godot/thirdparty/icu4c/common/ucnv.cpp

2911 lines
92 KiB
C++

// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
******************************************************************************
*
* Copyright (C) 1998-2016, International Business Machines
* Corporation and others. All Rights Reserved.
*
******************************************************************************
*
* ucnv.c:
* Implements APIs for the ICU's codeset conversion library;
* mostly calls through internal functions;
* created by Bertrand A. Damiba
*
* Modification History:
*
* Date Name Description
* 04/04/99 helena Fixed internal header inclusion.
* 05/09/00 helena Added implementation to handle fallback mappings.
* 06/20/2000 helena OS/400 port changes; mostly typecast.
*/
#include "unicode/utypes.h"
#if !UCONFIG_NO_CONVERSION
#include <memory>
#include "unicode/ustring.h"
#include "unicode/ucnv.h"
#include "unicode/ucnv_err.h"
#include "unicode/uset.h"
#include "unicode/utf.h"
#include "unicode/utf16.h"
#include "putilimp.h"
#include "cmemory.h"
#include "cstring.h"
#include "uassert.h"
#include "utracimp.h"
#include "ustr_imp.h"
#include "ucnv_imp.h"
#include "ucnv_cnv.h"
#include "ucnv_bld.h"
/* size of intermediate and preflighting buffers in ucnv_convert() */
#define CHUNK_SIZE 1024
typedef struct UAmbiguousConverter {
const char *name;
const UChar variant5c;
} UAmbiguousConverter;
static const UAmbiguousConverter ambiguousConverters[]={
{ "ibm-897_P100-1995", 0xa5 },
{ "ibm-942_P120-1999", 0xa5 },
{ "ibm-943_P130-1999", 0xa5 },
{ "ibm-946_P100-1995", 0xa5 },
{ "ibm-33722_P120-1999", 0xa5 },
{ "ibm-1041_P100-1995", 0xa5 },
/*{ "ibm-54191_P100-2006", 0xa5 },*/
/*{ "ibm-62383_P100-2007", 0xa5 },*/
/*{ "ibm-891_P100-1995", 0x20a9 },*/
{ "ibm-944_P100-1995", 0x20a9 },
{ "ibm-949_P110-1999", 0x20a9 },
{ "ibm-1363_P110-1997", 0x20a9 },
{ "ISO_2022,locale=ko,version=0", 0x20a9 },
{ "ibm-1088_P100-1995", 0x20a9 }
};
/*Calls through createConverter */
U_CAPI UConverter* U_EXPORT2
ucnv_open (const char *name,
UErrorCode * err)
{
UConverter *r;
if (err == NULL || U_FAILURE (*err)) {
return NULL;
}
r = ucnv_createConverter(NULL, name, err);
return r;
}
U_CAPI UConverter* U_EXPORT2
ucnv_openPackage (const char *packageName, const char *converterName, UErrorCode * err)
{
return ucnv_createConverterFromPackage(packageName, converterName, err);
}
/*Extracts the UChar* to a char* and calls through createConverter */
U_CAPI UConverter* U_EXPORT2
ucnv_openU (const UChar * name,
UErrorCode * err)
{
char asciiName[UCNV_MAX_CONVERTER_NAME_LENGTH];
if (err == NULL || U_FAILURE(*err))
return NULL;
if (name == NULL)
return ucnv_open (NULL, err);
if (u_strlen(name) >= UCNV_MAX_CONVERTER_NAME_LENGTH)
{
*err = U_ILLEGAL_ARGUMENT_ERROR;
return NULL;
}
return ucnv_open(u_austrcpy(asciiName, name), err);
}
/* Copy the string that is represented by the UConverterPlatform enum
* @param platformString An output buffer
* @param platform An enum representing a platform
* @return the length of the copied string.
*/
static int32_t
ucnv_copyPlatformString(char *platformString, UConverterPlatform pltfrm)
{
switch (pltfrm)
{
case UCNV_IBM:
uprv_strcpy(platformString, "ibm-");
return 4;
case UCNV_UNKNOWN:
break;
}
/* default to empty string */
*platformString = 0;
return 0;
}
/*Assumes a $platform-#codepage.$CONVERTER_FILE_EXTENSION scheme and calls
*through createConverter*/
U_CAPI UConverter* U_EXPORT2
ucnv_openCCSID (int32_t codepage,
UConverterPlatform platform,
UErrorCode * err)
{
char myName[UCNV_MAX_CONVERTER_NAME_LENGTH];
int32_t myNameLen;
if (err == NULL || U_FAILURE (*err))
return NULL;
/* ucnv_copyPlatformString could return "ibm-" or "cp" */
myNameLen = ucnv_copyPlatformString(myName, platform);
T_CString_integerToString(myName + myNameLen, codepage, 10);
return ucnv_createConverter(NULL, myName, err);
}
/* Creating a temporary stack-based object that can be used in one thread,
and created from a converter that is shared across threads.
*/
U_CAPI UConverter* U_EXPORT2
ucnv_safeClone(const UConverter* cnv, void *stackBuffer, int32_t *pBufferSize, UErrorCode *status)
{
UConverter *localConverter, *allocatedConverter;
int32_t stackBufferSize;
int32_t bufferSizeNeeded;
UErrorCode cbErr;
UConverterToUnicodeArgs toUArgs = {
sizeof(UConverterToUnicodeArgs),
TRUE,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL
};
UConverterFromUnicodeArgs fromUArgs = {
sizeof(UConverterFromUnicodeArgs),
TRUE,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL
};
UTRACE_ENTRY_OC(UTRACE_UCNV_CLONE);
if (status == NULL || U_FAILURE(*status)){
UTRACE_EXIT_STATUS(status? *status: U_ILLEGAL_ARGUMENT_ERROR);
return NULL;
}
if (cnv == NULL) {
*status = U_ILLEGAL_ARGUMENT_ERROR;
UTRACE_EXIT_STATUS(*status);
return NULL;
}
UTRACE_DATA3(UTRACE_OPEN_CLOSE, "clone converter %s at %p into stackBuffer %p",
ucnv_getName(cnv, status), cnv, stackBuffer);
if (cnv->sharedData->impl->safeClone != NULL) {
/* call the custom safeClone function for sizing */
bufferSizeNeeded = 0;
cnv->sharedData->impl->safeClone(cnv, NULL, &bufferSizeNeeded, status);
if (U_FAILURE(*status)) {
UTRACE_EXIT_STATUS(*status);
return NULL;
}
}
else
{
/* inherent sizing */
bufferSizeNeeded = sizeof(UConverter);
}
if (pBufferSize == NULL) {
stackBufferSize = 1;
pBufferSize = &stackBufferSize;
} else {
stackBufferSize = *pBufferSize;
if (stackBufferSize <= 0){ /* 'preflighting' request - set needed size into *pBufferSize */
*pBufferSize = bufferSizeNeeded;
UTRACE_EXIT_VALUE(bufferSizeNeeded);
return NULL;
}
}
/* Adjust (if necessary) the stackBuffer pointer to be aligned correctly for a UConverter.
* TODO(Jira ICU-20736) Redo this using std::align() once g++4.9 compatibility is no longer needed.
*/
if (stackBuffer) {
uintptr_t p = reinterpret_cast<uintptr_t>(stackBuffer);
uintptr_t aligned_p = (p + alignof(UConverter) - 1) & ~(alignof(UConverter) - 1);
ptrdiff_t pointerAdjustment = aligned_p - p;
if (bufferSizeNeeded + pointerAdjustment <= stackBufferSize) {
stackBuffer = reinterpret_cast<void *>(aligned_p);
stackBufferSize -= static_cast<int32_t>(pointerAdjustment);
} else {
/* prevent using the stack buffer but keep the size > 0 so that we do not just preflight */
stackBufferSize = 1;
}
}
/* Now, see if we must allocate any memory */
if (stackBufferSize < bufferSizeNeeded || stackBuffer == NULL)
{
/* allocate one here...*/
localConverter = allocatedConverter = (UConverter *) uprv_malloc (bufferSizeNeeded);
if(localConverter == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
UTRACE_EXIT_STATUS(*status);
return NULL;
}
*status = U_SAFECLONE_ALLOCATED_WARNING;
/* record the fact that memory was allocated */
*pBufferSize = bufferSizeNeeded;
} else {
/* just use the stack buffer */
localConverter = (UConverter*) stackBuffer;
allocatedConverter = NULL;
}
uprv_memset(localConverter, 0, bufferSizeNeeded);
/* Copy initial state */
uprv_memcpy(localConverter, cnv, sizeof(UConverter));
localConverter->isCopyLocal = localConverter->isExtraLocal = FALSE;
/* copy the substitution string */
if (cnv->subChars == (uint8_t *)cnv->subUChars) {
localConverter->subChars = (uint8_t *)localConverter->subUChars;
} else {
localConverter->subChars = (uint8_t *)uprv_malloc(UCNV_ERROR_BUFFER_LENGTH * U_SIZEOF_UCHAR);
if (localConverter->subChars == NULL) {
uprv_free(allocatedConverter);
UTRACE_EXIT_STATUS(*status);
return NULL;
}
uprv_memcpy(localConverter->subChars, cnv->subChars, UCNV_ERROR_BUFFER_LENGTH * U_SIZEOF_UCHAR);
}
/* now either call the safeclone fcn or not */
if (cnv->sharedData->impl->safeClone != NULL) {
/* call the custom safeClone function */
localConverter = cnv->sharedData->impl->safeClone(cnv, localConverter, pBufferSize, status);
}
if(localConverter==NULL || U_FAILURE(*status)) {
if (allocatedConverter != NULL && allocatedConverter->subChars != (uint8_t *)allocatedConverter->subUChars) {
uprv_free(allocatedConverter->subChars);
}
uprv_free(allocatedConverter);
UTRACE_EXIT_STATUS(*status);
return NULL;
}
/* increment refcount of shared data if needed */
if (cnv->sharedData->isReferenceCounted) {
ucnv_incrementRefCount(cnv->sharedData);
}
if(localConverter == (UConverter*)stackBuffer) {
/* we're using user provided data - set to not destroy */
localConverter->isCopyLocal = TRUE;
}
/* allow callback functions to handle any memory allocation */
toUArgs.converter = fromUArgs.converter = localConverter;
cbErr = U_ZERO_ERROR;
cnv->fromCharErrorBehaviour(cnv->toUContext, &toUArgs, NULL, 0, UCNV_CLONE, &cbErr);
cbErr = U_ZERO_ERROR;
cnv->fromUCharErrorBehaviour(cnv->fromUContext, &fromUArgs, NULL, 0, 0, UCNV_CLONE, &cbErr);
UTRACE_EXIT_PTR_STATUS(localConverter, *status);
return localConverter;
}
/*Decreases the reference counter in the shared immutable section of the object
*and frees the mutable part*/
U_CAPI void U_EXPORT2
ucnv_close (UConverter * converter)
{
UErrorCode errorCode = U_ZERO_ERROR;
UTRACE_ENTRY_OC(UTRACE_UCNV_CLOSE);
if (converter == NULL)
{
UTRACE_EXIT();
return;
}
UTRACE_DATA3(UTRACE_OPEN_CLOSE, "close converter %s at %p, isCopyLocal=%b",
ucnv_getName(converter, &errorCode), converter, converter->isCopyLocal);
/* In order to speed up the close, only call the callbacks when they have been changed.
