godot/scene/resources/animation.cpp

1939 lines
44 KiB
C++

/*************************************************************************/
/* animation.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "animation.h"
#include "geometry.h"
bool Animation::_set(const StringName& p_name, const Variant& p_value) {
String name=p_name;
if (name=="length")
set_length(p_value);
else if (name=="loop")
set_loop(p_value);
else if (name=="step")
set_step(p_value);
else if (name.begins_with("tracks/")) {
int track=name.get_slice("/",1).to_int();
String what=name.get_slice("/",2);
if (tracks.size()==track && what=="type") {
String type=p_value;
if (type=="transform") {
add_track(TYPE_TRANSFORM);
} else if (type=="value") {
add_track(TYPE_VALUE);
} else if (type=="method") {
add_track(TYPE_METHOD);
} else {
return false;
}
return true;
}
ERR_FAIL_INDEX_V( track, tracks.size(),false );
if (what=="path")
track_set_path(track,p_value);
else if (what=="interp")
track_set_interpolation_type(track,InterpolationType(p_value.operator int()));
else if (what == "keys" || what=="key_values") {
if (track_get_type(track)==TYPE_TRANSFORM) {
TransformTrack *tt = static_cast<TransformTrack*>(tracks[track]);
DVector<float> values=p_value;
int vcount=values.size();
#if 0 // old compatibility hack
if ((vcount%11) == 0) {
DVector<float>::Read r = values.read();
tt->transforms.resize(vcount/11);
for(int i=0;i<(vcount/11);i++) {
TKey<TransformKey> &tk=tt->transforms[i];
const float *ofs=&r[i*11];
tk.time=ofs[0];
tk.value.loc.x=ofs[1];
tk.value.loc.y=ofs[2];
tk.value.loc.z=ofs[3];
tk.value.rot.x=ofs[4];
tk.value.rot.y=ofs[5];
tk.value.rot.z=ofs[6];
tk.value.rot.w=ofs[7];
tk.value.scale.x=ofs[8];
tk.value.scale.y=ofs[9];
tk.value.scale.z=ofs[10];
}
return true;
}
#endif
ERR_FAIL_COND_V(vcount%12,false); // shuld be multiple of 11
DVector<float>::Read r = values.read();
tt->transforms.resize(vcount/12);
for(int i=0;i<(vcount/12);i++) {
TKey<TransformKey> &tk=tt->transforms[i];
const float *ofs=&r[i*12];
tk.time=ofs[0];
tk.transition=ofs[1];
tk.value.loc.x=ofs[2];
tk.value.loc.y=ofs[3];
tk.value.loc.z=ofs[4];
tk.value.rot.x=ofs[5];
tk.value.rot.y=ofs[6];
tk.value.rot.z=ofs[7];
tk.value.rot.w=ofs[8];
tk.value.scale.x=ofs[9];
tk.value.scale.y=ofs[10];
tk.value.scale.z=ofs[11];
}
} else if (track_get_type(track)==TYPE_VALUE) {
ValueTrack *vt = static_cast<ValueTrack*>(tracks[track]);
Dictionary d = p_value;
ERR_FAIL_COND_V(!d.has("times"),false);
ERR_FAIL_COND_V(!d.has("values"),false);
if (d.has("cont"))
vt->continuous=d["cont"];
DVector<float> times=d["times"];
Array values=d["values"];
ERR_FAIL_COND_V(times.size()!=values.size(),false);
if (times.size()) {
int valcount=times.size();
DVector<float>::Read rt = times.read();
vt->values.resize(valcount);
for(int i=0;i<valcount;i++) {
vt->values[i].time=rt[i];
vt->values[i].value=values[i];
}
if (d.has("transitions")) {
DVector<float> transitions = d["transitions"];
ERR_FAIL_COND_V(transitions.size()!=valcount,false);
DVector<float>::Read rtr = transitions.read();
for(int i=0;i<valcount;i++) {
vt->values[i].transition=rtr[i];
}
}
}
return true;
} else {
while(track_get_key_count(track))
track_remove_key(track,0); //well shouldn't be set anyway
Dictionary d = p_value;
ERR_FAIL_COND_V(!d.has("times"),false);
ERR_FAIL_COND_V(!d.has("values"),false);
DVector<float> times=d["times"];
Array values=d["values"];
ERR_FAIL_COND_V(times.size()!=values.size(),false);
if (times.size()) {
int valcount=times.size();
DVector<float>::Read rt = times.read();
for(int i=0;i<valcount;i++) {
track_insert_key(track,rt[i],values[i]);
}
if (d.has("transitions")) {
DVector<float> transitions = d["transitions"];
ERR_FAIL_COND_V(transitions.size()!=valcount,false);
DVector<float>::Read rtr = transitions.read();
for(int i=0;i<valcount;i++) {
track_set_key_transition(track,i,rtr[i]);
}
}
}
}
} else
return false;
} else
return false;
return true;
}
bool Animation::_get(const StringName& p_name,Variant &r_ret) const {
String name=p_name;
if (name=="length")
r_ret= length;
else if (name=="loop")
r_ret= loop;
else if (name=="step")
r_ret= step;
else if (name.begins_with("tracks/")) {
int track=name.get_slice("/",1).to_int();
String what=name.get_slice("/",2);
ERR_FAIL_INDEX_V( track, tracks.size(), false );
if (what=="type") {
switch (track_get_type(track)) {
case TYPE_TRANSFORM: r_ret= "transform"; break;
case TYPE_VALUE: r_ret= "value";break;
case TYPE_METHOD: r_ret= "method";break;
}
return true;
} else if (what=="path")
r_ret=track_get_path(track);
else if (what=="interp")
r_ret = track_get_interpolation_type(track);
else if (what=="keys") {
if (track_get_type(track)==TYPE_TRANSFORM) {
DVector<real_t> keys;
int kk=track_get_key_count(track);
keys.resize(kk*12);
DVector<real_t>::Write w = keys.write();
int idx=0;
for(int i=0;i<track_get_key_count(track);i++) {
Vector3 loc;
Quat rot;
Vector3 scale;
transform_track_get_key(track,i,&loc,&rot,&scale);
w[idx++]=track_get_key_time(track,i);
w[idx++]=track_get_key_transition(track,i);
w[idx++]=loc.x;
w[idx++]=loc.y;
w[idx++]=loc.z;
w[idx++]=rot.x;
w[idx++]=rot.y;
w[idx++]=rot.z;
w[idx++]=rot.w;
