668439d16a
Also adding a patch to easily identify and reapply them.
551 lines
17 KiB
C++
551 lines
17 KiB
C++
/*
|
|
Copyright (c) 2003-2009 Erwin Coumans http://bullet.googlecode.com
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
#ifndef BT_SCALAR_H
|
|
#define BT_SCALAR_H
|
|
|
|
#ifdef BT_MANAGED_CODE
|
|
//Aligned data types not supported in managed code
|
|
#pragma unmanaged
|
|
#endif
|
|
|
|
#include <float.h>
|
|
#include <math.h>
|
|
#include <stdlib.h> //size_t for MSVC 6.0
|
|
#include <stdint.h>
|
|
|
|
/* SVN $Revision$ on $Date$ from http://bullet.googlecode.com*/
|
|
#define BT_BULLET_VERSION 279
|
|
|
|
// -- GODOT start --
|
|
namespace VHACD {
|
|
// -- GODOT end --
|
|
|
|
inline int32_t btGetVersion()
|
|
{
|
|
return BT_BULLET_VERSION;
|
|
}
|
|
|
|
// -- GODOT start --
|
|
}; // namespace VHACD
|
|
// -- GODOT end --
|
|
|
|
#if defined(DEBUG) || defined(_DEBUG)
|
|
#define BT_DEBUG
|
|
#endif
|
|
|
|
#ifdef _WIN32
|
|
|
|
#if defined(__MINGW32__) || defined(__CYGWIN__) || (defined(_MSC_VER) && _MSC_VER < 1300)
|
|
|
|
#define SIMD_FORCE_INLINE inline
|
|
#define ATTRIBUTE_ALIGNED16(a) a
|
|
#define ATTRIBUTE_ALIGNED64(a) a
|
|
#define ATTRIBUTE_ALIGNED128(a) a
|
|
#else
|
|
//#define BT_HAS_ALIGNED_ALLOCATOR
|
|
#pragma warning(disable : 4324) // disable padding warning
|
|
// #pragma warning(disable:4530) // Disable the exception disable but used in MSCV Stl warning.
|
|
// #pragma warning(disable:4996) //Turn off warnings about deprecated C routines
|
|
// #pragma warning(disable:4786) // Disable the "debug name too long" warning
|
|
|
|
#define SIMD_FORCE_INLINE __forceinline
|
|
#define ATTRIBUTE_ALIGNED16(a) __declspec(align(16)) a
|
|
#define ATTRIBUTE_ALIGNED64(a) __declspec(align(64)) a
|
|
#define ATTRIBUTE_ALIGNED128(a) __declspec(align(128)) a
|
|
#ifdef _XBOX
|
|
#define BT_USE_VMX128
|
|
|
|
#include <ppcintrinsics.h>
|
|
#define BT_HAVE_NATIVE_FSEL
|
|
#define btFsel(a, b, c) __fsel((a), (b), (c))
|
|
#else
|
|
|
|
#if (defined(_WIN32) && (_MSC_VER) && _MSC_VER >= 1400) && (!defined(BT_USE_DOUBLE_PRECISION))
|
|
#define BT_USE_SSE
|
|
#include <emmintrin.h>
|
|
#endif
|
|
|
|
#endif //_XBOX
|
|
|
|
#endif //__MINGW32__
|
|
|
|
#include <assert.h>
|
|
#ifdef BT_DEBUG
|
|
#define btAssert assert
|
|
#else
|
|
#define btAssert(x)
|
|
#endif
|
|
//btFullAssert is optional, slows down a lot
|
|
#define btFullAssert(x)
|
|
|
|
#define btLikely(_c) _c
|
|
#define btUnlikely(_c) _c
|
|
|
|
#else
|
|
|
|
#if defined(__CELLOS_LV2__)
|
|
#define SIMD_FORCE_INLINE inline __attribute__((always_inline))
|
|
#define ATTRIBUTE_ALIGNED16(a) a __attribute__((aligned(16)))
|
|
#define ATTRIBUTE_ALIGNED64(a) a __attribute__((aligned(64)))
|
|
#define ATTRIBUTE_ALIGNED128(a) a __attribute__((aligned(128)))
|
|
#ifndef assert
|
|
#include <assert.h>
|
|
#endif
|
|
#ifdef BT_DEBUG
|
|
#ifdef __SPU__
|
|
#include <spu_printf.h>
|
