6b1252cdfa
This is a part of the breaking changes proposed in PR #6865, solving the issue regarding the order of affine transformations described in #2565. This PR also fixes the affected code within Godot codebase. Includes improvements to documentation too. Another change is, Matrix3::get_scale() will now return negative scaling when the determinant of the matrix is negative. The rationale behind this is simple: when performing a polar decomposition on a basis matrix M = R.S, we have to ensure that the determinant of R is +1, such that it is a proper rotation matrix (with no reflections) which can be represented by Euler angles or a quaternion. Also replaced the few instances of float with real_t in Matrix3 and Transform. Furthermore, this PR fixes an issue introduced due to the API breakage in #6865. Namely Matrix3::get_euler() now only works with proper rotation matrices. As a result, the code that wants to get the rotation portion of a transform needs to use Matrix3::get_rotation() introduced in this commit, which complements Matrix3::get_scaled(), providing both parts of the polar decomposition. Finally, it is now possible to construct a rotation matrix from Euler angles using the new constructor Matrix3::Matrix3(const Vector3 &p_euler).
240 lines
8.2 KiB
C++
240 lines
8.2 KiB
C++
/*************************************************************************/
|
|
/* matrix3.h */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* http://www.godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
#ifndef MATRIX3_H
|
|
#define MATRIX3_H
|
|
|
|
#include "vector3.h"
|
|
#include "quat.h"
|
|
|
|
/**
|
|
@author Juan Linietsky <reduzio@gmail.com>
|
|
*/
|
|
class Matrix3 {
|
|
public:
|
|
|
|
Vector3 elements[3];
|
|
|
|
_FORCE_INLINE_ const Vector3& operator[](int axis) const {
|
|
|
|
return elements[axis];
|
|
}
|
|
_FORCE_INLINE_ Vector3& operator[](int axis) {
|
|
|
|
return elements[axis];
|
|
}
|
|
|
|
void invert();
|
|
void transpose();
|
|
|
|
Matrix3 inverse() const;
|
|
Matrix3 transposed() const;
|
|
|
|
_FORCE_INLINE_ real_t determinant() const;
|
|
|
|
void from_z(const Vector3& p_z);
|
|
|
|
_FORCE_INLINE_ Vector3 get_axis(int p_axis) const {
|
|
// get actual basis axis (elements is transposed for performance)
|
|
return Vector3( elements[0][p_axis], elements[1][p_axis], elements[2][p_axis] );
|
|
}
|
|
_FORCE_INLINE_ void set_axis(int p_axis, const Vector3& p_value) {
|
|
// get actual basis axis (elements is transposed for performance)
|
|
elements[0][p_axis]=p_value.x;
|
|
elements[1][p_axis]=p_value.y;
|
|
elements[2][p_axis]=p_value.z;
|
|
}
|
|
|
|
void rotate(const Vector3& p_axis, real_t p_phi);
|
|
Matrix3 rotated(const Vector3& p_axis, real_t p_phi) const;
|
|
|
|
void rotate(const Vector3& p_euler);
|
|
Matrix3 rotated(const Vector3& p_euler) const;
|
|
Vector3 get_rotation() const;
|
|
|
|
void scale( const Vector3& p_scale );
|
|
Matrix3 scaled( const Vector3& p_scale ) const;
|
|
Vector3 get_scale() const;
|
|
|
|
Vector3 get_euler() const;
|
|
void set_euler(const Vector3& p_euler);
|
|
|
|
// transposed dot products
|
|
_FORCE_INLINE_ real_t tdotx(const Vector3& v) const {
|
|
return elements[0][0] * v[0] + elements[1][0] * v[1] + elements[2][0] * v[2];
|
|
}
|
|
_FORCE_INLINE_ real_t tdoty(const Vector3& v) const {
|
|
return elements[0][1] * v[0] + elements[1][1] * v[1] + elements[2][1] * v[2];
|
|
}
|
|
_FORCE_INLINE_ real_t tdotz(const Vector3& v) const {
|
|
return elements[0][2] * v[0] + elements[1][2] * v[1] + elements[2][2] * v[2];
|
|
}
|
|
|
|
bool isequal_approx(const Matrix3& a, const Matrix3& b) const;
|
|
|
|
bool operator==(const Matrix3& p_matrix) const;
|
|
bool operator!=(const Matrix3& p_matrix) const;
|
|
|
|
_FORCE_INLINE_ Vector3 xform(const Vector3& p_vector) const;
|
|
_FORCE_INLINE_ Vector3 xform_inv(const Vector3& p_vector) const;
|
|
_FORCE_INLINE_ void operator*=(const Matrix3& p_matrix);
|
|
_FORCE_INLINE_ Matrix3 operator*(const Matrix3& p_matrix) const;
|
|
|
|
int get_orthogonal_index() const;
|
|
void set_orthogonal_index(int p_index);
|
|
|
|
bool is_orthogonal() const;