This performance check will only work when the callbacks are set within a shared library
or from user code that statically links this code. */
/* first, notify the callback functions that the converter is closed */
if (converter->fromCharErrorBehaviour != UCNV_TO_U_DEFAULT_CALLBACK) {
UConverterToUnicodeArgs toUArgs = {
sizeof(UConverterToUnicodeArgs),
TRUE,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL
};
toUArgs.converter = converter;
errorCode = U_ZERO_ERROR;
converter->fromCharErrorBehaviour(converter->toUContext, &toUArgs, NULL, 0, UCNV_CLOSE, &errorCode);
}
if (converter->fromUCharErrorBehaviour != UCNV_FROM_U_DEFAULT_CALLBACK) {
UConverterFromUnicodeArgs fromUArgs = {
sizeof(UConverterFromUnicodeArgs),
TRUE,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL
};
fromUArgs.converter = converter;
errorCode = U_ZERO_ERROR;
converter->fromUCharErrorBehaviour(converter->fromUContext, &fromUArgs, NULL, 0, 0, UCNV_CLOSE, &errorCode);
}
if (converter->sharedData->impl->close != NULL) {
converter->sharedData->impl->close(converter);
}
if (converter->subChars != (uint8_t *)converter->subUChars) {
uprv_free(converter->subChars);
}
if (converter->sharedData->isReferenceCounted) {
ucnv_unloadSharedDataIfReady(converter->sharedData);
}
if(!converter->isCopyLocal){
uprv_free(converter);
}
UTRACE_EXIT();
}
/*returns a single Name from the list, will return NULL if out of bounds
*/
U_CAPI const char* U_EXPORT2
ucnv_getAvailableName (int32_t n)
{
if (0 <= n && n <= 0xffff) {
UErrorCode err = U_ZERO_ERROR;
const char *name = ucnv_bld_getAvailableConverter((uint16_t)n, &err);
if (U_SUCCESS(err)) {
return name;
}
}
return NULL;
}
U_CAPI int32_t U_EXPORT2
ucnv_countAvailable ()
{
UErrorCode err = U_ZERO_ERROR;
return ucnv_bld_countAvailableConverters(&err);
}
U_CAPI void U_EXPORT2
ucnv_getSubstChars (const UConverter * converter,
char *mySubChar,
int8_t * len,
UErrorCode * err)
{
if (U_FAILURE (*err))
return;
if (converter->subCharLen <= 0) {
/* Unicode string or empty string from ucnv_setSubstString(). */
*len = 0;
return;
}
if (*len < converter->subCharLen) /*not enough space in subChars */
{
*err = U_INDEX_OUTOFBOUNDS_ERROR;
return;
}
uprv_memcpy (mySubChar, converter->subChars, converter->subCharLen); /*fills in the subchars */
*len = converter->subCharLen; /*store # of bytes copied to buffer */
}
U_CAPI void U_EXPORT2
ucnv_setSubstChars (UConverter * converter,
const char *mySubChar,
int8_t len,
UErrorCode * err)
{
if (U_FAILURE (*err))
return;
/*Makes sure that the subChar is within the codepages char length boundaries */
if ((len > converter->sharedData->staticData->maxBytesPerChar)
|| (len < converter->sharedData->staticData->minBytesPerChar))
{
*err = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
uprv_memcpy (converter->subChars, mySubChar, len); /*copies the subchars */
converter->subCharLen = len; /*sets the new len */
/*
* There is currently (2001Feb) no separate API to set/get subChar1.
* In order to always have subChar written after it is explicitly set,
* we set subChar1 to 0.
*/
converter->subChar1 = 0;
return;
}
U_CAPI void U_EXPORT2
ucnv_setSubstString(UConverter *cnv,
const UChar *s,
int32_t length,
UErrorCode *err) {
alignas(UConverter) char cloneBuffer[U_CNV_SAFECLONE_BUFFERSIZE];
char chars[UCNV_ERROR_BUFFER_LENGTH];
UConverter *clone;
uint8_t *subChars;
int32_t cloneSize, length8;
/* Let the following functions check all arguments. */
cloneSize = sizeof(cloneBuffer);
clone = ucnv_safeClone(cnv, cloneBuffer, &cloneSize, err);
ucnv_setFromUCallBack(clone, UCNV_FROM_U_CALLBACK_STOP, NULL, NULL, NULL, err);
length8 = ucnv_fromUChars(clone, chars, (int32_t)sizeof(chars), s, length, err);
ucnv_close(clone);
if (U_FAILURE(*err)) {
return;
}
if (cnv->sharedData->impl->writeSub == NULL
#if !UCONFIG_NO_LEGACY_CONVERSION
|| (cnv->sharedData->staticData->conversionType == UCNV_MBCS &&
ucnv_MBCSGetType(cnv) != UCNV_EBCDIC_STATEFUL)
#endif
) {
/* The converter is not stateful. Store the charset bytes as a fixed string. */
subChars = (uint8_t *)chars;
} else {
/*
* The converter has a non-default writeSub() function, indicating
* that it is stateful.
* Store the Unicode string for on-the-fly conversion for correct
* state handling.
*/
if (length > UCNV_ERROR_BUFFER_LENGTH) {
/*
* Should not occur. The converter should output at least one byte
* per UChar, which means that ucnv_fromUChars() should catch all
* overflows.
*/
*err = U_BUFFER_OVERFLOW_ERROR;
return;
}
subChars = (uint8_t *)s;
if (length < 0) {
length = u_strlen(s);
}
length8 = length * U_SIZEOF_UCHAR;
}
/*
* For storing the substitution string, select either the small buffer inside
* UConverter or allocate a subChars buffer.