|
#define printf spu_printf
|
|
#define btAssert(x) \
|
|
{ \
|
|
if (!(x)) { \
|
|
printf("Assert " __FILE__ ":%u (" #x ")\n", __LINE__); \
|
|
spu_hcmpeq(0, 0); \
|
|
} \
|
|
}
|
|
#else
|
|
#define btAssert assert
|
|
#endif
|
|
|
|
#else
|
|
#define btAssert(x)
|
|
#endif
|
|
//btFullAssert is optional, slows down a lot
|
|
#define btFullAssert(x)
|
|
|
|
#define btLikely(_c) _c
|
|
#define btUnlikely(_c) _c
|
|
|
|
#else
|
|
|
|
#ifdef USE_LIBSPE2
|
|
|
|
#define SIMD_FORCE_INLINE __inline
|
|
#define ATTRIBUTE_ALIGNED16(a) a __attribute__((aligned(16)))
|
|
#define ATTRIBUTE_ALIGNED64(a) a __attribute__((aligned(64)))
|
|
#define ATTRIBUTE_ALIGNED128(a) a __attribute__((aligned(128)))
|
|
#ifndef assert
|
|
#include <assert.h>
|
|
#endif
|
|
#ifdef BT_DEBUG
|
|
#define btAssert assert
|
|
#else
|
|
#define btAssert(x)
|
|
#endif
|
|
//btFullAssert is optional, slows down a lot
|
|
#define btFullAssert(x)
|
|
|
|
#define btLikely(_c) __builtin_expect((_c), 1)
|
|
#define btUnlikely(_c) __builtin_expect((_c), 0)
|
|
|
|
#else
|
|
//non-windows systems
|
|
|
|
#if (defined(__APPLE__) && defined(__i386__) && (!defined(BT_USE_DOUBLE_PRECISION)))
|
|
#define BT_USE_SSE
|
|
#include <emmintrin.h>
|
|
|
|
#define SIMD_FORCE_INLINE inline
|
|
///@todo: check out alignment methods for other platforms/compilers
|
|
#define ATTRIBUTE_ALIGNED16(a) a __attribute__((aligned(16)))
|
|
#define ATTRIBUTE_ALIGNED64(a) a __attribute__((aligned(64)))
|
|
#define ATTRIBUTE_ALIGNED128(a) a __attribute__((aligned(128)))
|
|
#ifndef assert
|
|
#include <assert.h>
|
|
#endif
|
|
|
|
#if defined(DEBUG) || defined(_DEBUG)
|
|
#define btAssert assert
|
|
#else
|
|
#define btAssert(x)
|
|
#endif
|
|
|
|
//btFullAssert is optional, slows down a lot
|
|
#define btFullAssert(x)
|
|
#define btLikely(_c) _c
|
|
#define btUnlikely(_c) _c
|
|
|
|
#else
|
|
|
|
#define SIMD_FORCE_INLINE inline
|
|
///@todo: check out alignment methods for other platforms/compilers
|
|
///#define ATTRIBUTE_ALIGNED16(a) a __attribute__ ((aligned (16)))
|
|
///#define ATTRIBUTE_ALIGNED64(a) a __attribute__ ((aligned (64)))
|
|
///#define ATTRIBUTE_ALIGNED128(a) a __attribute__ ((aligned (128)))
|
|
#define ATTRIBUTE_ALIGNED16(a) a
|
|
#define ATTRIBUTE_ALIGNED64(a) a
|
|
#define ATTRIBUTE_ALIGNED128(a) a
|
|
#ifndef assert
|
|
#include <assert.h>
|
|
#endif
|
|
|
|
#if defined(DEBUG) || defined(_DEBUG)
|
|
#define btAssert assert
|
|
#else
|
|
#define btAssert(x)
|
|
#endif
|
|
|
|
//btFullAssert is optional, slows down a lot
|
|
#define btFullAssert(x)
|
|
#define btLikely(_c) _c
|
|
#define btUnlikely(_c) _c
|
|
#endif //__APPLE__
|
|
|
|
#endif // LIBSPE2
|
|
|
|
#endif //__CELLOS_LV2__
|
|
#endif
|
|
|
|
// -- GODOT start --
|
|
namespace VHACD {
|
|
// -- GODOT end --
|
|
|
|
///The btScalar type abstracts floating point numbers, to easily switch between double and single floating point precision.