|
|
bool is_rotation() const;
|
|
|
|
operator String() const;
|
|
|
|
void get_axis_and_angle(Vector3 &r_axis,real_t& r_angle) const;
|
|
|
|
/* create / set */
|
|
|
|
|
|
_FORCE_INLINE_ void set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) {
|
|
|
|
elements[0][0]=xx;
|
|
elements[0][1]=xy;
|
|
elements[0][2]=xz;
|
|
elements[1][0]=yx;
|
|
elements[1][1]=yy;
|
|
elements[1][2]=yz;
|
|
elements[2][0]=zx;
|
|
elements[2][1]=zy;
|
|
elements[2][2]=zz;
|
|
}
|
|
_FORCE_INLINE_ Vector3 get_column(int i) const {
|
|
|
|
return Vector3(elements[0][i],elements[1][i],elements[2][i]);
|
|
}
|
|
|
|
_FORCE_INLINE_ Vector3 get_row(int i) const {
|
|
|
|
return Vector3(elements[i][0],elements[i][1],elements[i][2]);
|
|
}
|
|
_FORCE_INLINE_ void set_row(int i, const Vector3& p_row) {
|
|
elements[i][0]=p_row.x;
|
|
elements[i][1]=p_row.y;
|
|
elements[i][2]=p_row.z;
|
|
}
|
|
|
|
_FORCE_INLINE_ void set_zero() {
|
|
elements[0].zero();
|
|
elements[1].zero();
|
|
elements[2].zero();
|
|
}
|
|
|
|
_FORCE_INLINE_ Matrix3 transpose_xform(const Matrix3& m) const
|
|
{
|
|
return Matrix3(
|
|
elements[0].x * m[0].x + elements[1].x * m[1].x + elements[2].x * m[2].x,
|
|
elements[0].x * m[0].y + elements[1].x * m[1].y + elements[2].x * m[2].y,
|
|
elements[0].x * m[0].z + elements[1].x * m[1].z + elements[2].x * m[2].z,
|
|
elements[0].y * m[0].x + elements[1].y * m[1].x + elements[2].y * m[2].x,
|
|
elements[0].y * m[0].y + elements[1].y * m[1].y + elements[2].y * m[2].y,
|
|
elements[0].y * m[0].z + elements[1].y * m[1].z + elements[2].y * m[2].z,
|
|
elements[0].z * m[0].x + elements[1].z * m[1].x + elements[2].z * m[2].x,
|
|
elements[0].z * m[0].y + elements[1].z * m[1].y + elements[2].z * m[2].y,
|
|
elements[0].z * m[0].z + elements[1].z * m[1].z + elements[2].z * m[2].z);
|
|
}
|
|
Matrix3(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) {
|
|
|
|
set(xx, xy, xz, yx, yy, yz, zx, zy, zz);
|
|
}
|
|
|
|
void orthonormalize();
|
|
Matrix3 orthonormalized() const;
|
|
|
|
operator Quat() const;
|
|
|
|
Matrix3(const Quat& p_quat); // euler
|
|
Matrix3(const Vector3& p_euler); // euler
|
|
Matrix3(const Vector3& p_axis, real_t p_phi);
|
|
|
|
_FORCE_INLINE_ Matrix3() {
|
|
|
|
elements[0][0]=1;
|
|
elements[0][1]=0;
|
|
elements[0][2]=0;
|
|
elements[1][0]=0;
|
|
elements[1][1]=1;
|
|
elements[1][2]=0;
|
|
elements[2][0]=0;
|
|
elements[2][1]=0;
|
|
elements[2][2]=1;
|
|
}
|
|
|
|
|
|
};
|
|
|
|
_FORCE_INLINE_ void Matrix3::operator*=(const Matrix3& p_matrix) {
|
|
|
|
set(
|
|
p_matrix.tdotx(elements[0]), p_matrix.tdoty(elements[0]), p_matrix.tdotz(elements[0]),
|
|
p_matrix.tdotx(elements[1]), p_matrix.tdoty(elements[1]), p_matrix.tdotz(elements[1]),
|
|
p_matrix.tdotx(elements[2]), p_matrix.tdoty(elements[2]), p_matrix.tdotz(elements[2]));
|
|
|
|
}
|
|
|
|
_FORCE_INLINE_ Matrix3 Matrix3::operator*(const Matrix3& p_matrix) const {
|
|
|
|
return Matrix3(
|
|
p_matrix.tdotx(elements[0]), p_matrix.tdoty(elements[0]), p_matrix.tdotz(elements[0]),
|
|
p_matrix.tdotx(elements[1]), p_matrix.tdoty(elements[1]), p_matrix.tdotz(elements[1]),
|
|
p_matrix.tdotx(elements[2]), p_matrix.tdoty(elements[2]), p_matrix.tdotz(elements[2]) );
|
|
|
|
}
|
|
|
|
Vector3 Matrix3::xform(const Vector3& p_vector) const {
|
|
|
|
return Vector3(
|
|
elements[0].dot(p_vector),
|
|
elements[1].dot(p_vector),
|
|
elements[2].dot(p_vector)
|
|
);
|
|
}
|
|
|
|
Vector3 Matrix3::xform_inv(const Vector3& p_vector) const {
|
|
|
|
return Vector3(
|
|
(elements[0][0]*p_vector.x ) + ( elements[1][0]*p_vector.y ) + ( elements[2][0]*p_vector.z ),
|
|
(elements[0][1]*p_vector.x ) + ( elements[1][1]*p_vector.y ) + ( elements[2][1]*p_vector.z ),
|
|
(elements[0][2]*p_vector.x ) + ( elements[1][2]*p_vector.y ) + ( elements[2][2]*p_vector.z )
|
|
);
|
|
}
|
|
|
|
real_t Matrix3::determinant() const {
|
|
|
|
return elements[0][0]*(elements[1][1]*elements[2][2] - elements[2][1]*elements[1][2]) -
|
|
elements[1][0]*(elements[0][1]*elements[2][2] - elements[2][1]*elements[0][2]) +
|
|
elements[2][0]*(elements[0][1]*elements[1][2] - elements[1][1]*elements[0][2]);
|
|
}
|
|
#endif
|