w[idx++]=scale.x;
w[idx++]=scale.y;
w[idx++]=scale.z;
}
w = DVector<real_t>::Write();
r_ret=keys;
return true;
} else if (track_get_type(track)==TYPE_VALUE) {
const ValueTrack *vt = static_cast<const ValueTrack*>(tracks[track]);
Dictionary d;
DVector<float> key_times;
DVector<float> key_transitions;
Array key_values;
int kk=vt->values.size();
key_times.resize(kk);
key_transitions.resize(kk);
key_values.resize(kk);
DVector<float>::Write wti=key_times.write();
DVector<float>::Write wtr=key_transitions.write();
int idx=0;
const TKey<Variant> *vls = vt->values.ptr();
for(int i=0;i<kk;i++) {
wti[idx]=vls[i].time;
wtr[idx]=vls[i].transition;
key_values[idx]=vls[i].value;
idx++;
}
wti=DVector<float>::Write();
wtr=DVector<float>::Write();
d["times"]=key_times;
d["transitions"]=key_transitions;
d["values"]=key_values;
if (track_get_type(track)==TYPE_VALUE) {
d["cont"]=value_track_is_continuous(track);
}
r_ret=d;
return true;
} else {
Dictionary d;
DVector<float> key_times;
DVector<float> key_transitions;
Array key_values;
int kk=track_get_key_count(track);
key_times.resize(kk);
key_transitions.resize(kk);
key_values.resize(kk);
DVector<float>::Write wti=key_times.write();
DVector<float>::Write wtr=key_transitions.write();
int idx=0;
for(int i=0;i<track_get_key_count(track);i++) {
wti[idx]=track_get_key_time(track,i);
wtr[idx]=track_get_key_transition(track,i);
key_values[idx]=track_get_key_value(track,i);
idx++;
}
wti=DVector<float>::Write();
wtr=DVector<float>::Write();
d["times"]=key_times;
d["transitions"]=key_transitions;
d["values"]=key_values;
if (track_get_type(track)==TYPE_VALUE) {
d["cont"]=value_track_is_continuous(track);
}
r_ret=d;
return true;
}
} else
return false;
} else
return false;
return true;
}
void Animation::_get_property_list( List<PropertyInfo> *p_list) const {
p_list->push_back( PropertyInfo( Variant::REAL, "length", PROPERTY_HINT_RANGE, "0.001,99999,0.001"));
p_list->push_back( PropertyInfo( Variant::BOOL, "loop" ));
p_list->push_back( PropertyInfo( Variant::REAL, "step", PROPERTY_HINT_RANGE, "0,4096,0.001" ));
for (int i=0;i<tracks.size();i++) {
p_list->push_back( PropertyInfo( Variant::STRING, "tracks/"+itos(i)+"/type", PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR) );
p_list->push_back( PropertyInfo( Variant::NODE_PATH, "tracks/"+itos(i)+"/path", PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR) );
p_list->push_back( PropertyInfo( Variant::INT, "tracks/"+itos(i)+"/interp", PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR) );
p_list->push_back( PropertyInfo( Variant::ARRAY, "tracks/"+itos(i)+"/keys", PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR) );
}
}
int Animation::add_track(TrackType p_type,int p_at_pos) {
if (p_at_pos<0 || p_at_pos>=tracks.size())
p_at_pos=tracks.size();
switch( p_type ) {
case TYPE_TRANSFORM: {
TransformTrack *tt = memnew( TransformTrack );
tracks.insert( p_at_pos,tt );
} break;
case TYPE_VALUE: {
tracks.insert( p_at_pos,memnew( ValueTrack ) );
} break;
case TYPE_METHOD: {
tracks.insert( p_at_pos,memnew( MethodTrack ) );
} break;
default: {
ERR_PRINT("Unknown track type");
}
}
emit_changed();
return p_at_pos;
}
void Animation::remove_track(int p_track) {
ERR_FAIL_INDEX(p_track, tracks.size());
Track *t=tracks[p_track];
switch(t->type) {
case TYPE_TRANSFORM: {
TransformTrack * tt = static_cast<TransformTrack*>(t);
_clear(tt->transforms);
} break;
case TYPE_VALUE: {
ValueTrack * vt = static_cast<ValueTrack*>(t);
_clear(vt->values);
} break;
case TYPE_METHOD: {
MethodTrack * mt = static_cast<MethodTrack*>(t);
_clear(mt->methods);
} break;
}
memdelete( t );
tracks.remove(p_track);
emit_changed();
}
int Animation::get_track_count() const {
return tracks.size();
}
Animation::TrackType Animation::track_get_type(int p_track) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), TYPE_TRANSFORM );
return tracks[p_track]->type;
}
void Animation::track_set_path(int p_track,const NodePath& p_path) {
ERR_FAIL_INDEX(p_track, tracks.size());
tracks[p_track]->path=p_path;
emit_changed();
}
NodePath Animation::track_get_path(int p_track) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(),NodePath());
return tracks[p_track]->path;
}
int Animation::find_track(const NodePath& p_path) const {
for (int i=0; i<tracks.size(); i++) {
if (tracks[i]->path == p_path)
return i;
};
return -1;
};
void Animation::track_set_interpolation_type(int p_track,InterpolationType p_interp) {
ERR_FAIL_INDEX(p_track, tracks.size());
ERR_FAIL_INDEX(p_interp,3);
tracks[p_track]->interpolation=p_interp;
emit_changed();
}
Animation::InterpolationType Animation::track_get_interpolation_type(int p_track) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(),INTERPOLATION_NEAREST);
return tracks[p_track]->interpolation;
}
// transform
/*
template<class T>
int Animation::_insert_pos(float p_time, T& p_keys) {
// simple, linear time inset that should be fast enough in reality.
int idx=p_keys.size();
while(true) {
if (idx==0 || p_keys[idx-1].time < p_time) {
//condition for insertion.
p_keys.insert(idx,T());
return idx;
} else if (p_keys[idx-1].time == p_time) {
// condition for replacing.
