godot/servers/visual/particle_system_sw.cpp

413 lines
13 KiB
C++

/*************************************************************************/
/* particle_system_sw.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "particle_system_sw.h"
#include "sort.h"
ParticleSystemSW::ParticleSystemSW() {
amount=8;
emitting=true;
for (int i=0;i<VS::PARTICLE_VAR_MAX;i++) {
particle_randomness[i]=0.0;
}
particle_vars[VS::PARTICLE_LIFETIME]=2.0;//
particle_vars[VS::PARTICLE_SPREAD]=0.2;//
particle_vars[VS::PARTICLE_GRAVITY]=9.8;//
particle_vars[VS::PARTICLE_LINEAR_VELOCITY]=0.2;//
particle_vars[VS::PARTICLE_ANGULAR_VELOCITY]=0.0;//
particle_vars[VS::PARTICLE_LINEAR_ACCELERATION]=0.0;//
particle_vars[VS::PARTICLE_RADIAL_ACCELERATION]=0.0;//
particle_vars[VS::PARTICLE_TANGENTIAL_ACCELERATION]=1.0;//
particle_vars[VS::PARTICLE_DAMPING]=0.0;//
particle_vars[VS::PARTICLE_INITIAL_SIZE]=1.0;
particle_vars[VS::PARTICLE_FINAL_SIZE]=0.8;
particle_vars[VS::PARTICLE_HEIGHT]=1;
particle_vars[VS::PARTICLE_HEIGHT_SPEED_SCALE]=1;
height_from_velocity=false;
local_coordinates=false;
particle_vars[VS::PARTICLE_INITIAL_ANGLE]=0.0;//
gravity_normal=Vector3(0,-1.0,0);
//emission_half_extents=Vector3(0.1,0.1,0.1);
emission_half_extents=Vector3(1,1,1);
color_phase_count=0;
color_phases[0].pos=0.0;
color_phases[0].color=Color(1.0,0.0,0.0);
visibility_aabb=AABB(Vector3(-64,-64,-64),Vector3(128,128,128));
attractor_count=0;
}
ParticleSystemSW::~ParticleSystemSW()
{
}
#define DEFAULT_SEED 1234567
_FORCE_INLINE_ static float _rand_from_seed(uint32_t *seed) {
uint32_t k;
uint32_t s = (*seed);
if (s == 0)
s = 0x12345987;
k = s / 127773;
s = 16807 * (s - k * 127773) - 2836 * k;
if (s < 0)
s += 2147483647;
(*seed) = s;
float v=((float)((*seed) & 0xFFFFF))/(float)0xFFFFF;
v=v*2.0-1.0;
return v;
}
_FORCE_INLINE_ static uint32_t _irand_from_seed(uint32_t *seed) {
uint32_t k;
uint32_t s = (*seed);
if (s == 0)
s = 0x12345987;
k = s / 127773;
s = 16807 * (s - k * 127773) - 2836 * k;
if (s < 0)
s += 2147483647;
(*seed) = s;
return s;
}
void ParticleSystemProcessSW::process(const ParticleSystemSW *p_system,const Transform& p_transform,float p_time) {
valid=false;
if (p_system->amount<=0) {
ERR_EXPLAIN("Invalid amount of particles: "+itos(p_system->amount));
ERR_FAIL_COND(p_system->amount<=0);
}
if (p_system->attractor_count<0 || p_system->attractor_count>VS::MAX_PARTICLE_ATTRACTORS) {
ERR_EXPLAIN("Invalid amount of particle attractors.");
ERR_FAIL_COND(p_system->attractor_count<0 || p_system->attractor_count>VS::MAX_PARTICLE_ATTRACTORS);
}
float lifetime = p_system->particle_vars[VS::PARTICLE_LIFETIME];
if (lifetime<CMP_EPSILON) {
ERR_EXPLAIN("Particle system lifetime too small.");
ERR_FAIL_COND(lifetime<CMP_EPSILON);
}
valid=true;
int particle_count=MIN(p_system->amount,ParticleSystemSW::MAX_PARTICLES);;
int emission_point_count = p_system->emission_points.size();
DVector<Vector3>::Read r;
if (emission_point_count)
r=p_system->emission_points.read();
if (particle_count!=particle_data.size()) {
//clear the whole system if particle amount changed
particle_data.clear();
particle_data.resize(p_system->amount);
particle_system_time=0;
}
float next_time = particle_system_time+p_time;
if (next_time > lifetime)
next_time=Math::fmod(next_time,lifetime);
ParticleData *pdata=&particle_data[0];
Vector3 attractor_positions[VS::MAX_PARTICLE_ATTRACTORS];
for(int i=0;i<p_system->attractor_count;i++) {
attractor_positions[i]=p_transform.xform(p_system->attractors[i].pos);
}
for(int i=0;i<particle_count;i++) {
ParticleData &p=pdata[i];
float restart_time = (i * lifetime / p_system->amount);
bool restart=false;
