RESOURCES);
|
|
String json = JSON::print(state->json);
|
|
f->store_string(json);
|
|
f->close();
|
|
}
|
|
return err;
|
|
}
|