return idx-1;
}
idx--;
}
}
*/
template<class T, class V>
int Animation::_insert(float p_time, T& p_keys, const V& p_value) {
int idx=p_keys.size();
while(true) {
if (idx==0 || p_keys[idx-1].time < p_time) {
//condition for insertion.
p_keys.insert(idx,p_value);
return idx;
} else if (p_keys[idx-1].time == p_time) {
// condition for replacing.
p_keys[idx-1]=p_value;
return idx-1;
}
idx--;
}
return -1;
}
template<class T>
void Animation::_clear(T& p_keys) {
p_keys.clear();
}
Error Animation::transform_track_get_key(int p_track, int p_key, Vector3* r_loc, Quat* r_rot, Vector3* r_scale) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(),ERR_INVALID_PARAMETER);
Track *t=tracks[p_track];
TransformTrack * tt = static_cast<TransformTrack*>(t);
ERR_FAIL_COND_V(t->type!=TYPE_TRANSFORM,ERR_INVALID_PARAMETER);
ERR_FAIL_INDEX_V(p_key,tt->transforms.size(),ERR_INVALID_PARAMETER);
if (r_loc)
*r_loc=tt->transforms[p_key].value.loc;
if (r_rot)
*r_rot=tt->transforms[p_key].value.rot;
if (r_scale)
*r_scale=tt->transforms[p_key].value.scale;
return OK;
}
int Animation::transform_track_insert_key(int p_track, float p_time, const Vector3 p_loc, const Quat& p_rot, const Vector3& p_scale) {
ERR_FAIL_INDEX_V(p_track, tracks.size(),-1);
Track *t=tracks[p_track];
ERR_FAIL_COND_V(t->type!=TYPE_TRANSFORM,-1);
TransformTrack * tt = static_cast<TransformTrack*>(t);
TKey<TransformKey> tkey;
tkey.time=p_time;
tkey.value.loc=p_loc;
tkey.value.rot=p_rot;
tkey.value.scale=p_scale;
int ret = _insert( p_time, tt->transforms, tkey );
emit_changed();
return ret;
}
void Animation::track_remove_key_at_pos(int p_track, float p_pos) {
int idx = track_find_key(p_track,p_pos,true);
ERR_FAIL_COND(idx < 0);
track_remove_key(p_track,idx);
}
void Animation::track_remove_key(int p_track, int p_idx) {
ERR_FAIL_INDEX(p_track,tracks.size());
Track *t=tracks[p_track];
switch(t->type) {
case TYPE_TRANSFORM: {
TransformTrack * tt = static_cast<TransformTrack*>(t);
ERR_FAIL_INDEX(p_idx,tt->transforms.size());
tt->transforms.remove(p_idx);
} break;
case TYPE_VALUE: {
ValueTrack * vt = static_cast<ValueTrack*>(t);
ERR_FAIL_INDEX(p_idx,vt->values.size());
vt->values.remove(p_idx);
} break;
case TYPE_METHOD: {
MethodTrack * mt = static_cast<MethodTrack*>(t);
ERR_FAIL_INDEX(p_idx,mt->methods.size());
mt->methods.remove(p_idx);
} break;
}
emit_changed();
}
int Animation::track_find_key(int p_track, float p_time, bool p_exact) const {
ERR_FAIL_INDEX_V(p_track,tracks.size(),-1);
Track *t=tracks[p_track];
switch(t->type) {
case TYPE_TRANSFORM: {
TransformTrack * tt = static_cast<TransformTrack*>(t);
int k = _find(tt->transforms,p_time);
if (k<0 || k>=tt->transforms.size())
return -1;
if (tt->transforms[k].time!=p_time && p_exact)
return -1;
return k;
} break;
case TYPE_VALUE: {
ValueTrack * vt = static_cast<ValueTrack*>(t);
int k = _find(vt->values,p_time);
if (k<0 || k>=vt->values.size())
return -1;
if (vt->values[k].time!=p_time && p_exact)
return -1;
return k;
} break;
case TYPE_METHOD: {
MethodTrack * mt = static_cast<MethodTrack*>(t);
int k = _find(mt->methods,p_time);
if (k<0 || k>=mt->methods.size())
return -1;
if (mt->methods[k].time!=p_time && p_exact)
return -1;
return k;
} break;
}
return -1;
}
void Animation::track_insert_key(int p_track, float p_time, const Variant& p_value,float p_transition) {
ERR_FAIL_INDEX(p_track, tracks.size());
Track *t=tracks[p_track];
switch(t->type) {
case TYPE_TRANSFORM: {
Dictionary d = p_value;
Vector3 loc;
if (d.has("loc"))
loc=d["loc"];
Quat rot;
if (d.has("rot"))
rot=d["rot"];
Vector3 scale;
if (d.has("scale"))
scale=d["scale"];
int idx = transform_track_insert_key(p_track,p_time,loc,rot,scale);
track_set_key_transition(p_track,idx,p_transition);
} break;
case TYPE_VALUE: {
ValueTrack * vt = static_cast<ValueTrack*>(t);
TKey<Variant> k;
k.time=p_time;
k.transition=p_transition;
k.value=p_value;
_insert( p_time, vt->values, k );
} break;
case TYPE_METHOD: {
MethodTrack * mt = static_cast<MethodTrack*>(t);
ERR_FAIL_COND( p_value.get_type() != Variant::DICTIONARY );
Dictionary d=p_value;
ERR_FAIL_COND(!d.has("method") || d["method"].get_type()!=Variant::STRING);
ERR_FAIL_COND(!d.has("args") || !d["args"].is_array());
MethodKey k;
k.time=p_time;
k.transition=p_transition;
k.method=d["method"];
k.params=d["args"];
_insert( p_time, mt->methods, k );
} break;
}
emit_changed();
}
int Animation::track_get_key_count(int p_track) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(),-1);
Track *t=tracks[p_track];
switch(t->type) {
case TYPE_TRANSFORM: {
TransformTrack * tt = static_cast<TransformTrack*>(t);
return tt->transforms.size();
} break;
case TYPE_VALUE: {
ValueTrack * vt = static_cast<ValueTrack*>(t);
return vt->values.size();