*/
if (length8 > UCNV_MAX_SUBCHAR_LEN) {
/* Use a separate buffer for the string. Outside UConverter to not make it too large. */
if (cnv->subChars == (uint8_t *)cnv->subUChars) {
/* Allocate a new buffer for the string. */
cnv->subChars = (uint8_t *)uprv_malloc(UCNV_ERROR_BUFFER_LENGTH * U_SIZEOF_UCHAR);
if (cnv->subChars == NULL) {
cnv->subChars = (uint8_t *)cnv->subUChars;
*err = U_MEMORY_ALLOCATION_ERROR;
return;
}
uprv_memset(cnv->subChars, 0, UCNV_ERROR_BUFFER_LENGTH * U_SIZEOF_UCHAR);
}
}
/* Copy the substitution string into the UConverter or its subChars buffer. */
if (length8 == 0) {
cnv->subCharLen = 0;
} else {
uprv_memcpy(cnv->subChars, subChars, length8);
if (subChars == (uint8_t *)chars) {
cnv->subCharLen = (int8_t)length8;
} else /* subChars == s */ {
cnv->subCharLen = (int8_t)-length;
}
}
/* See comment in ucnv_setSubstChars(). */
cnv->subChar1 = 0;
}
/*resets the internal states of a converter
*goal : have the same behaviour than a freshly created converter
*/
static void _reset(UConverter *converter, UConverterResetChoice choice,
UBool callCallback) {
if(converter == NULL) {
return;
}
if(callCallback) {
/* first, notify the callback functions that the converter is reset */
UErrorCode errorCode;
if(choice<=UCNV_RESET_TO_UNICODE && converter->fromCharErrorBehaviour != UCNV_TO_U_DEFAULT_CALLBACK) {
UConverterToUnicodeArgs toUArgs = {
sizeof(UConverterToUnicodeArgs),
TRUE,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL
};
toUArgs.converter = converter;
errorCode = U_ZERO_ERROR;
converter->fromCharErrorBehaviour(converter->toUContext, &toUArgs, NULL, 0, UCNV_RESET, &errorCode);
}
if(choice!=UCNV_RESET_TO_UNICODE && converter->fromUCharErrorBehaviour != UCNV_FROM_U_DEFAULT_CALLBACK) {
UConverterFromUnicodeArgs fromUArgs = {
sizeof(UConverterFromUnicodeArgs),
TRUE,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL
};
fromUArgs.converter = converter;
errorCode = U_ZERO_ERROR;
converter->fromUCharErrorBehaviour(converter->fromUContext, &fromUArgs, NULL, 0, 0, UCNV_RESET, &errorCode);
}
}
/* now reset the converter itself */
if(choice<=UCNV_RESET_TO_UNICODE) {
converter->toUnicodeStatus = converter->sharedData->toUnicodeStatus;
converter->mode = 0;
converter->toULength = 0;
converter->invalidCharLength = converter->UCharErrorBufferLength = 0;
converter->preToULength = 0;
}
if(choice!=UCNV_RESET_TO_UNICODE) {
converter->fromUnicodeStatus = 0;
converter->fromUChar32 = 0;
converter->invalidUCharLength = converter->charErrorBufferLength = 0;
converter->preFromUFirstCP = U_SENTINEL;
converter->preFromULength = 0;
}
if (converter->sharedData->impl->reset != NULL) {
/* call the custom reset function */
converter->sharedData->impl->reset(converter, choice);
}
}
U_CAPI void U_EXPORT2
ucnv_reset(UConverter *converter)
{
_reset(converter, UCNV_RESET_BOTH, TRUE);
}
U_CAPI void U_EXPORT2
ucnv_resetToUnicode(UConverter *converter)
{
_reset(converter, UCNV_RESET_TO_UNICODE, TRUE);
}
U_CAPI void U_EXPORT2
ucnv_resetFromUnicode(UConverter *converter)
{
_reset(converter, UCNV_RESET_FROM_UNICODE, TRUE);
}
U_CAPI int8_t U_EXPORT2
ucnv_getMaxCharSize (const UConverter * converter)
{
return converter->maxBytesPerUChar;
}
U_CAPI int8_t U_EXPORT2
ucnv_getMinCharSize (const UConverter * converter)
{
return converter->sharedData->staticData->minBytesPerChar;
}
U_CAPI const char* U_EXPORT2
ucnv_getName (const UConverter * converter, UErrorCode * err)
{
if (U_FAILURE (*err))
return NULL;
if(converter->sharedData->impl->getName){
const char* temp= converter->sharedData->impl->getName(converter);
if(temp)
return temp;
}
return converter->sharedData->staticData->name;
}
U_CAPI int32_t U_EXPORT2
ucnv_getCCSID(const UConverter * converter,
UErrorCode * err)
{
int32_t ccsid;
if (U_FAILURE (*err))
return -1;
ccsid = converter->sharedData->staticData->codepage;
if (ccsid == 0) {
/* Rare case. This is for cases like gb18030,
which doesn't have an IBM canonical name, but does have an IBM alias. */
const char *standardName = ucnv_getStandardName(ucnv_getName(converter, err), "IBM", err);
if (U_SUCCESS(*err) && standardName) {
const char *ccsidStr = uprv_strchr(standardName, '-');
if (ccsidStr) {
ccsid = (int32_t)atol(ccsidStr+1); /* +1 to skip '-' */
}
}
}
return ccsid;
}
U_CAPI UConverterPlatform U_EXPORT2
ucnv_getPlatform (const UConverter * converter,
UErrorCode * err)
{
if (U_FAILURE (*err))
return UCNV_UNKNOWN;
return (UConverterPlatform)converter->sharedData->staticData->platform;
}
U_CAPI void U_EXPORT2
ucnv_getToUCallBack (const UConverter * converter,
UConverterToUCallback *action,
const void **context)
{
*action = converter->fromCharErrorBehaviour;
*context = converter->toUContext;
}
U_CAPI void U_EXPORT2
ucnv_getFromUCallBack (const UConverter * converter,
UConverterFromUCallback *action,
const void **context)
{
*action = converter->fromUCharErrorBehaviour;
*context = converter->fromUContext;
}
U_CAPI void U_EXPORT2
ucnv_setToUCallBack (UConverter * converter,
UConverterToUCallback newAction,
const void* newContext,
UConverterToUCallback *oldAction,
const void** oldContext,
UErrorCode * err)
{
if (U_FAILURE (*err))
return;
if (oldAction) *oldAction = converter->fromCharErrorBehaviour;
converter->fromCharErrorBehaviour = newAction;
if (oldContext) *oldContext = converter->toUContext;
converter->toUContext = newContext;
}
U_CAPI void U_EXPORT2
ucnv_setFromUCallBack (UConverter * converter,
UConverterFromUCallback newAction,
const void* newContext,
UConverterFromUCallback *oldAction,
const void** oldContext,
UErrorCode * err)
{
if (U_FAILURE (*err))
return;
if (oldAction) *oldAction = converter->fromUCharErrorBehaviour;
converter->fromUCharErrorBehaviour = newAction;
if (oldContext) *oldContext = converter->fromUContext;
converter->fromUContext = newContext;
}
static void
_updateOffsets(int32_t *offsets, int32_t length,
int32_t sourceIndex, int32_t errorInputLength) {
int32_t *limit;
int32_t delta, offset;
if(sourceIndex>=0) {
/*
* adjust each offset by adding the previous sourceIndex
* minus the length of the input sequence that caused an
* error, if any
*/
delta=sourceIndex-errorInputLength;
} else {
/*
* set each offset to -1 because this conversion function
* does not handle offsets
*/
delta=-1;
}
limit=offsets+length;
if(delta==0) {
/* most common case, nothing to do */
} else if(delta>0) {
/* add the delta to each offset (but not if the offset is <0) */
while(offsets<limit) {
offset=*offsets;
if(offset>=0) {
*offsets=offset+delta;
}
++offsets;
}
} else /* delta<0 */ {
/*
* set each offset to -1 because this conversion function
* does not handle offsets
* or the error input sequence started in a previous buffer
*/
while(offsets<limit) {
*offsets++=-1;
}
}
}
/* ucnv_fromUnicode --------------------------------------------------------- */
/*
* Implementation note for m:n conversions
*
* While collecting source units to find the longest match for m:n conversion,
* some source units may need to be stored for a partial match.
* When a second buffer does not yield a match on all of the previously stored
* source units, then they must be "replayed", i.e., fed back into the converter.
*
* The code relies on the fact that replaying will not nest -
* converting a replay buffer will not result in a replay.
* This is because a replay is necessary only after the _continuation_ of a
* partial match failed, but a replay buffer is converted as a whole.
* It may result in some of its units being stored again for a partial match,
* but there will not be a continuation _during_ the replay which could fail.
*
* It is conceivable that a callback function could call the converter
* recursively in a way that causes another replay to be stored, but that
* would be an error in the callback function.
* Such violations will cause assertion failures in a debug build,
* and wrong output, but they will not cause a crash.
*/
static void
_fromUnicodeWithCallback(UConverterFromUnicodeArgs *pArgs, UErrorCode *err) {
UConverterFromUnicode fromUnicode;
UConverter *cnv;
const UChar *s;
char *t;
int32_t *offsets;
int32_t sourceIndex;
int32_t errorInputLength;
UBool converterSawEndOfInput, calledCallback;
/* variables for m:n conversion */
UChar replay[UCNV_EXT_MAX_UCHARS];
const UChar *realSource, *realSourceLimit;
int32_t realSourceIndex;
UBool realFlush;
cnv=pArgs->converter;
s=pArgs->source;
t=pArgs->target;
offsets=pArgs->offsets;
/* get the converter implementation function */
sourceIndex=0;
if(offsets==NULL) {
fromUnicode=cnv->sharedData->impl->fromUnicode;
} else {
fromUnicode=cnv->sharedData->impl->fromUnicodeWithOffsets;
if(fromUnicode==NULL) {
/* there is no WithOffsets implementation */
fromUnicode=cnv->sharedData->impl->fromUnicode;
/* we will write -1 for each offset */
sourceIndex=-1;
}
}
if(cnv->preFromULength>=0) {
/* normal mode */
realSource=NULL;
/* avoid compiler warnings - not otherwise necessary, and the values do not matter */
realSourceLimit=NULL;
realFlush=FALSE;
realSourceIndex=0;
} else {
/*
* Previous m:n conversion stored source units from a partial match
* and failed to consume all of them.
* We need to "replay" them from a temporary buffer and convert them first.