|
|
#if defined(BT_USE_DOUBLE_PRECISION)
|
|
typedef double btScalar;
|
|
//this number could be bigger in double precision
|
|
#define BT_LARGE_FLOAT 1e30
|
|
#else
|
|
typedef float btScalar;
|
|
//keep BT_LARGE_FLOAT*BT_LARGE_FLOAT < FLT_MAX
|
|
#define BT_LARGE_FLOAT 1e18f
|
|
#endif
|
|
|
|
#define BT_DECLARE_ALIGNED_ALLOCATOR() \
|
|
SIMD_FORCE_INLINE void* operator new(size_t sizeInBytes) { return btAlignedAlloc(sizeInBytes, 16); } \
|
|
SIMD_FORCE_INLINE void operator delete(void* ptr) { btAlignedFree(ptr); } \
|
|
SIMD_FORCE_INLINE void* operator new(size_t, void* ptr) { return ptr; } \
|
|
SIMD_FORCE_INLINE void operator delete(void*, void*) {} \
|
|
SIMD_FORCE_INLINE void* operator new[](size_t sizeInBytes) { return btAlignedAlloc(sizeInBytes, 16); } \
|
|
SIMD_FORCE_INLINE void operator delete[](void* ptr) { btAlignedFree(ptr); } \
|
|
SIMD_FORCE_INLINE void* operator new[](size_t, void* ptr) { return ptr; } \
|
|
SIMD_FORCE_INLINE void operator delete[](void*, void*) {}
|
|
|
|
#if defined(BT_USE_DOUBLE_PRECISION) || defined(BT_FORCE_DOUBLE_FUNCTIONS)
|
|
|
|
SIMD_FORCE_INLINE btScalar btSqrt(btScalar x)
|
|
{
|
|
return sqrt(x);
|
|
}
|
|
SIMD_FORCE_INLINE btScalar btFabs(btScalar x) { return fabs(x); }
|
|
SIMD_FORCE_INLINE btScalar btCos(btScalar x) { return cos(x); }
|
|
SIMD_FORCE_INLINE btScalar btSin(btScalar x) { return sin(x); }
|
|
SIMD_FORCE_INLINE btScalar btTan(btScalar x) { return tan(x); }
|
|
SIMD_FORCE_INLINE btScalar btAcos(btScalar x)
|
|
{
|
|
if (x < btScalar(-1))
|
|
x = btScalar(-1);
|
|
if (x > btScalar(1))
|
|
x = btScalar(1);
|
|
return acos(x);
|
|
}
|
|
SIMD_FORCE_INLINE btScalar btAsin(btScalar x)
|
|
{
|
|
if (x < btScalar(-1))
|
|
x = btScalar(-1);
|
|
if (x > btScalar(1))
|
|
x = btScalar(1);
|
|
return asin(x);
|
|
}
|
|
SIMD_FORCE_INLINE btScalar btAtan(btScalar x) { return atan(x); }
|
|
SIMD_FORCE_INLINE btScalar btAtan2(btScalar x, btScalar y) { return atan2(x, y); }
|
|
SIMD_FORCE_INLINE btScalar btExp(btScalar x) { return exp(x); }
|
|
SIMD_FORCE_INLINE btScalar btLog(btScalar x) { return log(x); }
|
|
SIMD_FORCE_INLINE btScalar btPow(btScalar x, btScalar y) { return pow(x, y); }
|
|
SIMD_FORCE_INLINE btScalar btFmod(btScalar x, btScalar y) { return fmod(x, y); }
|
|
|
|
#else
|
|
|
|
SIMD_FORCE_INLINE btScalar btSqrt(btScalar y)
|
|
{
|
|
#ifdef USE_APPROXIMATION
|
|
double x, z, tempf;
|
|
unsigned long* tfptr = ((unsigned long*)&tempf) + 1;
|
|
|
|
tempf = y;
|
|
*tfptr = (0xbfcdd90a - *tfptr) >> 1; /* estimate of 1/sqrt(y) */
|
|
x = tempf;
|
|
z = y * btScalar(0.5);
|
|
x = (btScalar(1.5) * x) - (x * x) * (x * z); /* iteration formula */
|
|
x = (btScalar(1.5) * x) - (x * x) * (x * z);
|
|
x = (btScalar(1.5) * x) - (x * x) * (x * z);
|
|
x = (btScalar(1.5) * x) - (x * x) * (x * z);
|
|
x = (btScalar(1.5) * x) - (x * x) * (x * z);
|
|
return x * y;
|
|
#else
|
|
return sqrtf(y);
|
|
#endif
|
|
}
|
|
SIMD_FORCE_INLINE btScalar btFabs(btScalar x) { return fabsf(x); }
|
|