} break;
case TYPE_METHOD: {
MethodTrack * mt = static_cast<MethodTrack*>(t);
return mt->methods.size();
} break;
}
ERR_FAIL_V(-1);
}
Variant Animation::track_get_key_value(int p_track, int p_key_idx) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), Variant());
Track *t=tracks[p_track];
switch(t->type) {
case TYPE_TRANSFORM: {
TransformTrack * tt = static_cast<TransformTrack*>(t);
ERR_FAIL_INDEX_V( p_key_idx, tt->transforms.size(), Variant() );
Dictionary d;
d["loc"]=tt->transforms[p_key_idx].value.loc;
d["rot"]=tt->transforms[p_key_idx].value.rot;
d["scale"]=tt->transforms[p_key_idx].value.scale;
return d;
} break;
case TYPE_VALUE: {
ValueTrack * vt = static_cast<ValueTrack*>(t);
ERR_FAIL_INDEX_V( p_key_idx, vt->values.size(), Variant() );
return vt->values[p_key_idx].value;
} break;
case TYPE_METHOD: {
MethodTrack * mt = static_cast<MethodTrack*>(t);
ERR_FAIL_INDEX_V( p_key_idx, mt->methods.size(), Variant() );
Dictionary d;
d["method"]=mt->methods[p_key_idx].method;
d["args"]=mt->methods[p_key_idx].params;
return d;
} break;
}
ERR_FAIL_V(Variant());
}
float Animation::track_get_key_time(int p_track, int p_key_idx) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), -1);
Track *t=tracks[p_track];
switch(t->type) {
case TYPE_TRANSFORM: {
TransformTrack * tt = static_cast<TransformTrack*>(t);
ERR_FAIL_INDEX_V( p_key_idx, tt->transforms.size(), -1 );
return tt->transforms[p_key_idx].time;
} break;
case TYPE_VALUE: {
ValueTrack * vt = static_cast<ValueTrack*>(t);
ERR_FAIL_INDEX_V( p_key_idx, vt->values.size(), -1 );
return vt->values[p_key_idx].time;
} break;
case TYPE_METHOD: {
MethodTrack * mt = static_cast<MethodTrack*>(t);
ERR_FAIL_INDEX_V( p_key_idx, mt->methods.size(), -1 );
return mt->methods[p_key_idx].time;
} break;
}
ERR_FAIL_V(-1);
}
float Animation::track_get_key_transition(int p_track, int p_key_idx) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), -1);
Track *t=tracks[p_track];
switch(t->type) {
case TYPE_TRANSFORM: {
TransformTrack * tt = static_cast<TransformTrack*>(t);
ERR_FAIL_INDEX_V( p_key_idx, tt->transforms.size(), -1 );
return tt->transforms[p_key_idx].transition;
} break;
case TYPE_VALUE: {
ValueTrack * vt = static_cast<ValueTrack*>(t);
ERR_FAIL_INDEX_V( p_key_idx, vt->values.size(), -1 );
return vt->values[p_key_idx].transition;
} break;
case TYPE_METHOD: {
MethodTrack * mt = static_cast<MethodTrack*>(t);
ERR_FAIL_INDEX_V( p_key_idx, mt->methods.size(), -1 );
return mt->methods[p_key_idx].transition;
} break;
}
ERR_FAIL_V(0);
}
void Animation::track_set_key_value(int p_track, int p_key_idx,const Variant& p_value) {
ERR_FAIL_INDEX(p_track, tracks.size());
Track *t=tracks[p_track];
switch(t->type) {
case TYPE_TRANSFORM: {
TransformTrack * tt = static_cast<TransformTrack*>(t);
ERR_FAIL_INDEX( p_key_idx, tt->transforms.size());
Dictionary d = p_value;
if (d.has("loc"))
tt->transforms[p_key_idx].value.loc=d["loc"];
if (d.has("rot"))
tt->transforms[p_key_idx].value.rot=d["rot"];
if (d.has("scale"))
tt->transforms[p_key_idx].value.scale=d["scale"];
} break;
case TYPE_VALUE: {
ValueTrack * vt = static_cast<ValueTrack*>(t);
ERR_FAIL_INDEX( p_key_idx, vt->values.size());
vt->values[p_key_idx].value=p_value;
} break;
case TYPE_METHOD: {
MethodTrack * mt = static_cast<MethodTrack*>(t);
ERR_FAIL_INDEX( p_key_idx, mt->methods.size());
Dictionary d = p_value;
if (d.has("method"))
mt->methods[p_key_idx].method=d["method"];
if (d.has("args"))
mt->methods[p_key_idx].params=d["args"];
} break;
}
}
void Animation::track_set_key_transition(int p_track, int p_key_idx,float p_transition) {
ERR_FAIL_INDEX(p_track, tracks.size());
Track *t=tracks[p_track];
switch(t->type) {
case TYPE_TRANSFORM: {
TransformTrack * tt = static_cast<TransformTrack*>(t);
ERR_FAIL_INDEX( p_key_idx, tt->transforms.size());
tt->transforms[p_key_idx].transition=p_transition;
} break;
case TYPE_VALUE: {
ValueTrack * vt = static_cast<ValueTrack*>(t);
ERR_FAIL_INDEX( p_key_idx, vt->values.size());
vt->values[p_key_idx].transition=p_transition;
} break;
case TYPE_METHOD: {
MethodTrack * mt = static_cast<MethodTrack*>(t);
ERR_FAIL_INDEX( p_key_idx, mt->methods.size());
mt->methods[p_key_idx].transition=p_transition;
} break;
}
}
template<class K>
int Animation::_find( const Vector<K>& p_keys, float p_time) const {
int len=p_keys.size();
if (len==0)
return -2;
int low = 0;
int high = len -1;
int middle;
const K* keys =&p_keys[0];
while( low <= high ) {
middle = ( low + high ) / 2;
if( p_time == keys[ middle ].time ) { //match
return middle;
} else if( p_time < keys[middle].time )
high = middle - 1; //search low end of array
else
low = middle + 1; //search high end of array
}
if (keys[middle].time>p_time)
middle--;
return middle;