*/
realSource=pArgs->source;
realSourceLimit=pArgs->sourceLimit;
realFlush=pArgs->flush;
realSourceIndex=sourceIndex;
uprv_memcpy(replay, cnv->preFromU, -cnv->preFromULength*U_SIZEOF_UCHAR);
pArgs->source=replay;
pArgs->sourceLimit=replay-cnv->preFromULength;
pArgs->flush=FALSE;
sourceIndex=-1;
cnv->preFromULength=0;
}
/*
* loop for conversion and error handling
*
* loop {
* convert
* loop {
* update offsets
* handle end of input
* handle errors/call callback
* }
* }
*/
for(;;) {
if(U_SUCCESS(*err)) {
/* convert */
fromUnicode(pArgs, err);
/*
* set a flag for whether the converter
* successfully processed the end of the input
*
* need not check cnv->preFromULength==0 because a replay (<0) will cause
* s<sourceLimit before converterSawEndOfInput is checked
*/
converterSawEndOfInput=
(UBool)(U_SUCCESS(*err) &&
pArgs->flush && pArgs->source==pArgs->sourceLimit &&
cnv->fromUChar32==0);
} else {
/* handle error from ucnv_convertEx() */
converterSawEndOfInput=FALSE;
}
/* no callback called yet for this iteration */
calledCallback=FALSE;
/* no sourceIndex adjustment for conversion, only for callback output */
errorInputLength=0;
/*
* loop for offsets and error handling
*
* iterates at most 3 times:
* 1. to clean up after the conversion function
* 2. after the callback
* 3. after the callback again if there was truncated input
*/
for(;;) {
/* update offsets if we write any */
if(offsets!=NULL) {
int32_t length=(int32_t)(pArgs->target-t);
if(length>0) {
_updateOffsets(offsets, length, sourceIndex, errorInputLength);
/*
* if a converter handles offsets and updates the offsets
* pointer at the end, then pArgs->offset should not change
* here;
* however, some converters do not handle offsets at all
* (sourceIndex<0) or may not update the offsets pointer
*/
pArgs->offsets=offsets+=length;
}
if(sourceIndex>=0) {
sourceIndex+=(int32_t)(pArgs->source-s);
}
}
if(cnv->preFromULength<0) {
/*
* switch the source to new replay units (cannot occur while replaying)
* after offset handling and before end-of-input and callback handling
*/
if(realSource==NULL) {
realSource=pArgs->source;
realSourceLimit=pArgs->sourceLimit;
realFlush=pArgs->flush;
realSourceIndex=sourceIndex;
uprv_memcpy(replay, cnv->preFromU, -cnv->preFromULength*U_SIZEOF_UCHAR);
pArgs->source=replay;
pArgs->sourceLimit=replay-cnv->preFromULength;
pArgs->flush=FALSE;
if((sourceIndex+=cnv->preFromULength)<0) {
sourceIndex=-1;
}
cnv->preFromULength=0;
} else {
/* see implementation note before _fromUnicodeWithCallback() */
U_ASSERT(realSource==NULL);
*err=U_INTERNAL_PROGRAM_ERROR;
}
}
/* update pointers */
s=pArgs->source;
t=pArgs->target;
if(U_SUCCESS(*err)) {
if(s<pArgs->sourceLimit) {
/*
* continue with the conversion loop while there is still input left
* (continue converting by breaking out of only the inner loop)
*/
break;
} else if(realSource!=NULL) {
/* switch back from replaying to the real source and continue */
pArgs->source=realSource;
pArgs->sourceLimit=realSourceLimit;
pArgs->flush=realFlush;
sourceIndex=realSourceIndex;
realSource=NULL;
break;
} else if(pArgs->flush && cnv->fromUChar32!=0) {
/*
* the entire input stream is consumed
* and there is a partial, truncated input sequence left
*/
/* inject an error and continue with callback handling */
*err=U_TRUNCATED_CHAR_FOUND;
calledCallback=FALSE; /* new error condition */
} else {
/* input consumed */
if(pArgs->flush) {
/*
* return to the conversion loop once more if the flush
* flag is set and the conversion function has not
* successfully processed the end of the input yet
*
* (continue converting by breaking out of only the inner loop)
*/
if(!converterSawEndOfInput) {
break;
}
/* reset the converter without calling the callback function */
_reset(cnv, UCNV_RESET_FROM_UNICODE, FALSE);
}
/* done successfully */
return;
}
}
/* U_FAILURE(*err) */
{
UErrorCode e;
if( calledCallback ||
(e=*err)==U_BUFFER_OVERFLOW_ERROR ||
(e!=U_INVALID_CHAR_FOUND &&
e!=U_ILLEGAL_CHAR_FOUND &&
e!=U_TRUNCATED_CHAR_FOUND)
) {
/*
* the callback did not or cannot resolve the error:
* set output pointers and return
*
* the check for buffer overflow is redundant but it is
* a high-runner case and hopefully documents the intent
* well
*
* if we were replaying, then the replay buffer must be
* copied back into the UConverter
* and the real arguments must be restored
*/
if(realSource!=NULL) {
int32_t length;
U_ASSERT(cnv->preFromULength==0);
length=(int32_t)(pArgs->sourceLimit-pArgs->source);
if(length>0) {
u_memcpy(cnv->preFromU, pArgs->source, length);
cnv->preFromULength=(int8_t)-length;
}
pArgs->source=realSource;
pArgs->sourceLimit=realSourceLimit;
pArgs->flush=realFlush;
}
return;
}
}
/* callback handling */
{
UChar32 codePoint;
/* get and write the code point */
codePoint=cnv->fromUChar32;
errorInputLength=0;
U16_APPEND_UNSAFE(cnv->invalidUCharBuffer, errorInputLength, codePoint);
cnv->invalidUCharLength=(int8_t)errorInputLength;
/* set the converter state to deal with the next character */
cnv->fromUChar32=0;
/* call the callback function */
cnv->fromUCharErrorBehaviour(cnv->fromUContext, pArgs,
cnv->invalidUCharBuffer, errorInputLength, codePoint,
*err==U_INVALID_CHAR_FOUND ? UCNV_UNASSIGNED : UCNV_ILLEGAL,
err);
}
/*
* loop back to the offset handling
*
* this flag will indicate after offset handling
* that a callback was called;
* if the callback did not resolve the error, then we return
*/
calledCallback=TRUE;
}
}
}
/*
* Output the fromUnicode overflow buffer.
* Call this function if(cnv->charErrorBufferLength>0).
* @return TRUE if overflow
*/
static UBool
ucnv_outputOverflowFromUnicode(UConverter *cnv,
char **target, const char *targetLimit,
int32_t **pOffsets,
UErrorCode *err) {
int32_t *offsets;
char *overflow, *t;
int32_t i, length;
t=*target;
if(pOffsets!=NULL) {
offsets=*pOffsets;
} else {
offsets=NULL;
}
overflow=(char *)cnv->charErrorBuffer;
length=cnv->charErrorBufferLength;
i=0;
while(i<length) {
if(t==targetLimit) {
/* the overflow buffer contains too much, keep the rest */
int32_t j=0;
do {
overflow[j++]=overflow[i++];
} while(i<length);
cnv->charErrorBufferLength=(int8_t)j;
*target=t;
if(offsets!=NULL) {
*pOffsets=offsets;
}
*err=U_BUFFER_OVERFLOW_ERROR;
return TRUE;
}
/* copy the overflow contents to the target */
*t++=overflow[i++];
if(offsets!=NULL) {
*offsets++=-1; /* no source index available for old output */
}
}
/* the overflow buffer is completely copied to the target */
cnv->charErrorBufferLength=0;
*target=t;
if(offsets!=NULL) {
*pOffsets=offsets;
}
return FALSE;
}
U_CAPI void U_EXPORT2
ucnv_fromUnicode(UConverter *cnv,
char **target, const char *targetLimit,
const UChar **source, const UChar *sourceLimit,
int32_t *offsets,
UBool flush,
UErrorCode *err) {
UConverterFromUnicodeArgs args;
const UChar *s;
char *t;
/* check parameters */
if(err==NULL || U_FAILURE(*err)) {
return;
}
if(cnv==NULL || target==NULL || source==NULL) {
*err=U_ILLEGAL_ARGUMENT_ERROR;
return;
}
s=*source;
t=*target;
if ((const void *)U_MAX_PTR(sourceLimit) == (const void *)sourceLimit) {
/*
Prevent code from going into an infinite loop in case we do hit this
limit. The limit pointer is expected to be on a UChar * boundary.
This also prevents the next argument check from failing.
*/
sourceLimit = (const UChar *)(((const char *)sourceLimit) - 1);
}
/*
* All these conditions should never happen.
*
* 1) Make sure that the limits are >= to the address source or target
*
* 2) Make sure that the buffer sizes do not exceed the number range for
* int32_t because some functions use the size (in units or bytes)
* rather than comparing pointers, and because offsets are int32_t values.
*
* size_t is guaranteed to be unsigned and large enough for the job.
*
* Return with an error instead of adjusting the limits because we would
* not be able to maintain the semantics that either the source must be
* consumed or the target filled (unless an error occurs).
* An adjustment would be targetLimit=t+0x7fffffff; for example.
*
* 3) Make sure that the user didn't incorrectly cast a UChar * pointer
* to a char * pointer and provide an incomplete UChar code unit.
*/
if (sourceLimit<s || targetLimit<t ||
((size_t)(sourceLimit-s)>(size_t)0x3fffffff && sourceLimit>s) ||
((size_t)(targetLimit-t)>(size_t)0x7fffffff && targetLimit>t) ||
(((const char *)sourceLimit-(const char *)s) & 1) != 0)
{
*err=U_ILLEGAL_ARGUMENT_ERROR;
return;
}
/* output the target overflow buffer */
if( cnv->charErrorBufferLength>0 &&
ucnv_outputOverflowFromUnicode(cnv, target, targetLimit, &offsets, err)
) {
/* U_BUFFER_OVERFLOW_ERROR */
return;
}
/* *target may have moved, therefore stop using t */
if(!flush && s==sourceLimit && cnv->preFromULength>=0) {
/* the overflow buffer is emptied and there is no new input: we are done */
return;
}
/*
* Do not simply return with a buffer overflow error if
* !flush && t==targetLimit
* because it is possible that the source will not generate any output.
* For example, the skip callback may be called;
* it does not output anything.
*/
/* prepare the converter arguments */
args.converter=cnv;
args.flush=flush;
args.offsets=offsets;
args.source=s;
args.sourceLimit=sourceLimit;
args.target=*target;
args.targetLimit=targetLimit;
args.size=sizeof(args);
_fromUnicodeWithCallback(&args, err);
*source=args.source;
*target=args.target;
}
/* ucnv_toUnicode() --------------------------------------------------------- */
static void
_toUnicodeWithCallback(UConverterToUnicodeArgs *pArgs, UErrorCode *err) {
UConverterToUnicode toUnicode;
UConverter *cnv;
const char *s;
UChar *t;
int32_t *offsets;
int32_t sourceIndex;
int32_t errorInputLength;
UBool converterSawEndOfInput, calledCallback;
/* variables for m:n conversion */
char replay[UCNV_EXT_MAX_BYTES];
const char *realSource, *realSourceLimit;
int32_t realSourceIndex;
UBool realFlush;
cnv=pArgs->converter;
s=pArgs->source;
t=pArgs->target;
offsets=pArgs->offsets;
/* get the converter implementation function */
sourceIndex=0;
if(offsets==NULL) {
toUnicode=cnv->sharedData->impl->toUnicode;
} else {
toUnicode=cnv->sharedData->impl->toUnicodeWithOffsets;
if(toUnicode==NULL) {
/* there is no WithOffsets implementation */
toUnicode=cnv->sharedData->impl->toUnicode;
/* we will write -1 for each offset */
sourceIndex=-1;
}
}
if(cnv->preToULength>=0) {
/* normal mode */
realSource=NULL;
/* avoid compiler warnings - not otherwise necessary, and the values do not matter */
realSourceLimit=NULL;
realFlush=FALSE;
realSourceIndex=0;
} else {
/*
* Previous m:n conversion stored source units from a partial match
* and failed to consume all of them.