SIMD_FORCE_INLINE btScalar btCos(btScalar x) { return cosf(x); }
|
|
SIMD_FORCE_INLINE btScalar btSin(btScalar x) { return sinf(x); }
|
|
SIMD_FORCE_INLINE btScalar btTan(btScalar x) { return tanf(x); }
|
|
SIMD_FORCE_INLINE btScalar btAcos(btScalar x)
|
|
{
|
|
if (x < btScalar(-1))
|
|
x = btScalar(-1);
|
|
if (x > btScalar(1))
|
|
x = btScalar(1);
|
|
return acosf(x);
|
|
}
|
|
SIMD_FORCE_INLINE btScalar btAsin(btScalar x)
|
|
{
|
|
if (x < btScalar(-1))
|
|
x = btScalar(-1);
|
|
if (x > btScalar(1))
|
|
x = btScalar(1);
|
|
return asinf(x);
|
|
}
|
|
SIMD_FORCE_INLINE btScalar btAtan(btScalar x) { return atanf(x); }
|
|
SIMD_FORCE_INLINE btScalar btAtan2(btScalar x, btScalar y) { return atan2f(x, y); }
|
|
SIMD_FORCE_INLINE btScalar btExp(btScalar x) { return expf(x); }
|
|
SIMD_FORCE_INLINE btScalar btLog(btScalar x) { return logf(x); }
|
|
SIMD_FORCE_INLINE btScalar btPow(btScalar x, btScalar y) { return powf(x, y); }
|
|
SIMD_FORCE_INLINE btScalar btFmod(btScalar x, btScalar y) { return fmodf(x, y); }
|
|
|
|
#endif
|
|
|
|
#define SIMD_2_PI btScalar(6.283185307179586232)
|
|
#define SIMD_PI (SIMD_2_PI * btScalar(0.5))
|
|
#define SIMD_HALF_PI (SIMD_2_PI * btScalar(0.25))
|
|
#define SIMD_RADS_PER_DEG (SIMD_2_PI / btScalar(360.0))
|
|
#define SIMD_DEGS_PER_RAD (btScalar(360.0) / SIMD_2_PI)
|
|
#define SIMDSQRT12 btScalar(0.7071067811865475244008443621048490)
|
|
|
|
#define btRecipSqrt(x) ((btScalar)(btScalar(1.0) / btSqrt(btScalar(x)))) /* reciprocal square root */
|
|
|
|
#ifdef BT_USE_DOUBLE_PRECISION
|
|
#define SIMD_EPSILON DBL_EPSILON
|
|
#define SIMD_INFINITY DBL_MAX
|
|
#else
|
|
#define SIMD_EPSILON FLT_EPSILON
|
|
#define SIMD_INFINITY FLT_MAX
|
|
#endif
|
|
|
|
SIMD_FORCE_INLINE btScalar btAtan2Fast(btScalar y, btScalar x)
|
|
{
|
|
btScalar coeff_1 = SIMD_PI / 4.0f;
|
|
btScalar coeff_2 = 3.0f * coeff_1;
|
|
btScalar abs_y = btFabs(y);
|
|
btScalar angle;
|
|
if (x >= 0.0f) {
|
|
btScalar r = (x - abs_y) / (x + abs_y);
|
|
angle = coeff_1 - coeff_1 * r;
|
|
}
|
|
else {
|
|
btScalar r = (x + abs_y) / (abs_y - x);
|
|
angle = coeff_2 - coeff_1 * r;
|
|
}
|
|
return (y < 0.0f) ? -angle : angle;
|
|
}
|
|
|
|
SIMD_FORCE_INLINE bool btFuzzyZero(btScalar x) { return btFabs(x) < SIMD_EPSILON; }
|
|
|
|
SIMD_FORCE_INLINE bool btEqual(btScalar a, btScalar eps)
|
|
{
|
|
return (((a) <= eps) && !((a) < -eps));
|
|
}
|
|
SIMD_FORCE_INLINE bool btGreaterEqual(btScalar a, btScalar eps)
|
|
{
|
|
return (!((a) <= eps));
|
|
}
|
|
|
|
SIMD_FORCE_INLINE int32_t btIsNegative(btScalar x)
|
|
{
|
|
return x < btScalar(0.0) ? 1 : 0;
|
|
}
|
|
|
|
SIMD_FORCE_INLINE btScalar btRadians(btScalar x) { return x * SIMD_RADS_PER_DEG; }
|
|
SIMD_FORCE_INLINE btScalar btDegrees(btScalar x) { return x * SIMD_DEGS_PER_RAD; }
|
|
|
|
#define BT_DECLARE_HANDLE(name) \
|
|
typedef struct name##__ { \
|
|
int32_t unused; \
|
|
} * name
|
|
|
|
#ifndef btFsel
|
|
SIMD_FORCE_INLINE btScalar btFsel(btScalar a, btScalar b, btScalar c)
|
|
{
|
|
return a >= 0 ? b : c;
|
|
}
|
|
#endif