}
Animation::TransformKey Animation::_interpolate( const Animation::TransformKey& p_a, const Animation::TransformKey& p_b, float p_c) const {
TransformKey ret;
ret.loc=_interpolate(p_a.loc,p_b.loc,p_c);
ret.rot=_interpolate(p_a.rot,p_b.rot,p_c);
ret.scale=_interpolate(p_a.scale,p_b.scale,p_c);
return ret;
}
Vector3 Animation::_interpolate( const Vector3& p_a, const Vector3& p_b, float p_c) const {
return p_a.linear_interpolate(p_b,p_c);
}
Quat Animation::_interpolate( const Quat& p_a, const Quat& p_b, float p_c) const {
return p_a.slerp(p_b,p_c);
}
Variant Animation::_interpolate( const Variant& p_a, const Variant& p_b, float p_c) const {
Variant dst;
Variant::interpolate(p_a,p_b,p_c,dst);
return dst;
}
float Animation::_interpolate( const float& p_a, const float& p_b, float p_c) const {
return p_a*(1.0-p_c) + p_b*p_c;
}
Animation::TransformKey Animation::_cubic_interpolate( const Animation::TransformKey& p_pre_a, const Animation::TransformKey& p_a, const Animation::TransformKey& p_b, const Animation::TransformKey& p_post_b,float p_c) const {
Animation::TransformKey tk;
tk.loc = p_a.loc.cubic_interpolate(p_b.loc,p_pre_a.loc,p_post_b.loc,p_c);
tk.scale = p_a.scale.cubic_interpolate(p_b.scale,p_pre_a.scale,p_post_b.scale,p_c);
tk.rot = p_a.rot.cubic_slerp(p_b.rot,p_pre_a.rot,p_post_b.rot,p_c);
return tk;
}
Vector3 Animation::_cubic_interpolate( const Vector3& p_pre_a,const Vector3& p_a, const Vector3& p_b,const Vector3& p_post_b, float p_c) const {
return p_a.cubic_interpolate(p_b,p_pre_a,p_post_b,p_c);
}
Quat Animation::_cubic_interpolate( const Quat& p_pre_a,const Quat& p_a, const Quat& p_b,const Quat& p_post_b, float p_c) const {
return p_a.cubic_slerp(p_b,p_pre_a,p_post_b,p_c);
}
Variant Animation::_cubic_interpolate( const Variant& p_pre_a,const Variant& p_a, const Variant& p_b, const Variant& p_post_b,float p_c) const {
Variant::Type type_a=p_a.get_type();
Variant::Type type_b=p_b.get_type();
Variant::Type type_pa=p_pre_a.get_type();
Variant::Type type_pb=p_post_b.get_type();
//make int and real play along
uint32_t vformat=1<<type_a;
vformat|=1<<type_b;
vformat|=1<<type_pa;
vformat|=1<<type_pb;
if (vformat==((1<<Variant::INT)|(1<<Variant::REAL)) || vformat==(1<<Variant::REAL)) {
//mix of real and int
real_t p0=p_pre_a;
real_t p1=p_a;
real_t p2=p_b;
real_t p3=p_post_b;
float t = p_c;
float t2 = t * t;
float t3 = t2 * t;
return
0.5f * ( ( p1 * 2.0f) +
( -p0 + p2 ) * t +
( 2.0f * p0 - 5.0f * p1 + 4 * p2 - p3 ) * t2 +
( -p0 + 3.0f * p1 - 3.0f * p2 + p3 ) * t3 );
} else if ((vformat & (vformat - 1))) {
return p_a; //can't interpolate, mix of types
}
switch(type_a) {
case Variant::VECTOR2: {
Vector2 a=p_a;
Vector2 b=p_b;
Vector2 pa=p_pre_a;
Vector2 pb=p_post_b;
return a.cubic_interpolate(b,pa,pb,p_c);
} break;
case Variant::RECT2: {
Rect2 a=p_a;
Rect2 b=p_b;
Rect2 pa=p_pre_a;
Rect2 pb=p_post_b;
return Rect2(
a.pos.cubic_interpolate(b.pos,pa.pos,pb.pos,p_c),
a.size.cubic_interpolate(b.size,pa.size,pb.size,p_c)
);
} break;
case Variant::VECTOR3: {
Vector3 a=p_a;
Vector3 b=p_b;
Vector3 pa=p_pre_a;
Vector3 pb=p_post_b;
return a.cubic_interpolate(b,pa,pb,p_c);
} break;
case Variant::QUAT: {
Quat a=p_a;
Quat b=p_b;
Quat pa=p_pre_a;
Quat pb=p_post_b;
return a.cubic_slerp(b,pa,pb,p_c);
} break;
case Variant::_AABB: {
AABB a=p_a;
AABB b=p_b;
AABB pa=p_pre_a;
AABB pb=p_post_b;
return AABB(
a.pos.cubic_interpolate(b.pos,pa.pos,pb.pos,p_c),
a.size.cubic_interpolate(b.size,pa.size,pb.size,p_c)
);
} break;
default: {
return _interpolate(p_a,p_b,p_c);
}
}
return Variant();
}
float Animation::_cubic_interpolate( const float& p_pre_a,const float& p_a, const float& p_b, const float& p_post_b, float p_c) const {
return _interpolate(p_a,p_b,p_c);
}
template<class T>
T Animation::_interpolate( const Vector< TKey<T> >& p_keys, float p_time, InterpolationType p_interp, bool *p_ok) const {
int len=_find( p_keys, length )+1; // try to find last key (there may be more past the end)
if (len<=0) {
// (-1 or -2 returned originally) (plus one above)
// meaning no keys, or only key time is larger than length
if (p_ok)
*p_ok=false;
return T();
} else if (len==1) { // one key found (0+1), return it
if (p_ok)
*p_ok=true;
return p_keys[0].value;
}
int idx=_find(p_keys, p_time);
ERR_FAIL_COND_V( idx==-2, T());
if (p_ok)
*p_ok=true;
int next;
float c=0;
// prepare for all cases of interpolation
if (loop) {
// loop
if (idx>=0) {
if ((idx+1) < len) {
next=idx+1;
float delta=p_keys[next].time - p_keys[idx].time;
float from=p_time-p_keys[idx].time;
if (Math::absf(delta)>CMP_EPSILON)
c=from/delta;
else
c=0;
} else {
next=0;
float delta=(length - p_keys[idx].time) + p_keys[next].time;
float from=p_time-p_keys[idx].time;
if (Math::absf(delta)>CMP_EPSILON)