* We need to "replay" them from a temporary buffer and convert them first.
*/
realSource=pArgs->source;
realSourceLimit=pArgs->sourceLimit;
realFlush=pArgs->flush;
realSourceIndex=sourceIndex;
uprv_memcpy(replay, cnv->preToU, -cnv->preToULength);
pArgs->source=replay;
pArgs->sourceLimit=replay-cnv->preToULength;
pArgs->flush=FALSE;
sourceIndex=-1;
cnv->preToULength=0;
}
/*
* loop for conversion and error handling
*
* loop {
* convert
* loop {
* update offsets
* handle end of input
* handle errors/call callback
* }
* }
*/
for(;;) {
if(U_SUCCESS(*err)) {
/* convert */
toUnicode(pArgs, err);
/*
* set a flag for whether the converter
* successfully processed the end of the input
*
* need not check cnv->preToULength==0 because a replay (<0) will cause
* s<sourceLimit before converterSawEndOfInput is checked
*/
converterSawEndOfInput=
(UBool)(U_SUCCESS(*err) &&
pArgs->flush && pArgs->source==pArgs->sourceLimit &&
cnv->toULength==0);
} else {
/* handle error from getNextUChar() or ucnv_convertEx() */
converterSawEndOfInput=FALSE;
}
/* no callback called yet for this iteration */
calledCallback=FALSE;
/* no sourceIndex adjustment for conversion, only for callback output */
errorInputLength=0;
/*
* loop for offsets and error handling
*
* iterates at most 3 times:
* 1. to clean up after the conversion function
* 2. after the callback
* 3. after the callback again if there was truncated input
*/
for(;;) {
/* update offsets if we write any */
if(offsets!=NULL) {
int32_t length=(int32_t)(pArgs->target-t);
if(length>0) {
_updateOffsets(offsets, length, sourceIndex, errorInputLength);
/*
* if a converter handles offsets and updates the offsets
* pointer at the end, then pArgs->offset should not change
* here;
* however, some converters do not handle offsets at all
* (sourceIndex<0) or may not update the offsets pointer
*/
pArgs->offsets=offsets+=length;
}
if(sourceIndex>=0) {
sourceIndex+=(int32_t)(pArgs->source-s);
}
}
if(cnv->preToULength<0) {
/*
* switch the source to new replay units (cannot occur while replaying)
* after offset handling and before end-of-input and callback handling
*/
if(realSource==NULL) {
realSource=pArgs->source;
realSourceLimit=pArgs->sourceLimit;
realFlush=pArgs->flush;
realSourceIndex=sourceIndex;
uprv_memcpy(replay, cnv->preToU, -cnv->preToULength);
pArgs->source=replay;
pArgs->sourceLimit=replay-cnv->preToULength;
pArgs->flush=FALSE;
if((sourceIndex+=cnv->preToULength)<0) {
sourceIndex=-1;
}
cnv->preToULength=0;
} else {
/* see implementation note before _fromUnicodeWithCallback() */
U_ASSERT(realSource==NULL);
*err=U_INTERNAL_PROGRAM_ERROR;
}
}
/* update pointers */
s=pArgs->source;
t=pArgs->target;
if(U_SUCCESS(*err)) {
if(s<pArgs->sourceLimit) {
/*
* continue with the conversion loop while there is still input left
* (continue converting by breaking out of only the inner loop)
*/
break;
} else if(realSource!=NULL) {
/* switch back from replaying to the real source and continue */
pArgs->source=realSource;
pArgs->sourceLimit=realSourceLimit;
pArgs->flush=realFlush;
sourceIndex=realSourceIndex;
realSource=NULL;
break;
} else if(pArgs->flush && cnv->toULength>0) {
/*
* the entire input stream is consumed
* and there is a partial, truncated input sequence left
*/
/* inject an error and continue with callback handling */
*err=U_TRUNCATED_CHAR_FOUND;
calledCallback=FALSE; /* new error condition */
} else {
/* input consumed */
if(pArgs->flush) {
/*
* return to the conversion loop once more if the flush
* flag is set and the conversion function has not
* successfully processed the end of the input yet
*
* (continue converting by breaking out of only the inner loop)
*/
if(!converterSawEndOfInput) {
break;
}
/* reset the converter without calling the callback function */
_reset(cnv, UCNV_RESET_TO_UNICODE, FALSE);
}
/* done successfully */
return;
}
}
/* U_FAILURE(*err) */
{
UErrorCode e;
if( calledCallback ||
(e=*err)==U_BUFFER_OVERFLOW_ERROR ||
(e!=U_INVALID_CHAR_FOUND &&
e!=U_ILLEGAL_CHAR_FOUND &&
e!=U_TRUNCATED_CHAR_FOUND &&
e!=U_ILLEGAL_ESCAPE_SEQUENCE &&
e!=U_UNSUPPORTED_ESCAPE_SEQUENCE)
) {
/*
* the callback did not or cannot resolve the error:
* set output pointers and return
*
* the check for buffer overflow is redundant but it is
* a high-runner case and hopefully documents the intent
* well
*
* if we were replaying, then the replay buffer must be
* copied back into the UConverter
* and the real arguments must be restored
*/
if(realSource!=NULL) {
int32_t length;
U_ASSERT(cnv->preToULength==0);
length=(int32_t)(pArgs->sourceLimit-pArgs->source);
if(length>0) {
uprv_memcpy(cnv->preToU, pArgs->source, length);
cnv->preToULength=(int8_t)-length;
}
pArgs->source=realSource;
pArgs->sourceLimit=realSourceLimit;
pArgs->flush=realFlush;
}
return;
}
}
/* copy toUBytes[] to invalidCharBuffer[] */
errorInputLength=cnv->invalidCharLength=cnv->toULength;
if(errorInputLength>0) {
uprv_memcpy(cnv->invalidCharBuffer, cnv->toUBytes, errorInputLength);
}
/* set the converter state to deal with the next character */
cnv->toULength=0;
/* call the callback function */
if(cnv->toUCallbackReason==UCNV_ILLEGAL && *err==U_INVALID_CHAR_FOUND) {
cnv->toUCallbackReason = UCNV_UNASSIGNED;
}
cnv->fromCharErrorBehaviour(cnv->toUContext, pArgs,
cnv->invalidCharBuffer, errorInputLength,
cnv->toUCallbackReason,
err);
cnv->toUCallbackReason = UCNV_ILLEGAL; /* reset to default value */
/*
* loop back to the offset handling
*
* this flag will indicate after offset handling
* that a callback was called;
* if the callback did not resolve the error, then we return
*/
calledCallback=TRUE;
}
}
}
/*
* Output the toUnicode overflow buffer.
* Call this function if(cnv->UCharErrorBufferLength>0).
* @return TRUE if overflow
*/
static UBool
ucnv_outputOverflowToUnicode(UConverter *cnv,
UChar **target, const UChar *targetLimit,
int32_t **pOffsets,
UErrorCode *err) {
int32_t *offsets;
UChar *overflow, *t;
int32_t i, length;
t=*target;
if(pOffsets!=NULL) {
offsets=*pOffsets;
} else {
offsets=NULL;
}
overflow=cnv->UCharErrorBuffer;
length=cnv->UCharErrorBufferLength;
i=0;
while(i<length) {
if(t==targetLimit) {
/* the overflow buffer contains too much, keep the rest */
int32_t j=0;
do {
overflow[j++]=overflow[i++];
} while(i<length);
cnv->UCharErrorBufferLength=(int8_t)j;
*target=t;
if(offsets!=NULL) {
*pOffsets=offsets;
}
*err=U_BUFFER_OVERFLOW_ERROR;
return TRUE;
}
/* copy the overflow contents to the target */
*t++=overflow[i++];
if(offsets!=NULL) {
*offsets++=-1; /* no source index available for old output */
}
}
/* the overflow buffer is completely copied to the target */
cnv->UCharErrorBufferLength=0;
*target=t;
if(offsets!=NULL) {
*pOffsets=offsets;
}
return FALSE;
}
U_CAPI void U_EXPORT2
ucnv_toUnicode(UConverter *cnv,
UChar **target, const UChar *targetLimit,
const char **source, const char *sourceLimit,
int32_t *offsets,
UBool flush,
UErrorCode *err) {
UConverterToUnicodeArgs args;
const char *s;
UChar *t;
/* check parameters */
if(err==NULL || U_FAILURE(*err)) {
return;
}
if(cnv==NULL || target==NULL || source==NULL) {
*err=U_ILLEGAL_ARGUMENT_ERROR;
return;
}
s=*source;
t=*target;
if ((const void *)U_MAX_PTR(targetLimit) == (const void *)targetLimit) {
/*
Prevent code from going into an infinite loop in case we do hit this
limit. The limit pointer is expected to be on a UChar * boundary.
This also prevents the next argument check from failing.
*/
targetLimit = (const UChar *)(((const char *)targetLimit) - 1);
}
/*
* All these conditions should never happen.
*
* 1) Make sure that the limits are >= to the address source or target
*
* 2) Make sure that the buffer sizes do not exceed the number range for
* int32_t because some functions use the size (in units or bytes)
* rather than comparing pointers, and because offsets are int32_t values.
*
* size_t is guaranteed to be unsigned and large enough for the job.
*
* Return with an error instead of adjusting the limits because we would
* not be able to maintain the semantics that either the source must be
* consumed or the target filled (unless an error occurs).
* An adjustment would be sourceLimit=t+0x7fffffff; for example.
*
* 3) Make sure that the user didn't incorrectly cast a UChar * pointer
* to a char * pointer and provide an incomplete UChar code unit.