if ( next_time < particle_system_time ) {
if (restart_time > particle_system_time || restart_time < next_time )
restart=true;
} else if (restart_time > particle_system_time && restart_time < next_time ) {
restart=true;
}
if (restart) {
if (p_system->emitting) {
if (emission_point_count==0) { //use AABB
if (p_system->local_coordinates)
p.pos = p_system->emission_half_extents * Vector3( _rand_from_seed(&rand_seed), _rand_from_seed(&rand_seed), _rand_from_seed(&rand_seed) );
else
p.pos = p_transform.xform( p_system->emission_half_extents * Vector3( _rand_from_seed(&rand_seed), _rand_from_seed(&rand_seed), _rand_from_seed(&rand_seed) ) );
} else {
//use preset positions
if (p_system->local_coordinates)
p.pos = r[_irand_from_seed(&rand_seed)%emission_point_count];
else
p.pos = p_transform.xform( r[_irand_from_seed(&rand_seed)%emission_point_count] );
}
float angle1 = _rand_from_seed(&rand_seed)*p_system->particle_vars[VS::PARTICLE_SPREAD]*Math_PI;
float angle2 = _rand_from_seed(&rand_seed)*20.0*Math_PI; // make it more random like
Vector3 rot_xz=Vector3( Math::sin(angle1), 0.0, Math::cos(angle1) );
Vector3 rot = Vector3( Math::cos(angle2)*rot_xz.x,Math::sin(angle2)*rot_xz.x, rot_xz.z);
p.vel=(rot*p_system->particle_vars[VS::PARTICLE_LINEAR_VELOCITY]+rot*p_system->particle_randomness[VS::PARTICLE_LINEAR_VELOCITY]*_rand_from_seed(&rand_seed));
if (!p_system->local_coordinates)
p.vel=p_transform.basis.xform( p.vel );
p.vel+=p_system->emission_base_velocity;
p.rot=p_system->particle_vars[VS::PARTICLE_INITIAL_ANGLE]+p_system->particle_randomness[VS::PARTICLE_INITIAL_ANGLE]*_rand_from_seed(&rand_seed);
p.active=true;
for(int r=0;r<PARTICLE_RANDOM_NUMBERS;r++)
p.random[r]=_rand_from_seed(&rand_seed);
} else {
p.pos=Vector3();
p.rot=0;
p.vel=Vector3();
p.active=false;
}
} else {
if (!p.active)
continue;
Vector3 force;
//apply gravity
force=p_system->gravity_normal * (p_system->particle_vars[VS::PARTICLE_GRAVITY]+(p_system->particle_randomness[VS::PARTICLE_GRAVITY]*p.random[0]));
//apply linear acceleration
force+=p.vel.normalized() * (p_system->particle_vars[VS::PARTICLE_LINEAR_ACCELERATION]+p_system->particle_randomness[VS::PARTICLE_LINEAR_ACCELERATION]*p.random[1]);
//apply radial acceleration
Vector3 org;
if (!p_system->local_coordinates)
org=p_transform.origin;
force+=(p.pos-org).normalized() * (p_system->particle_vars[VS::PARTICLE_RADIAL_ACCELERATION]+p_system->particle_randomness[VS::PARTICLE_RADIAL_ACCELERATION]*p.random[2]);
//apply tangential acceleration
force+=(p.pos-org).cross(p_system->gravity_normal).normalized() * (p_system->particle_vars[VS::PARTICLE_TANGENTIAL_ACCELERATION]+p_system->particle_randomness[VS::PARTICLE_TANGENTIAL_ACCELERATION]*p.random[3]);
//apply attractor forces
for(int a=0;a<p_system->attractor_count;a++) {
force+=(p.pos-attractor_positions[a]).normalized() * p_system->attractors[a].force;
}
p.vel+=force * p_time;
if (p_system->particle_vars[VS::PARTICLE_DAMPING]) {
float v = p.vel.length();
float damp = p_system->particle_vars[VS::PARTICLE_DAMPING] + p_system->particle_vars[VS::PARTICLE_DAMPING] * p_system->particle_randomness[VS::PARTICLE_DAMPING];
v -= damp * p_time;
if (v<0) {
p.vel=Vector3();
} else {
p.vel=p.vel.normalized() * v;
}
}
p.rot+=(p_system->particle_vars[VS::PARTICLE_ANGULAR_VELOCITY]+p_system->particle_randomness[VS::PARTICLE_ANGULAR_VELOCITY]*p.random[4]) *p_time;
p.pos+=p.vel * p_time;
}
}
particle_system_time=Math::fmod( particle_system_time+p_time, lifetime );
}
ParticleSystemProcessSW::ParticleSystemProcessSW() {
particle_system_time=0;
rand_seed=1234567;
valid=false;
}
struct _ParticleSorterSW {
