godot/doc/classes/Quat.xml

206 lines
6.5 KiB
XML

<?xml version="1.0" encoding="UTF-8" ?>
<class name="Quat" version="4.0">
<brief_description>
Quaternion.
</brief_description>
<description>
A unit quaternion used for representing 3D rotations.
It is similar to [Basis], which implements matrix representation of rotations, and can be parametrized using both an axis-angle pair or Euler angles. But due to its compactness and the way it is stored in memory, certain operations (obtaining axis-angle and performing SLERP, in particular) are more efficient and robust against floating-point errors.
Quaternions need to be (re)normalized.
</description>
<tutorials>
<link>https://docs.godotengine.org/en/latest/tutorials/3d/using_transforms.html#interpolating-with-quaternions</link>
</tutorials>
<methods>
<method name="Quat">
<return type="Quat">
</return>
<argument index="0" name="from" type="Basis">
</argument>
<description>
Returns the rotation matrix corresponding to the given quaternion.
</description>
</method>
<method name="Quat">
<return type="Quat">
</return>
<argument index="0" name="euler" type="Vector3">
</argument>
<description>
Returns a quaternion that will perform a rotation specified by Euler angles (in the YXZ convention: first Z, then X, and Y last), given in the vector format as (X angle, Y angle, Z angle).
</description>
</method>
<method name="Quat">
<return type="Quat">
</return>
<argument index="0" name="axis" type="Vector3">
</argument>
<argument index="1" name="angle" type="float">
</argument>
<description>
Returns a quaternion that will rotate around the given axis by the specified angle. The axis must be a normalized vector.
</description>
</method>
<method name="Quat">
<return type="Quat">
</return>
<argument index="0" name="x" type="float">
</argument>
<argument index="1" name="y" type="float">
</argument>
<argument index="2" name="z" type="float">
</argument>
<argument index="3" name="w" type="float">
</argument>
<description>
Returns a quaternion defined by these values.
</description>
</method>
<method name="cubic_slerp">
<return type="Quat">
</return>
<argument index="0" name="b" type="Quat">
</argument>
<argument index="1" name="pre_a" type="Quat">
</argument>
<argument index="2" name="post_b" type="Quat">
</argument>
<argument index="3" name="t" type="float">
</argument>
<description>
Performs a cubic spherical-linear interpolation with another quaternion.
</description>
</method>
<method name="dot">
<return type="float">
</return>
<argument index="0" name="b" type="Quat">
</argument>
<description>
Returns the dot product of two quaternions.
</description>
</method>
<method name="get_euler">
<return type="Vector3">
</return>
<description>
Returns Euler angles (in the YXZ convention: first Z, then X, and Y last) corresponding to the rotation represented by the unit quaternion. Returned vector contains the rotation angles in the format (X angle, Y angle, Z angle).
</description>
</method>
<method name="inverse">
<return type="Quat">
</return>
<description>
Returns the inverse of the quaternion.
</description>
</method>
<method name="is_equal_approx">
<return type="bool">
</return>
<argument index="0" name="quat" type="Quat">
</argument>
<description>
Returns [code]true[/code] if this quaterion and [code]quat[/code] are approximately equal, by running [method @GDScript.is_equal_approx] on each component.
</description>
</method>
<method name="is_normalized">
<return type="bool">
</return>
<description>
Returns whether the quaternion is normalized or not.
</description>
</method>
<method name="length">
<return type="float">
</return>
<description>
Returns the length of the quaternion.
</description>
</method>
<method name="length_squared">
<return type="float">
</return>
<description>
Returns the length of the quaternion, squared.
</description>
</method>
<method name="normalized">
<return type="Quat">
</return>
<description>
Returns a copy of the quaternion, normalized to unit length.
</description>
</method>
<method name="set_axis_angle">
<return type="void">
</return>
<argument index="0" name="axis" type="Vector3">
</argument>
<argument index="1" name="angle" type="float">
</argument>
<description>
Sets the quaternion to a rotation which rotates around axis by the specified angle, in radians. The axis must be a normalized vector.
</description>
</method>
<method name="set_euler">
<return type="void">
</return>
<argument index="0" name="euler" type="Vector3">
</argument>
<description>
Sets the quaternion to a rotation specified by Euler angles (in the YXZ convention: first Z, then X, and Y last), given in the vector format as (X angle, Y angle, Z angle).
</description>
</method>
<method name="slerp">
<return type="Quat">
</return>
<argument index="0" name="b" type="Quat">
</argument>
<argument index="1" name="t" type="float">
</argument>
<description>
Performs a spherical-linear interpolation with another quaternion.
</description>
</method>
<method name="slerpni">
<return type="Quat">
</return>
<argument index="0" name="b" type="Quat">
</argument>
<argument index="1" name="t" type="float">
</argument>
<description>
Performs a spherical-linear interpolation with another quaterion without checking if the rotation path is not bigger than 90°.
</description>
</method>
<method name="xform">
<return type="Vector3">
</return>
<argument index="0" name="v" type="Vector3">
</argument>
<description>
Transforms the vector [code]v[/code] by this quaternion.
</description>
</method>
</methods>
<members>
<member name="w" type="float" setter="" getter="" default="1.0">
W component of the quaternion.
</member>
<member name="x" type="float" setter="" getter="" default="0.0">
X component of the quaternion.
</member>
<member name="y" type="float" setter="" getter="" default="0.0">
Y component of the quaternion.
</member>
<member name="z" type="float" setter="" getter="" default="0.0">
Z component of the quaternion.
</member>
</members>
<constants>
<constant name="IDENTITY" value="Quat( 0, 0, 0, 1 )">
The identity rotation. Equivalent to an identity matrix. If a vector is transformed by an identity quaternion, it will not change.
</constant>
</constants>
</class>