|
|
#define btFsels(a, b, c) (btScalar) btFsel(a, b, c)
|
|
|
|
SIMD_FORCE_INLINE bool btMachineIsLittleEndian()
|
|
{
|
|
long int i = 1;
|
|
const char* p = (const char*)&i;
|
|
if (p[0] == 1) // Lowest address contains the least significant byte
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
///btSelect avoids branches, which makes performance much better for consoles like Playstation 3 and XBox 360
|
|
///Thanks Phil Knight. See also http://www.cellperformance.com/articles/2006/04/more_techniques_for_eliminatin_1.html
|
|
SIMD_FORCE_INLINE unsigned btSelect(unsigned condition, unsigned valueIfConditionNonZero, unsigned valueIfConditionZero)
|
|
{
|
|
// Set testNz to 0xFFFFFFFF if condition is nonzero, 0x00000000 if condition is zero
|
|
// Rely on positive value or'ed with its negative having sign bit on
|
|
// and zero value or'ed with its negative (which is still zero) having sign bit off
|
|
// Use arithmetic shift right, shifting the sign bit through all 32 bits
|
|
unsigned testNz = (unsigned)(((int32_t)condition | -(int32_t)condition) >> 31);
|
|
unsigned testEqz = ~testNz;
|
|
return ((valueIfConditionNonZero & testNz) | (valueIfConditionZero & testEqz));
|
|
}
|
|
SIMD_FORCE_INLINE int32_t btSelect(unsigned condition, int32_t valueIfConditionNonZero, int32_t valueIfConditionZero)
|
|
{
|
|
unsigned testNz = (unsigned)(((int32_t)condition | -(int32_t)condition) >> 31);
|
|
unsigned testEqz = ~testNz;
|
|
return static_cast<int32_t>((valueIfConditionNonZero & testNz) | (valueIfConditionZero & testEqz));
|
|
}
|
|
SIMD_FORCE_INLINE float btSelect(unsigned condition, float valueIfConditionNonZero, float valueIfConditionZero)
|
|
{
|
|
#ifdef BT_HAVE_NATIVE_FSEL
|
|
return (float)btFsel((btScalar)condition - btScalar(1.0f), valueIfConditionNonZero, valueIfConditionZero);
|
|
#else
|
|
return (condition != 0) ? valueIfConditionNonZero : valueIfConditionZero;
|
|
#endif
|
|
}
|
|
|
|
template <typename T>
|
|
SIMD_FORCE_INLINE void btSwap(T& a, T& b)
|
|
{
|
|
T tmp = a;
|
|
a = b;
|
|
b = tmp;
|
|
}
|
|
|
|
//PCK: endian swapping functions
|
|
SIMD_FORCE_INLINE unsigned btSwapEndian(unsigned val)
|
|
{
|
|
return (((val & 0xff000000) >> 24) | ((val & 0x00ff0000) >> 8) | ((val & 0x0000ff00) << 8) | ((val & 0x000000ff) << 24));
|
|
}
|
|
|
|
SIMD_FORCE_INLINE unsigned short btSwapEndian(unsigned short val)
|
|
{
|
|
return static_cast<unsigned short>(((val & 0xff00) >> 8) | ((val & 0x00ff) << 8));
|
|
}
|
|
|
|
SIMD_FORCE_INLINE unsigned btSwapEndian(int32_t val)
|
|
{
|
|
return btSwapEndian((unsigned)val);
|
|
}
|
|
|
|
SIMD_FORCE_INLINE unsigned short btSwapEndian(short val)
|
|
{
|
|
return btSwapEndian((unsigned short)val);
|
|
}
|
|
|
|
///btSwapFloat uses using char pointers to swap the endianness
|
|
////btSwapFloat/btSwapDouble will NOT return a float, because the machine might 'correct' invalid floating point values
|
|
///Not all values of sign/exponent/mantissa are valid floating point numbers according to IEEE 754.
