godot/thirdparty/astcenc/astcenc_mathlib.h
K. S. Ernest (iFire) Lee 696346f4cc
Add ASTC compression and decompression with Arm astcenc.
Co-authored-by: Gordon A Macpherson <gordon.a.macpherson@gmail.com>
Co-authored-by: Rémi Verschelde <rverschelde@gmail.com>
2023-01-19 16:27:59 +01:00

479 lines
9.9 KiB
C++

// SPDX-License-Identifier: Apache-2.0
// ----------------------------------------------------------------------------
// Copyright 2011-2021 Arm Limited
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy
// of the License at:
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
// ----------------------------------------------------------------------------
/*
* This module implements a variety of mathematical data types and library
* functions used by the codec.
*/
#ifndef ASTC_MATHLIB_H_INCLUDED
#define ASTC_MATHLIB_H_INCLUDED
#include <cassert>
#include <cstdint>
#include <cmath>
#ifndef ASTCENC_POPCNT
#if defined(__POPCNT__)
#define ASTCENC_POPCNT 1
#else
#define ASTCENC_POPCNT 0
#endif
#endif
#ifndef ASTCENC_F16C
#if defined(__F16C__)
#define ASTCENC_F16C 1
#else
#define ASTCENC_F16C 0
#endif
#endif
#ifndef ASTCENC_SSE
#if defined(__SSE4_2__)
#define ASTCENC_SSE 42
#elif defined(__SSE4_1__)
#define ASTCENC_SSE 41
#elif defined(__SSE3__)
#define ASTCENC_SSE 30
#elif defined(__SSE2__)
#define ASTCENC_SSE 20
#else
#define ASTCENC_SSE 0
#endif
#endif
#ifndef ASTCENC_AVX
#if defined(__AVX2__)
#define ASTCENC_AVX 2
#elif defined(__AVX__)
#define ASTCENC_AVX 1
#else
#define ASTCENC_AVX 0
#endif
#endif
#ifndef ASTCENC_NEON
#if defined(__aarch64__)
#define ASTCENC_NEON 1
#else
#define ASTCENC_NEON 0
#endif
#endif
#if ASTCENC_AVX
#define ASTCENC_VECALIGN 32
#else
#define ASTCENC_VECALIGN 16
#endif
#if ASTCENC_SSE != 0 || ASTCENC_AVX != 0 || ASTCENC_POPCNT != 0
#include <immintrin.h>
#endif
/* ============================================================================
Fast math library; note that many of the higher-order functions in this set
use approximations which are less accurate, but faster, than <cmath> standard
library equivalents.
Note: Many of these are not necessarily faster than simple C versions when
used on a single scalar value, but are included for testing purposes as most
have an option based on SSE intrinsics and therefore provide an obvious route
to future vectorization.
============================================================================ */
// Union for manipulation of float bit patterns
typedef union
{
uint32_t u;
int32_t s;
float f;
} if32;
// These are namespaced to avoid colliding with C standard library functions.
namespace astc
{
static const float PI = 3.14159265358979323846f;
static const float PI_OVER_TWO = 1.57079632679489661923f;
/**
* @brief SP float absolute value.
*
* @param v The value to make absolute.
*
* @return The absolute value.
*/
static inline float fabs(float v)
{
return std::fabs(v);
}
/**
* @brief Test if a float value is a nan.
*
* @param v The value test.
*
* @return Zero is not a NaN, non-zero otherwise.
*/
static inline bool isnan(float v)
{
return v != v;
}
/**
* @brief Return the minimum of two values.
*
* For floats, NaNs are turned into @c q.
*
* @param p The first value to compare.
* @param q The second value to compare.
*
* @return The smallest value.
*/
template<typename T>
static inline T min(T p, T q)
{
return p < q ? p : q;
}
/**
* @brief Return the minimum of three values.
*
* For floats, NaNs are turned into @c r.
*
* @param p The first value to compare.
* @param q The second value to compare.
* @param r The third value to compare.
*
* @return The smallest value.
*/
template<typename T>
static inline T min(T p, T q, T r)
{
return min(min(p, q), r);
}
/**
* @brief Return the minimum of four values.
*
* For floats, NaNs are turned into @c s.
*
* @param p The first value to compare.
* @param q The second value to compare.
* @param r The third value to compare.
* @param s The fourth value to compare.
*
* @return The smallest value.
*/
template<typename T>
static inline T min(T p, T q, T r, T s)
{
return min(min(p, q), min(r, s));
}
/**
* @brief Return the maximum of two values.
*
* For floats, NaNs are turned into @c q.
*
* @param p The first value to compare.
* @param q The second value to compare.
*
* @return The largest value.
*/
template<typename T>
static inline T max(T p, T q)
{
return p > q ? p : q;
}
/**
* @brief Return the maximum of three values.
*
* For floats, NaNs are turned into @c r.
*
* @param p The first value to compare.
* @param q The second value to compare.
* @param r The third value to compare.
*
* @return The largest value.
*/
template<typename T>
static inline T max(T p, T q, T r)
{
return max(max(p, q), r);
}
/**
* @brief Return the maximum of four values.