c=from/delta;
else
c=0;
}
} else {
// on loop, behind first key
idx=len-1;
next=0;
float endtime=(length - p_keys[idx].time);
if (endtime<0) // may be keys past the end
endtime=0;
float delta=endtime + p_keys[next].time;
float from=endtime+p_time;
if (Math::absf(delta)>CMP_EPSILON)
c=from/delta;
else
c=0;
}
} else { // no loop
if (idx>=0) {
if ((idx+1) < len) {
next=idx+1;
float delta=p_keys[next].time - p_keys[idx].time;
float from=p_time - p_keys[idx].time;
if (Math::absf(delta)>CMP_EPSILON)
c=from/delta;
else
c=0;
} else {
next=idx;
}
} else if (idx<0) {
idx=next=0;
}
}
float tr = p_keys[idx].transition;
if (tr==0 || idx==next) {
// don't interpolate if not needed
return p_keys[idx].value;
}
if (tr!=1.0) {
c = Math::ease(c,tr);
}
switch(p_interp) {
case INTERPOLATION_NEAREST: {
return p_keys[idx].value;
} break;
case INTERPOLATION_LINEAR: {
return _interpolate(p_keys[idx].value, p_keys[next].value, c);
} break;
case INTERPOLATION_CUBIC: {
int pre = idx-1;
if (pre<0)
pre=0;
int post = next+1;
if (post>=len)
post=next;
return _cubic_interpolate(p_keys[pre].value,p_keys[idx].value, p_keys[next].value,p_keys[post].value, c);
} break;
default: return p_keys[idx].value;
}
// do a barrel roll
}
Error Animation::transform_track_interpolate(int p_track, float p_time, Vector3 * r_loc, Quat *r_rot, Vector3 *r_scale) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(),ERR_INVALID_PARAMETER);
Track *t=tracks[p_track];
ERR_FAIL_COND_V(t->type!=TYPE_TRANSFORM,ERR_INVALID_PARAMETER);
TransformTrack * tt = static_cast<TransformTrack*>(t);
bool ok;
TransformKey tk = _interpolate( tt->transforms, p_time, tt->interpolation, &ok );
if (!ok) // ??
return ERR_UNAVAILABLE;
if (r_loc)
*r_loc=tk.loc;
if (r_rot)
*r_rot=tk.rot;
if (r_scale)
*r_scale=tk.scale;
return OK;
}
Variant Animation::value_track_interpolate(int p_track, float p_time) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(),0);
Track *t=tracks[p_track];
ERR_FAIL_COND_V(t->type!=TYPE_VALUE, Variant());
ValueTrack * vt = static_cast<ValueTrack*>(t);
bool ok;
Variant res = _interpolate( vt->values, p_time, vt->interpolation, &ok );
if (ok) {
return res;
}
return Variant();
}
void Animation::_value_track_get_key_indices_in_range(const ValueTrack * vt, float from_time, float to_time,List<int> *p_indices) const {
if (from_time!=length && to_time==length)
to_time=length*1.01; //include a little more if at the end
int to=_find( vt->values, to_time);
// can't really send the events == time, will be sent in the next frame.
// if event>=len then it will probably never be requested by the anim player.
if (to>=0 && vt->values[to].time>=to_time)
to--;
if (to<0)
return; // not bother
int from=_find( vt->values, from_time);
// position in the right first event.+
if (from<0 || vt->values[from].time<from_time)
from++;
int max=vt->values.size();
for (int i=from;i<=to;i++) {
ERR_CONTINUE( i<0 || i>=max); // shouldn't happen
p_indices->push_back(i);
}
}
void Animation::value_track_get_key_indices(int p_track, float p_time, float p_delta,List<int> *p_indices) const {
ERR_FAIL_INDEX(p_track, tracks.size());
Track *t=tracks[p_track];
ERR_FAIL_COND( t->type != TYPE_VALUE );
ValueTrack * vt = static_cast<ValueTrack*>(t);
float from_time=p_time-p_delta;
float to_time=p_time;
if (from_time>to_time)
SWAP(from_time,to_time);
if (loop) {
from_time=Math::fposmod(from_time,length);
to_time=Math::fposmod(to_time,length);
if (from_time>to_time) {
// handle loop by splitting
_value_track_get_key_indices_in_range(vt,length-from_time,length,p_indices);
_value_track_get_key_indices_in_range(vt,0,to_time,p_indices);
return;
}
} else {
if (from_time<0)
from_time=0;
if (from_time>length)
from_time=length;
if (to_time<0)
to_time=0;
if (to_time>length)
to_time=length;
}
_value_track_get_key_indices_in_range(vt,from_time,to_time,p_indices);
}
void Animation::value_track_set_continuous(int p_track, bool p_continuous) {
ERR_FAIL_INDEX(p_track, tracks.size());
Track *t=tracks[p_track];
ERR_FAIL_COND( t->type != TYPE_VALUE );
ValueTrack * vt = static_cast<ValueTrack*>(t);
vt->continuous=p_continuous;
}
bool Animation::value_track_is_continuous(int p_track) const{
ERR_FAIL_INDEX_V(p_track, tracks.size(), false);
Track *t=tracks[p_track];
ERR_FAIL_COND_V( t->type != TYPE_VALUE, false );
ValueTrack * vt = static_cast<ValueTrack*>(t);
return vt->continuous;
}
void Animation::_method_track_get_key_indices_in_range(const MethodTrack * mt, float from_time, float to_time,List<int> *p_indices) const {
if (from_time!=length && to_time==length)
to_time=length*1.01; //include a little more if at the end
int to=_find( mt->methods, to_time);
// can't really send the events == time, will be sent in the next frame.