*/
if (sourceLimit<s || targetLimit<t ||
((size_t)(sourceLimit-s)>(size_t)0x7fffffff && sourceLimit>s) ||
((size_t)(targetLimit-t)>(size_t)0x3fffffff && targetLimit>t) ||
(((const char *)targetLimit-(const char *)t) & 1) != 0
) {
*err=U_ILLEGAL_ARGUMENT_ERROR;
return;
}
/* output the target overflow buffer */
if( cnv->UCharErrorBufferLength>0 &&
ucnv_outputOverflowToUnicode(cnv, target, targetLimit, &offsets, err)
) {
/* U_BUFFER_OVERFLOW_ERROR */
return;
}
/* *target may have moved, therefore stop using t */
if(!flush && s==sourceLimit && cnv->preToULength>=0) {
/* the overflow buffer is emptied and there is no new input: we are done */
return;
}
/*
* Do not simply return with a buffer overflow error if
* !flush && t==targetLimit
* because it is possible that the source will not generate any output.
* For example, the skip callback may be called;
* it does not output anything.
*/
/* prepare the converter arguments */
args.converter=cnv;
args.flush=flush;
args.offsets=offsets;
args.source=s;
args.sourceLimit=sourceLimit;
args.target=*target;
args.targetLimit=targetLimit;
args.size=sizeof(args);
_toUnicodeWithCallback(&args, err);
*source=args.source;
*target=args.target;
}
/* ucnv_to/fromUChars() ----------------------------------------------------- */
U_CAPI int32_t U_EXPORT2
ucnv_fromUChars(UConverter *cnv,
char *dest, int32_t destCapacity,
const UChar *src, int32_t srcLength,
UErrorCode *pErrorCode) {
const UChar *srcLimit;
char *originalDest, *destLimit;
int32_t destLength;
/* check arguments */
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
return 0;
}
if( cnv==NULL ||
destCapacity<0 || (destCapacity>0 && dest==NULL) ||
srcLength<-1 || (srcLength!=0 && src==NULL)
) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
/* initialize */
ucnv_resetFromUnicode(cnv);
originalDest=dest;
if(srcLength==-1) {
srcLength=u_strlen(src);
}
if(srcLength>0) {
srcLimit=src+srcLength;
destCapacity=pinCapacity(dest, destCapacity);
destLimit=dest+destCapacity;
/* perform the conversion */
ucnv_fromUnicode(cnv, &dest, destLimit, &src, srcLimit, 0, TRUE, pErrorCode);
destLength=(int32_t)(dest-originalDest);
/* if an overflow occurs, then get the preflighting length */
if(*pErrorCode==U_BUFFER_OVERFLOW_ERROR) {
char buffer[1024];
destLimit=buffer+sizeof(buffer);
do {
dest=buffer;
*pErrorCode=U_ZERO_ERROR;
ucnv_fromUnicode(cnv, &dest, destLimit, &src, srcLimit, 0, TRUE, pErrorCode);
destLength+=(int32_t)(dest-buffer);
} while(*pErrorCode==U_BUFFER_OVERFLOW_ERROR);
}
} else {
destLength=0;
}
return u_terminateChars(originalDest, destCapacity, destLength, pErrorCode);
}
U_CAPI int32_t U_EXPORT2
ucnv_toUChars(UConverter *cnv,
UChar *dest, int32_t destCapacity,
const char *src, int32_t srcLength,
UErrorCode *pErrorCode) {
const char *srcLimit;
UChar *originalDest, *destLimit;
int32_t destLength;
/* check arguments */
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
return 0;
}
if( cnv==NULL ||
destCapacity<0 || (destCapacity>0 && dest==NULL) ||
srcLength<-1 || (srcLength!=0 && src==NULL))
{
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
/* initialize */
ucnv_resetToUnicode(cnv);
originalDest=dest;
if(srcLength==-1) {
srcLength=(int32_t)uprv_strlen(src);
}
if(srcLength>0) {
srcLimit=src+srcLength;
destCapacity=pinCapacity(dest, destCapacity);
destLimit=dest+destCapacity;
/* perform the conversion */
ucnv_toUnicode(cnv, &dest, destLimit, &src, srcLimit, 0, TRUE, pErrorCode);
destLength=(int32_t)(dest-originalDest);
/* if an overflow occurs, then get the preflighting length */
if(*pErrorCode==U_BUFFER_OVERFLOW_ERROR)
{
UChar buffer[1024];
destLimit=buffer+UPRV_LENGTHOF(buffer);
do {
dest=buffer;
*pErrorCode=U_ZERO_ERROR;
ucnv_toUnicode(cnv, &dest, destLimit, &src, srcLimit, 0, TRUE, pErrorCode);
destLength+=(int32_t)(dest-buffer);
}
while(*pErrorCode==U_BUFFER_OVERFLOW_ERROR);
}
} else {
destLength=0;
}
return u_terminateUChars(originalDest, destCapacity, destLength, pErrorCode);
}
/* ucnv_getNextUChar() ------------------------------------------------------ */
U_CAPI UChar32 U_EXPORT2
ucnv_getNextUChar(UConverter *cnv,
const char **source, const char *sourceLimit,
UErrorCode *err) {
UConverterToUnicodeArgs args;
UChar buffer[U16_MAX_LENGTH];
const char *s;
UChar32 c;
int32_t i, length;
/* check parameters */
if(err==NULL || U_FAILURE(*err)) {
return 0xffff;
}
if(cnv==NULL || source==NULL) {
*err=U_ILLEGAL_ARGUMENT_ERROR;
return 0xffff;
}
s=*source;
if(sourceLimit<s) {
*err=U_ILLEGAL_ARGUMENT_ERROR;
return 0xffff;
}
/*
* Make sure that the buffer sizes do not exceed the number range for
* int32_t because some functions use the size (in units or bytes)
* rather than comparing pointers, and because offsets are int32_t values.
*
* size_t is guaranteed to be unsigned and large enough for the job.
*
* Return with an error instead of adjusting the limits because we would
* not be able to maintain the semantics that either the source must be
* consumed or the target filled (unless an error occurs).
* An adjustment would be sourceLimit=t+0x7fffffff; for example.
*/
if(((size_t)(sourceLimit-s)>(size_t)0x7fffffff && sourceLimit>s)) {
*err=U_ILLEGAL_ARGUMENT_ERROR;
return 0xffff;
}
c=U_SENTINEL;
/* flush the target overflow buffer */
if(cnv->UCharErrorBufferLength>0) {
UChar *overflow;
overflow=cnv->UCharErrorBuffer;
i=0;
length=cnv->UCharErrorBufferLength;
U16_NEXT(overflow, i, length, c);
/* move the remaining overflow contents up to the beginning */
if((cnv->UCharErrorBufferLength=(int8_t)(length-i))>0) {
uprv_memmove(cnv->UCharErrorBuffer, cnv->UCharErrorBuffer+i,
cnv->UCharErrorBufferLength*U_SIZEOF_UCHAR);
}
if(!U16_IS_LEAD(c) || i<length) {
return c;
}
/*
* Continue if the overflow buffer contained only a lead surrogate,
* in case the converter outputs single surrogates from complete
* input sequences.
*/
}
/*
* flush==TRUE is implied for ucnv_getNextUChar()
*
* do not simply return even if s==sourceLimit because the converter may
* not have seen flush==TRUE before
*/
/* prepare the converter arguments */
args.converter=cnv;
args.flush=TRUE;
args.offsets=NULL;
args.source=s;
args.sourceLimit=sourceLimit;
args.target=buffer;
args.targetLimit=buffer+1;
args.size=sizeof(args);
if(c<0) {
/*
* call the native getNextUChar() implementation if we are
* at a character boundary (toULength==0)
*
* unlike with _toUnicode(), getNextUChar() implementations must set
* U_TRUNCATED_CHAR_FOUND for truncated input,
* in addition to setting toULength/toUBytes[]
*/
if(cnv->toULength==0 && cnv->sharedData->impl->getNextUChar!=NULL) {
c=cnv->sharedData->impl->getNextUChar(&args, err);
*source=s=args.source;
if(*err==U_INDEX_OUTOFBOUNDS_ERROR) {
/* reset the converter without calling the callback function */
_reset(cnv, UCNV_RESET_TO_UNICODE, FALSE);
return 0xffff; /* no output */
} else if(U_SUCCESS(*err) && c>=0) {
return c;
/*
* else fall through to use _toUnicode() because
* UCNV_GET_NEXT_UCHAR_USE_TO_U: the native function did not want to handle it after all
* U_FAILURE: call _toUnicode() for callback handling (do not output c)
*/
}
}
/* convert to one UChar in buffer[0], or handle getNextUChar() errors */
_toUnicodeWithCallback(&args, err);
if(*err==U_BUFFER_OVERFLOW_ERROR) {
*err=U_ZERO_ERROR;
}
i=0;
length=(int32_t)(args.target-buffer);
} else {
/* write the lead surrogate from the overflow buffer */
buffer[0]=(UChar)c;
args.target=buffer+1;
i=0;
length=1;
}
/* buffer contents starts at i and ends before length */
if(U_FAILURE(*err)) {
c=0xffff; /* no output */
} else if(length==0) {
/* no input or only state changes */
*err=U_INDEX_OUTOFBOUNDS_ERROR;
/* no need to reset explicitly because _toUnicodeWithCallback() did it */
c=0xffff; /* no output */
} else {
c=buffer[0];
i=1;
if(!U16_IS_LEAD(c)) {
/* consume c=buffer[0], done */
} else {
/* got a lead surrogate, see if a trail surrogate follows */
UChar c2;
if(cnv->UCharErrorBufferLength>0) {
/* got overflow output from the conversion */
if(U16_IS_TRAIL(c2=cnv->UCharErrorBuffer[0])) {
/* got a trail surrogate, too */
c=U16_GET_SUPPLEMENTARY(c, c2);
/* move the remaining overflow contents up to the beginning */
if((--cnv->UCharErrorBufferLength)>0) {
uprv_memmove(cnv->UCharErrorBuffer, cnv->UCharErrorBuffer+1,
cnv->UCharErrorBufferLength*U_SIZEOF_UCHAR);
}
} else {
/* c is an unpaired lead surrogate, just return it */
}
} else if(args.source<sourceLimit) {
/* convert once more, to buffer[1] */
args.targetLimit=buffer+2;
_toUnicodeWithCallback(&args, err);
if(*err==U_BUFFER_OVERFLOW_ERROR) {
*err=U_ZERO_ERROR;
}
length=(int32_t)(args.target-buffer);
if(U_SUCCESS(*err) && length==2 && U16_IS_TRAIL(c2=buffer[1])) {
/* got a trail surrogate, too */
c=U16_GET_SUPPLEMENTARY(c, c2);
i=2;
}
}
}
}
/*
* move leftover output from buffer[i..length[
* into the beginning of the overflow buffer
*/
if(i<length) {
/* move further overflow back */
int32_t delta=length-i;
if((length=cnv->UCharErrorBufferLength)>0) {
uprv_memmove(cnv->UCharErrorBuffer+delta, cnv->UCharErrorBuffer,
length*U_SIZEOF_UCHAR);
}
cnv->UCharErrorBufferLength=(int8_t)(length+delta);
cnv->UCharErrorBuffer[0]=buffer[i++];
if(delta>1) {
cnv->UCharErrorBuffer[1]=buffer[i];
}
}
*source=args.source;
return c;
}
/* ucnv_convert() and siblings ---------------------------------------------- */
U_CAPI void U_EXPORT2
ucnv_convertEx(UConverter *targetCnv, UConverter *sourceCnv,
char **target, const char *targetLimit,
const char **source, const char *sourceLimit,
UChar *pivotStart, UChar **pivotSource,
UChar **pivotTarget, const UChar *pivotLimit,
UBool reset, UBool flush,
UErrorCode *pErrorCode) {
UChar pivotBuffer[CHUNK_SIZE];
const UChar *myPivotSource;
UChar *myPivotTarget;
const char *s;
char *t;
UConverterToUnicodeArgs toUArgs;
UConverterFromUnicodeArgs fromUArgs;
UConverterConvert convert;
/* error checking */
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
return;
}
if( targetCnv==NULL || sourceCnv==NULL ||
source==NULL || *source==NULL ||
target==NULL || *target==NULL || targetLimit==NULL
) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return;
}
s=*source;
t=*target;
if((sourceLimit!=NULL && sourceLimit<s) || targetLimit<t) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return;
}
/*
* Make sure that the buffer sizes do not exceed the number range for
* int32_t. See ucnv_toUnicode() for a more detailed comment.