*
* For floats, NaNs are turned into @c s.
*
* @param p The first value to compare.
* @param q The second value to compare.
* @param r The third value to compare.
* @param s The fourth value to compare.
*
* @return The largest value.
*/
template<typename T>
static inline T max(T p, T q, T r, T s)
{
return max(max(p, q), max(r, s));
}
/**
* @brief Clamp a value value between @c mn and @c mx.
*
* For floats, NaNs are turned into @c mn.
*
* @param v The value to clamp.
* @param mn The min value (inclusive).
* @param mx The max value (inclusive).
*
* @return The clamped value.
*/
template<typename T>
inline T clamp(T v, T mn, T mx)
{
// Do not reorder; correct NaN handling relies on the fact that comparison
// with NaN returns false and will fall-though to the "min" value.
if (v > mx) return mx;
if (v > mn) return v;
return mn;
}
/**
* @brief Clamp a float value between 0.0f and 1.0f.
*
* NaNs are turned into 0.0f.
*
* @param v The value to clamp.
*
* @return The clamped value.
*/
static inline float clamp1f(float v)
{
return astc::clamp(v, 0.0f, 1.0f);
}
/**
* @brief Clamp a float value between 0.0f and 255.0f.
*
* NaNs are turned into 0.0f.
*
* @param v The value to clamp.
*
* @return The clamped value.
*/
static inline float clamp255f(float v)
{
return astc::clamp(v, 0.0f, 255.0f);
}
/**
* @brief SP float round-down.
*
* @param v The value to round.
*
* @return The rounded value.
*/
static inline float flt_rd(float v)
{
return std::floor(v);
}
/**
* @brief SP float round-to-nearest and convert to integer.
*
* @param v The value to round.
*
* @return The rounded value.
*/
static inline int flt2int_rtn(float v)
{
return static_cast<int>(v + 0.5f);
}
/**
* @brief SP float round down and convert to integer.
*
* @param v The value to round.
*
* @return The rounded value.
*/
static inline int flt2int_rd(float v)
{
return static_cast<int>(v);
}
/**
* @brief SP float bit-interpreted as an integer.
*
* @param v The value to bitcast.
*
* @return The converted value.
*/
static inline int float_as_int(float v)
{
union { int a; float b; } u;
u.b = v;
return u.a;
}
/**
* @brief Integer bit-interpreted as an SP float.
*
* @param v The value to bitcast.
*
* @return The converted value.
*/
static inline float int_as_float(int v)
{
union { int a; float b; } u;
u.a = v;
return u.b;
}
/**
* @brief Fast approximation of 1.0 / sqrt(val).
*
* @param v The input value.
*
* @return The approximated result.
*/
static inline float rsqrt(float v)
{
return 1.0f / std::sqrt(v);
}
/**
* @brief Fast approximation of sqrt(val).
*
* @param v The input value.
*
* @return The approximated result.
*/
static inline float sqrt(float v)
{
return std::sqrt(v);
}
/**
* @brief Extract mantissa and exponent of a float value.
*
* @param v The input value.
* @param[out] expo The output exponent.
*
* @return The mantissa.
*/
static inline float frexp(float v, int* expo)
{
if32 p;
p.f = v;
*expo = ((p.u >> 23) & 0xFF) - 126;
p.u = (p.u & 0x807fffff) | 0x3f000000;
return p.f;
}
/**
* @brief Initialize the seed structure for a random number generator.
*
* Important note: For the purposes of ASTC we want sets of random numbers to
* use the codec, but we want the same seed value across instances and threads
* to ensure that image output is stable across compressor runs and across
* platforms. Every PRNG created by this call will therefore return the same
* sequence of values ...
*
* @param state The state structure to initialize.
*/
void rand_init(uint64_t state[2]);
/**
* @brief Return the next random number from the generator.
*
* This RNG is an implementation of the "xoroshoro-128+ 1.0" PRNG, based on the
* public-domain implementation given by David Blackman & Sebastiano Vigna at
* http://vigna.di.unimi.it/xorshift/xoroshiro128plus.c
*
* @param state The state structure to use/update.
*/
uint64_t rand(uint64_t state[2]);
}
/* ============================================================================
Softfloat library with fp32 and fp16 conversion functionality.
============================================================================ */
#if (ASTCENC_F16C == 0) && (ASTCENC_NEON == 0)
/* narrowing float->float conversions */
uint16_t float_to_sf16(float val);
float sf16_to_float(uint16_t val);
#endif
/*********************************
Vector library
*********************************/
#include "astcenc_vecmathlib.h"
/*********************************
Declaration of line types
*********************************/
// parametric line, 2D: The line is given by line = a + b * t.
struct line2
{
vfloat4 a;
vfloat4 b;
};
// parametric line, 3D
struct line3
{
vfloat4 a;
vfloat4 b;
};
struct line4
{
vfloat4 a;
vfloat4 b;
};
struct processed_line2
{
vfloat4 amod;
vfloat4 bs;
};
struct processed_line3
{
vfloat4 amod;
vfloat4 bs;
};
struct processed_line4
{
vfloat4 amod;
vfloat4 bs;
};
#endif