|
|
///When a floating point unit is faced with an invalid value, it may actually change the value, or worse, throw an exception.
|
|
///In most systems, running user mode code, you wouldn't get an exception, but instead the hardware/os/runtime will 'fix' the number for you.
|
|
///so instead of returning a float/double, we return integer/long long integer
|
|
SIMD_FORCE_INLINE uint32_t btSwapEndianFloat(float d)
|
|
{
|
|
uint32_t a = 0;
|
|
unsigned char* dst = (unsigned char*)&a;
|
|
unsigned char* src = (unsigned char*)&d;
|
|
|
|
dst[0] = src[3];
|
|
dst[1] = src[2];
|
|
dst[2] = src[1];
|
|
dst[3] = src[0];
|
|
return a;
|
|
}
|
|
|
|
// unswap using char pointers
|
|
SIMD_FORCE_INLINE float btUnswapEndianFloat(uint32_t a)
|
|
{
|
|
float d = 0.0f;
|
|
unsigned char* src = (unsigned char*)&a;
|
|
unsigned char* dst = (unsigned char*)&d;
|
|
|
|
dst[0] = src[3];
|
|
dst[1] = src[2];
|
|
dst[2] = src[1];
|
|
dst[3] = src[0];
|
|
|
|
return d;
|
|
}
|
|
|
|
// swap using char pointers
|
|
SIMD_FORCE_INLINE void btSwapEndianDouble(double d, unsigned char* dst)
|
|
{
|
|
unsigned char* src = (unsigned char*)&d;
|
|
|
|
dst[0] = src[7];
|
|
dst[1] = src[6];
|
|
dst[2] = src[5];
|
|
dst[3] = src[4];
|
|
dst[4] = src[3];
|
|
dst[5] = src[2];
|
|
dst[6] = src[1];
|
|
dst[7] = src[0];
|
|
}
|
|
|
|
// unswap using char pointers
|
|
SIMD_FORCE_INLINE double btUnswapEndianDouble(const unsigned char* src)
|
|
{
|
|
double d = 0.0;
|
|
unsigned char* dst = (unsigned char*)&d;
|
|
|
|
dst[0] = src[7];
|
|
dst[1] = src[6];
|
|
dst[2] = src[5];
|
|
dst[3] = src[4];
|
|
dst[4] = src[3];
|
|
dst[5] = src[2];
|
|
dst[6] = src[1];
|
|
dst[7] = src[0];
|
|
|
|
return d;
|
|
}
|
|
|
|
// returns normalized value in range [-SIMD_PI, SIMD_PI]
|
|
SIMD_FORCE_INLINE btScalar btNormalizeAngle(btScalar angleInRadians)
|
|
{
|
|
angleInRadians = btFmod(angleInRadians, SIMD_2_PI);
|
|
if (angleInRadians < -SIMD_PI) {
|
|
return angleInRadians + SIMD_2_PI;
|
|
}
|
|
else if (angleInRadians > SIMD_PI) {
|
|
return angleInRadians - SIMD_2_PI;
|
|
}
|
|
else {
|
|
return angleInRadians;
|
|
}
|
|
}
|
|
|
|
///rudimentary class to provide type info
|
|
struct btTypedObject {
|
|
btTypedObject(int32_t objectType)
|
|
: m_objectType(objectType)
|
|
{
|
|
}
|
|
int32_t m_objectType;
|
|
inline int32_t getObjectType() const
|
|
{
|
|
return m_objectType;
|
|
}
|
|
};
|
|
|
|
// -- GODOT start --
|
|
}; // namespace VHACD
|
|
// -- GODOT end --
|
|
|
|
#endif //BT_SCALAR_H
|