*/
if(
(sourceLimit!=NULL && ((size_t)(sourceLimit-s)>(size_t)0x7fffffff && sourceLimit>s)) ||
((size_t)(targetLimit-t)>(size_t)0x7fffffff && targetLimit>t)
) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return;
}
if(pivotStart==NULL) {
if(!flush) {
/* streaming conversion requires an explicit pivot buffer */
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return;
}
/* use the stack pivot buffer */
myPivotSource=myPivotTarget=pivotStart=pivotBuffer;
pivotSource=(UChar **)&myPivotSource;
pivotTarget=&myPivotTarget;
pivotLimit=pivotBuffer+CHUNK_SIZE;
} else if( pivotStart>=pivotLimit ||
pivotSource==NULL || *pivotSource==NULL ||
pivotTarget==NULL || *pivotTarget==NULL ||
pivotLimit==NULL
) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return;
}
if(sourceLimit==NULL) {
/* get limit of single-byte-NUL-terminated source string */
sourceLimit=uprv_strchr(*source, 0);
}
if(reset) {
ucnv_resetToUnicode(sourceCnv);
ucnv_resetFromUnicode(targetCnv);
*pivotSource=*pivotTarget=pivotStart;
} else if(targetCnv->charErrorBufferLength>0) {
/* output the targetCnv overflow buffer */
if(ucnv_outputOverflowFromUnicode(targetCnv, target, targetLimit, NULL, pErrorCode)) {
/* U_BUFFER_OVERFLOW_ERROR */
return;
}
/* *target has moved, therefore stop using t */
if( !flush &&
targetCnv->preFromULength>=0 && *pivotSource==*pivotTarget &&
sourceCnv->UCharErrorBufferLength==0 && sourceCnv->preToULength>=0 && s==sourceLimit
) {
/* the fromUnicode overflow buffer is emptied and there is no new input: we are done */
return;
}
}
/* Is direct-UTF-8 conversion available? */
if( sourceCnv->sharedData->staticData->conversionType==UCNV_UTF8 &&
targetCnv->sharedData->impl->fromUTF8!=NULL
) {
convert=targetCnv->sharedData->impl->fromUTF8;
} else if( targetCnv->sharedData->staticData->conversionType==UCNV_UTF8 &&
sourceCnv->sharedData->impl->toUTF8!=NULL
) {
convert=sourceCnv->sharedData->impl->toUTF8;
} else {
convert=NULL;
}
/*
* If direct-UTF-8 conversion is available, then we use a smaller
* pivot buffer for error handling and partial matches
* so that we quickly return to direct conversion.
*
* 32 is large enough for UCNV_EXT_MAX_UCHARS and UCNV_ERROR_BUFFER_LENGTH.
*
* We could reduce the pivot buffer size further, at the cost of
* buffer overflows from callbacks.
* The pivot buffer should not be smaller than the maximum number of
* fromUnicode extension table input UChars
* (for m:n conversion, see
* targetCnv->sharedData->mbcs.extIndexes[UCNV_EXT_COUNT_UCHARS])
* or 2 for surrogate pairs.
*
* Too small a buffer can cause thrashing between pivoting and direct
* conversion, with function call overhead outweighing the benefits
* of direct conversion.
*/
if(convert!=NULL && (pivotLimit-pivotStart)>32) {
pivotLimit=pivotStart+32;
}
/* prepare the converter arguments */
fromUArgs.converter=targetCnv;
fromUArgs.flush=FALSE;
fromUArgs.offsets=NULL;
fromUArgs.target=*target;
fromUArgs.targetLimit=targetLimit;
fromUArgs.size=sizeof(fromUArgs);
toUArgs.converter=sourceCnv;
toUArgs.flush=flush;
toUArgs.offsets=NULL;
toUArgs.source=s;
toUArgs.sourceLimit=sourceLimit;
toUArgs.targetLimit=pivotLimit;
toUArgs.size=sizeof(toUArgs);
/*
* TODO: Consider separating this function into two functions,
* extracting exactly the conversion loop,
* for readability and to reduce the set of visible variables.
*
* Otherwise stop using s and t from here on.
*/
s=t=NULL;
/*
* conversion loop
*
* The sequence of steps in the loop may appear backward,
* but the principle is simple:
* In the chain of
* source - sourceCnv overflow - pivot - targetCnv overflow - target
* empty out later buffers before refilling them from earlier ones.
*
* The targetCnv overflow buffer is flushed out only once before the loop.
*/
for(;;) {
/*
* if(pivot not empty or error or replay or flush fromUnicode) {
* fromUnicode(pivot -> target);
* }
*
* For pivoting conversion; and for direct conversion for
* error callback handling and flushing the replay buffer.
*/
if( *pivotSource<*pivotTarget ||
U_FAILURE(*pErrorCode) ||
targetCnv->preFromULength<0 ||
fromUArgs.flush
) {
fromUArgs.source=*pivotSource;
fromUArgs.sourceLimit=*pivotTarget;
_fromUnicodeWithCallback(&fromUArgs, pErrorCode);
if(U_FAILURE(*pErrorCode)) {
/* target overflow, or conversion error */
*pivotSource=(UChar *)fromUArgs.source;
break;
}
/*
* _fromUnicodeWithCallback() must have consumed the pivot contents
* (*pivotSource==*pivotTarget) since it returned with U_SUCCESS()
*/
}
/* The pivot buffer is empty; reset it so we start at pivotStart. */
*pivotSource=*pivotTarget=pivotStart;
/*
* if(sourceCnv overflow buffer not empty) {
* move(sourceCnv overflow buffer -> pivot);
* continue;
* }
*/
/* output the sourceCnv overflow buffer */
if(sourceCnv->UCharErrorBufferLength>0) {
if(ucnv_outputOverflowToUnicode(sourceCnv, pivotTarget, pivotLimit, NULL, pErrorCode)) {
/* U_BUFFER_OVERFLOW_ERROR */
*pErrorCode=U_ZERO_ERROR;
}
continue;
}
/*
* check for end of input and break if done
*
* Checking both flush and fromUArgs.flush ensures that the converters
* have been called with the flush flag set if the ucnv_convertEx()
* caller set it.
*/
if( toUArgs.source==sourceLimit &&
sourceCnv->preToULength>=0 && sourceCnv->toULength==0 &&
(!flush || fromUArgs.flush)
) {
/* done successfully */
break;
}
/*
* use direct conversion if available
* but not if continuing a partial match
* or flushing the toUnicode replay buffer
*/
if(convert!=NULL && targetCnv->preFromUFirstCP<0 && sourceCnv->preToULength==0) {
if(*pErrorCode==U_USING_DEFAULT_WARNING) {
/* remove a warning that may be set by this function */
*pErrorCode=U_ZERO_ERROR;
}
convert(&fromUArgs, &toUArgs, pErrorCode);
if(*pErrorCode==U_BUFFER_OVERFLOW_ERROR) {
break;
} else if(U_FAILURE(*pErrorCode)) {
if(sourceCnv->toULength>0) {
/*
* Fall through to calling _toUnicodeWithCallback()
* for callback handling.
*
* The pivot buffer will be reset with
* *pivotSource=*pivotTarget=pivotStart;
* which indicates a toUnicode error to the caller
* (*pivotSource==pivotStart shows no pivot UChars consumed).
*/
} else {
/*
* Indicate a fromUnicode error to the caller
* (*pivotSource>pivotStart shows some pivot UChars consumed).
*/
*pivotSource=*pivotTarget=pivotStart+1;
/*
* Loop around to calling _fromUnicodeWithCallbacks()
* for callback handling.