// if event>=len then it will probably never be requested by the anim player.
if (to>=0 && mt->methods[to].time>=to_time)
to--;
if (to<0)
return; // not bother
int from=_find( mt->methods, from_time);
// position in the right first event.+
if (from<0 || mt->methods[from].time<from_time)
from++;
int max=mt->methods.size();
for (int i=from;i<=to;i++) {
ERR_CONTINUE( i<0 || i>=max); // shouldn't happen
p_indices->push_back(i);
}
}
void Animation::method_track_get_key_indices(int p_track, float p_time, float p_delta,List<int> *p_indices) const {
ERR_FAIL_INDEX(p_track, tracks.size());
Track *t=tracks[p_track];
ERR_FAIL_COND( t->type != TYPE_METHOD );
MethodTrack * mt = static_cast<MethodTrack*>(t);
float from_time=p_time-p_delta;
float to_time=p_time;
if (from_time>to_time)
SWAP(from_time,to_time);
if (loop) {
if (from_time > length || from_time < 0)
from_time=Math::fposmod(from_time,length);
if (to_time > length || to_time < 0)
to_time=Math::fposmod(to_time,length);
if (from_time>to_time) {
// handle loop by splitting
_method_track_get_key_indices_in_range(mt,from_time,length,p_indices);
_method_track_get_key_indices_in_range(mt,0,to_time,p_indices);
return;
}
} else {
if (from_time<0)
from_time=0;
if (from_time>length)
from_time=length;
if (to_time<0)
to_time=0;
if (to_time>length)
to_time=length;
}
_method_track_get_key_indices_in_range(mt,from_time,to_time,p_indices);
}
Vector<Variant> Animation::method_track_get_params(int p_track,int p_key_idx) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(),Vector<Variant>());
Track *t=tracks[p_track];
ERR_FAIL_COND_V( t->type != TYPE_METHOD, Vector<Variant>() );
MethodTrack * pm = static_cast<MethodTrack*>(t);
ERR_FAIL_INDEX_V( p_key_idx, pm->methods.size(), Vector<Variant>() );
const MethodKey& mk=pm->methods[p_key_idx];
return mk.params;
}
StringName Animation::method_track_get_name(int p_track,int p_key_idx) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(),StringName());
Track *t=tracks[p_track];
ERR_FAIL_COND_V( t->type != TYPE_METHOD, StringName() );
MethodTrack * pm = static_cast<MethodTrack*>(t);
ERR_FAIL_INDEX_V( p_key_idx, pm->methods.size(), StringName() );
return pm->methods[ p_key_idx ].method;
}
void Animation::set_length(float p_length) {
ERR_FAIL_COND( length<0 );
length=p_length;
emit_changed();
}
float Animation::get_length() const {
return length;
}
void Animation::set_loop(bool p_enabled) {
loop=p_enabled;
emit_changed();
}
bool Animation::has_loop() const {
return loop;
}
void Animation::track_move_up(int p_track) {
if (p_track>=0 && p_track<(tracks.size()-1)) {
SWAP( tracks[p_track], tracks[p_track+1] );
}
emit_changed();
}
void Animation::track_move_down(int p_track) {
if (p_track>0 && p_track<tracks.size()) {
SWAP( tracks[p_track], tracks[p_track-1] );
}
emit_changed();
}
void Animation::set_step(float p_step) {
step=p_step;
emit_changed();
}
float Animation::get_step() const{
return step;
}
void Animation::_bind_methods() {
ObjectTypeDB::bind_method(_MD("add_track","type","at_pos"),&Animation::add_track,DEFVAL(-1));
ObjectTypeDB::bind_method(_MD("remove_track","idx"),&Animation::remove_track);
ObjectTypeDB::bind_method(_MD("get_track_count"),&Animation::get_track_count);
ObjectTypeDB::bind_method(_MD("track_get_type","idx"),&Animation::track_get_type);
ObjectTypeDB::bind_method(_MD("track_get_path","idx"),&Animation::track_get_path);
ObjectTypeDB::bind_method(_MD("track_set_path","idx","path"),&Animation::track_set_path);
ObjectTypeDB::bind_method(_MD("find_track","path"),&Animation::find_track);
ObjectTypeDB::bind_method(_MD("track_move_up","idx"),&Animation::track_move_up);
ObjectTypeDB::bind_method(_MD("track_move_down","idx"),&Animation::track_move_down);
ObjectTypeDB::bind_method(_MD("transform_track_insert_key","idx","time","loc","rot","scale"),&Animation::transform_track_insert_key);
ObjectTypeDB::bind_method(_MD("track_insert_key","idx","time","key","transition"),&Animation::track_insert_key,DEFVAL(1));
ObjectTypeDB::bind_method(_MD("track_remove_key","idx","key_idx"),&Animation::track_remove_key);
ObjectTypeDB::bind_method(_MD("track_remove_key_at_pos","idx","pos"),&Animation::track_remove_key_at_pos);
ObjectTypeDB::bind_method(_MD("track_set_key_value","idx","key","value"),&Animation::track_set_key_value);
ObjectTypeDB::bind_method(_MD("track_set_key_transition","idx","key_idx","transition"),&Animation::track_set_key_transition);
ObjectTypeDB::bind_method(_MD("track_get_key_transition","idx","key_idx"),&Animation::track_get_key_transition);
ObjectTypeDB::bind_method(_MD("track_get_key_count","idx"),&Animation::track_get_key_count);
ObjectTypeDB::bind_method(_MD("track_get_key_value","idx","key_idx"),&Animation::track_get_key_value);
ObjectTypeDB::bind_method(_MD("track_get_key_time","idx","key_idx"),&Animation::track_get_key_time);
ObjectTypeDB::bind_method(_MD("track_find_key","idx","time","exact"),&Animation::track_find_key,DEFVAL(false));
ObjectTypeDB::bind_method(_MD("track_set_interpolation_type","idx","interpolation"),&Animation::track_set_interpolation_type);
ObjectTypeDB::bind_method(_MD("track_get_interpolation_type","idx"),&Animation::track_get_interpolation_type);
ObjectTypeDB::bind_method(_MD("transform_track_interpolate","idx","time_sec"),&Animation::_transform_track_interpolate);