_FORCE_INLINE_ bool operator()(const ParticleSystemDrawInfoSW::ParticleDrawInfo *p_a,const ParticleSystemDrawInfoSW::ParticleDrawInfo *p_b) const {
return p_a->d > p_b->d; // draw from further away to closest
}
};
void ParticleSystemDrawInfoSW::prepare(const ParticleSystemSW *p_system,const ParticleSystemProcessSW *p_process,const Transform& p_system_transform,const Transform& p_camera_transform) {
ERR_FAIL_COND(p_process->particle_data.size() != p_system->amount);
ERR_FAIL_COND(p_system->amount<=0 || p_system->amount>=ParticleSystemSW::MAX_PARTICLES);
const ParticleSystemProcessSW::ParticleData *pdata=&p_process->particle_data[0];
float time_pos=p_process->particle_system_time/p_system->particle_vars[VS::PARTICLE_LIFETIME];
ParticleSystemSW::ColorPhase cphase[VS::MAX_PARTICLE_COLOR_PHASES];
float last=-1;
int col_count=0;
for(int i=0;i<p_system->color_phase_count;i++) {
if (p_system->color_phases[i].pos<=last)
break;
cphase[i]=p_system->color_phases[i];
col_count++;
}
Vector3 camera_z_axis = p_camera_transform.basis.get_axis(2);
for(int i=0;i<p_system->amount;i++) {
ParticleDrawInfo &pdi=draw_info[i];
pdi.data=&pdata[i];
pdi.transform.origin=pdi.data->pos;
if (p_system->local_coordinates)
pdi.transform.origin=p_system_transform.xform(pdi.transform.origin);
pdi.d=-camera_z_axis.dot(pdi.transform.origin);
// adjust particle size, color and rotation
float time = ((float)i / p_system->amount);
if (time<time_pos)
time=time_pos-time;
else
time=(1.0-time)+time_pos;
Vector3 up=p_camera_transform.basis.get_axis(1); // up determines the rotation
float up_scale=1.0;
if (p_system->height_from_velocity) {
Vector3 veld = pdi.data->vel;
Vector3 cam_z = camera_z_axis.normalized();
float vc = Math::abs(veld.normalized().dot(cam_z));
if (vc<(1.0-CMP_EPSILON)) {
up = Plane(cam_z,0).project(veld).normalized();
float h = p_system->particle_vars[VS::PARTICLE_HEIGHT]+p_system->particle_randomness[VS::PARTICLE_HEIGHT]*pdi.data->random[7];
float velh = veld.length();
h+=velh*(p_system->particle_vars[VS::PARTICLE_HEIGHT_SPEED_SCALE]+p_system->particle_randomness[VS::PARTICLE_HEIGHT_SPEED_SCALE]*pdi.data->random[7]);
up_scale=Math::lerp(1.0,h,(1.0-vc));
}
} else if (pdi.data->rot) {
up.rotate(camera_z_axis,pdi.data->rot);
}
{
// matrix
Vector3 v_z = (p_camera_transform.origin-pdi.transform.origin).normalized();
// Vector3 v_z = (p_camera_transform.origin-pdi.data->pos).normalized();
Vector3 v_y = up;
Vector3 v_x = v_y.cross(v_z);
v_y = v_z.cross(v_x);
v_x.normalize();
v_y.normalize();
float initial_scale, final_scale;
initial_scale = p_system->particle_vars[VS::PARTICLE_INITIAL_SIZE]+p_system->particle_randomness[VS::PARTICLE_INITIAL_SIZE]*pdi.data->random[5];
final_scale = p_system->particle_vars[VS::PARTICLE_FINAL_SIZE]+p_system->particle_randomness[VS::PARTICLE_FINAL_SIZE]*pdi.data->random[6];
float scale = initial_scale + time * (final_scale - initial_scale);
pdi.transform.basis.set_axis(0,v_x * scale);
pdi.transform.basis.set_axis(1,v_y * scale * up_scale);
pdi.transform.basis.set_axis(2,v_z * scale);
}
int cpos=0;
while(cpos<col_count) {
if (cphase[cpos].pos > time)
break;
cpos++;
}
cpos--;
if (cpos==-1)
pdi.color=Color(1,1,1,1);
else {
if (cpos==col_count-1)
pdi.color=cphase[cpos].color;
else {
float diff = (cphase[cpos+1].pos-cphase[cpos].pos);
if (diff>0)
pdi.color=cphase[cpos].color.linear_interpolate(cphase[cpos+1].color, (time - cphase[cpos].pos) / diff );
else
pdi.color=cphase[cpos+1].color;
}
}
draw_info_order[i]=&pdi;
}
SortArray<ParticleDrawInfo*,_ParticleSorterSW> particle_sort;
particle_sort.sort(&draw_info_order[0],p_system->amount);
}