ObjectTypeDB::bind_method(_MD("value_track_set_continuous","idx","continuous"),&Animation::value_track_set_continuous);
ObjectTypeDB::bind_method(_MD("value_track_is_continuous","idx"),&Animation::value_track_is_continuous);
ObjectTypeDB::bind_method(_MD("value_track_get_key_indices","idx","time_sec","delta"),&Animation::_value_track_get_key_indices);
ObjectTypeDB::bind_method(_MD("method_track_get_key_indices","idx","time_sec","delta"),&Animation::_method_track_get_key_indices);
ObjectTypeDB::bind_method(_MD("method_track_get_name","idx","key_idx"),&Animation::method_track_get_name);
ObjectTypeDB::bind_method(_MD("method_track_get_params","idx","key_idx"),&Animation::method_track_get_params);
ObjectTypeDB::bind_method(_MD("set_length","time_sec"),&Animation::set_length);
ObjectTypeDB::bind_method(_MD("get_length"),&Animation::get_length);
ObjectTypeDB::bind_method(_MD("set_loop","enabled"),&Animation::set_loop);
ObjectTypeDB::bind_method(_MD("has_loop"),&Animation::has_loop);
ObjectTypeDB::bind_method(_MD("set_step","size_sec"),&Animation::set_step);
ObjectTypeDB::bind_method(_MD("get_step"),&Animation::get_step);
ObjectTypeDB::bind_method(_MD("clear"),&Animation::clear);
BIND_CONSTANT( TYPE_VALUE );
BIND_CONSTANT( TYPE_TRANSFORM );
BIND_CONSTANT( TYPE_METHOD );
BIND_CONSTANT( INTERPOLATION_NEAREST );
BIND_CONSTANT( INTERPOLATION_LINEAR );
BIND_CONSTANT( INTERPOLATION_CUBIC );
}
void Animation::clear() {
for(int i=0;i<tracks.size();i++)
memdelete( tracks[i] );
tracks.clear();
loop=false;
length=1;
}
void Animation::_transform_track_optimize(int p_idx,float p_allowed_err) {
ERR_FAIL_INDEX(p_idx,tracks.size());
ERR_FAIL_COND(tracks[p_idx]->type!=TYPE_TRANSFORM);
TransformTrack *tt= static_cast<TransformTrack*>(tracks[p_idx]);
for(int i=1;i<tt->transforms.size()-1;i++) {
TKey<TransformKey> &t0 = tt->transforms[i-1];
TKey<TransformKey> &t1 = tt->transforms[i];
TKey<TransformKey> &t2 = tt->transforms[i+1];
real_t c = (t1.time-t0.time)/(t2.time-t0.time);
real_t t[3]={-1,-1,-1};
{ //translation
const Vector3 &v0=t0.value.loc;
const Vector3 &v1=t1.value.loc;
const Vector3 &v2=t2.value.loc;
if (v0.distance_to(v2)<CMP_EPSILON) {
//0 and 2 are close, let's see if 1 is close
if (v0.distance_to(v1)>CMP_EPSILON) {
//not close, not optimizable
continue;
}
} else {
Vector3 pd = (v2-v0);
float d0 = pd.dot(v0);
float d1 = pd.dot(v1);
float d2 = pd.dot(v2);
if (d1<d0 || d1>d2) {
continue; //beyond segment range
}
Vector3 s[2]={ v0, v2 };
real_t d =Geometry::get_closest_point_to_segment(v1,s).distance_to(v1);
if (d>pd.length()*p_allowed_err) {
continue; //beyond allowed error for colinearity
}
t[0] = (d1-d0)/(d2-d0);
}
}
{ //rotation
const Quat &q0=t0.value.rot;
const Quat &q1=t1.value.rot;
const Quat &q2=t2.value.rot;
//localize both to rotation from q0
if ((q0-q2).length() < CMP_EPSILON) {
if ((q0-q1).length() > CMP_EPSILON)
continue;
} else {
Quat r02 = (q0.inverse() * q2).normalized();
Quat r01 = (q0.inverse() * q1).normalized();
Vector3 v02,v01;
real_t a02,a01;
r02.get_axis_and_angle(v02,a02);
r01.get_axis_and_angle(v01,a01);
if (v01.dot(v02)<0) {
//make sure both rotations go the same way to compare
v02=-v02;
a02=-a02;
}
real_t err_01 = Math::acos(v01.normalized().dot(v02.normalized()))/Math_PI;
if (err_01>p_allowed_err) {
//not rotating in the same axis
continue;
}
if (a01*a02 < 0 ) {
//not rotating in the same direction
continue;
}
real_t tr = a01/a02;
if (tr<0 || tr>1)
continue; //rotating too much or too less
t[1]=tr;
}
}
{ //scale
const Vector3 &v0=t0.value.scale;
const Vector3 &v1=t1.value.scale;
const Vector3 &v2=t2.value.scale;
if (v0.distance_to(v2)<CMP_EPSILON) {
//0 and 2 are close, let's see if 1 is close
if (v0.distance_to(v1)>CMP_EPSILON) {
//not close, not optimizable
continue;
}
} else {
Vector3 pd = (v2-v0);
float d0 = pd.dot(v0);
float d1 = pd.dot(v1);
float d2 = pd.dot(v2);
if (d1<d0 || d1>d2) {
continue; //beyond segment range
}
Vector3 s[2]={ v0, v2 };
real_t d =Geometry::get_closest_point_to_segment(v1,s).distance_to(v1);
if (d>pd.length()*p_allowed_err) {
continue; //beyond allowed error for colinearity
}
t[2] = (d1-d0)/(d2-d0);
}
}
bool erase=false;
if (t[0]==-1 && t[1]==-1 && t[2]==-1) {
erase=true;
} else {
erase=true;
real_t lt=-1;
for(int j=0;j<3;j++) {
//search for t on first, one must be it
if (t[j]!=-1) {
lt=t[j]; //official t
//validate rest
for(int k=j+1;k<3;k++) {
if (t[k]==-1)
continue;
if (Math::abs(lt-t[k])>p_allowed_err) {
erase=false;
break;
}
}
break;
}
}
ERR_CONTINUE( lt==-1 );
if (erase) {
if (Math::abs(lt-c)>p_allowed_err) {
//todo, evaluate changing the transition if this fails?
//this could be done as a second pass and would be
//able to optimize more
erase=false;
} else {
//print_line(itos(i)+"because of interp");
}
}
}
if (erase) {
tt->transforms.remove(i);
i--;
}
// print_line(itos(i)+" could be eliminated: "+rtos(tr));
//}
}
}
void Animation::optimize(float p_allowed_err) {
int total_tt=0;
for(int i=0;i<tracks.size();i++) {
if (tracks[i]->type==TYPE_TRANSFORM)
_transform_track_optimize(i,p_allowed_err);
}
}
Animation::Animation() {
step=0.1;
loop=false;
length=1;
}
Animation::~Animation() {
for(int i=0;i<tracks.size();i++)
memdelete( tracks[i] );
}