*/
continue;
}
} else if(*pErrorCode==U_USING_DEFAULT_WARNING) {
/*
* No error, but the implementation requested to temporarily
* fall back to pivoting.
*/
*pErrorCode=U_ZERO_ERROR;
/*
* The following else branches are almost identical to the end-of-input
* handling in _toUnicodeWithCallback().
* Avoid calling it just for the end of input.
*/
} else if(flush && sourceCnv->toULength>0) { /* flush==toUArgs.flush */
/*
* the entire input stream is consumed
* and there is a partial, truncated input sequence left
*/
/* inject an error and continue with callback handling */
*pErrorCode=U_TRUNCATED_CHAR_FOUND;
} else {
/* input consumed */
if(flush) {
/* reset the converters without calling the callback functions */
_reset(sourceCnv, UCNV_RESET_TO_UNICODE, FALSE);
_reset(targetCnv, UCNV_RESET_FROM_UNICODE, FALSE);
}
/* done successfully */
break;
}
}
/*
* toUnicode(source -> pivot);
*
* For pivoting conversion; and for direct conversion for
* error callback handling, continuing partial matches
* and flushing the replay buffer.
*
* The pivot buffer is empty and reset.
*/
toUArgs.target=pivotStart; /* ==*pivotTarget */
/* toUArgs.targetLimit=pivotLimit; already set before the loop */
_toUnicodeWithCallback(&toUArgs, pErrorCode);
*pivotTarget=toUArgs.target;
if(*pErrorCode==U_BUFFER_OVERFLOW_ERROR) {
/* pivot overflow: continue with the conversion loop */
*pErrorCode=U_ZERO_ERROR;
} else if(U_FAILURE(*pErrorCode) || (!flush && *pivotTarget==pivotStart)) {
/* conversion error, or there was nothing left to convert */
break;
}
/*
* else:
* _toUnicodeWithCallback() wrote into the pivot buffer,
* continue with fromUnicode conversion.
*
* Set the fromUnicode flush flag if we flush and if toUnicode has
* processed the end of the input.
*/
if( flush && toUArgs.source==sourceLimit &&
sourceCnv->preToULength>=0 &&
sourceCnv->UCharErrorBufferLength==0
) {
fromUArgs.flush=TRUE;
}
}
/*
* The conversion loop is exited when one of the following is true:
* - the entire source text has been converted successfully to the target buffer
* - a target buffer overflow occurred
* - a conversion error occurred
*/
*source=toUArgs.source;
*target=fromUArgs.target;
/* terminate the target buffer if possible */
if(flush && U_SUCCESS(*pErrorCode)) {
if(*target!=targetLimit) {
**target=0;
if(*pErrorCode==U_STRING_NOT_TERMINATED_WARNING) {
*pErrorCode=U_ZERO_ERROR;
}
} else {
*pErrorCode=U_STRING_NOT_TERMINATED_WARNING;
}
}
}
/* internal implementation of ucnv_convert() etc. with preflighting */
static int32_t
ucnv_internalConvert(UConverter *outConverter, UConverter *inConverter,
char *target, int32_t targetCapacity,
const char *source, int32_t sourceLength,
UErrorCode *pErrorCode) {
UChar pivotBuffer[CHUNK_SIZE];
UChar *pivot, *pivot2;
char *myTarget;
const char *sourceLimit;
const char *targetLimit;
int32_t targetLength=0;
/* set up */
if(sourceLength<0) {
sourceLimit=uprv_strchr(source, 0);
} else {
sourceLimit=source+sourceLength;
}
/* if there is no input data, we're done */
if(source==sourceLimit) {
return u_terminateChars(target, targetCapacity, 0, pErrorCode);
}
pivot=pivot2=pivotBuffer;
myTarget=target;
targetLength=0;
if(targetCapacity>0) {
/* perform real conversion */
targetLimit=target+targetCapacity;
ucnv_convertEx(outConverter, inConverter,
&myTarget, targetLimit,
&source, sourceLimit,
pivotBuffer, &pivot, &pivot2, pivotBuffer+CHUNK_SIZE,
FALSE,
TRUE,
pErrorCode);
targetLength=(int32_t)(myTarget-target);
}
/*
* If the output buffer is exhausted (or we are only "preflighting"), we need to stop writing
* to it but continue the conversion in order to store in targetCapacity
* the number of bytes that was required.
*/
if(*pErrorCode==U_BUFFER_OVERFLOW_ERROR || targetCapacity==0)
{
char targetBuffer[CHUNK_SIZE];
targetLimit=targetBuffer+CHUNK_SIZE;
do {
*pErrorCode=U_ZERO_ERROR;
myTarget=targetBuffer;
ucnv_convertEx(outConverter, inConverter,
&myTarget, targetLimit,
&source, sourceLimit,
pivotBuffer, &pivot, &pivot2, pivotBuffer+CHUNK_SIZE,
FALSE,
TRUE,
pErrorCode);
targetLength+=(int32_t)(myTarget-targetBuffer);
} while(*pErrorCode==U_BUFFER_OVERFLOW_ERROR);
/* done with preflighting, set warnings and errors as appropriate */
return u_terminateChars(target, targetCapacity, targetLength, pErrorCode);
}
/* no need to call u_terminateChars() because ucnv_convertEx() took care of that */
return targetLength;
}
U_CAPI int32_t U_EXPORT2
ucnv_convert(const char *toConverterName, const char *fromConverterName,
char *target, int32_t targetCapacity,
const char *source, int32_t sourceLength,
UErrorCode *pErrorCode) {
UConverter in, out; /* stack-allocated */
UConverter *inConverter, *outConverter;
int32_t targetLength;
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
return 0;
}
if( source==NULL || sourceLength<-1 ||
targetCapacity<0 || (targetCapacity>0 && target==NULL)
) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
/* if there is no input data, we're done */
if(sourceLength==0 || (sourceLength<0 && *source==0)) {
return u_terminateChars(target, targetCapacity, 0, pErrorCode);
}
/* create the converters */
inConverter=ucnv_createConverter(&in, fromConverterName, pErrorCode);
if(U_FAILURE(*pErrorCode)) {
return 0;
}
outConverter=ucnv_createConverter(&out, toConverterName, pErrorCode);
if(U_FAILURE(*pErrorCode)) {
ucnv_close(inConverter);
return 0;
}
targetLength=ucnv_internalConvert(outConverter, inConverter,
target, targetCapacity,
source, sourceLength,
pErrorCode);
ucnv_close(inConverter);
ucnv_close(outConverter);
return targetLength;
}
/* @internal */
static int32_t
ucnv_convertAlgorithmic(UBool convertToAlgorithmic,
UConverterType algorithmicType,
UConverter *cnv,
char *target, int32_t targetCapacity,
const char *source, int32_t sourceLength,
UErrorCode *pErrorCode) {
UConverter algoConverterStatic; /* stack-allocated */
UConverter *algoConverter, *to, *from;
int32_t targetLength;
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
return 0;
}
if( cnv==NULL || source==NULL || sourceLength<-1 ||
targetCapacity<0 || (targetCapacity>0 && target==NULL)
) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
/* if there is no input data, we're done */
if(sourceLength==0 || (sourceLength<0 && *source==0)) {
return u_terminateChars(target, targetCapacity, 0, pErrorCode);
}
/* create the algorithmic converter */
algoConverter=ucnv_createAlgorithmicConverter(&algoConverterStatic, algorithmicType,
"", 0, pErrorCode);
if(U_FAILURE(*pErrorCode)) {
return 0;
}
/* reset the other converter */
if(convertToAlgorithmic) {
/* cnv->Unicode->algo */
ucnv_resetToUnicode(cnv);
to=algoConverter;
from=cnv;
} else {
/* algo->Unicode->cnv */
ucnv_resetFromUnicode(cnv);
from=algoConverter;
to=cnv;
}
targetLength=ucnv_internalConvert(to, from,
target, targetCapacity,
source, sourceLength,
pErrorCode);
ucnv_close(algoConverter);
return targetLength;
}
U_CAPI int32_t U_EXPORT2
ucnv_toAlgorithmic(UConverterType algorithmicType,
UConverter *cnv,
char *target, int32_t targetCapacity,
const char *source, int32_t sourceLength,
UErrorCode *pErrorCode) {
return ucnv_convertAlgorithmic(TRUE, algorithmicType, cnv,
target, targetCapacity,
source, sourceLength,
pErrorCode);
}
U_CAPI int32_t U_EXPORT2
ucnv_fromAlgorithmic(UConverter *cnv,
UConverterType algorithmicType,
char *target, int32_t targetCapacity,
const char *source, int32_t sourceLength,
UErrorCode *pErrorCode) {
return ucnv_convertAlgorithmic(FALSE, algorithmicType, cnv,
target, targetCapacity,
source, sourceLength,
pErrorCode);
}
U_CAPI UConverterType U_EXPORT2
ucnv_getType(const UConverter* converter)
{
int8_t type = converter->sharedData->staticData->conversionType;
#if !UCONFIG_NO_LEGACY_CONVERSION
if(type == UCNV_MBCS) {
return ucnv_MBCSGetType(converter);
}
#endif
return (UConverterType)type;
}
U_CAPI void U_EXPORT2
ucnv_getStarters(const UConverter* converter,
UBool starters[256],
UErrorCode* err)
{
if (err == NULL || U_FAILURE(*err)) {
return;
}
if(converter->sharedData->impl->getStarters != NULL) {
converter->sharedData->impl->getStarters(converter, starters, err);
} else {
*err = U_ILLEGAL_ARGUMENT_ERROR;
}
}
static const UAmbiguousConverter *ucnv_getAmbiguous(const UConverter *cnv)
{
UErrorCode errorCode;
const char *name;
int32_t i;
if(cnv==NULL) {
return NULL;
}
errorCode=U_ZERO_ERROR;
name=ucnv_getName(cnv, &errorCode);
if(U_FAILURE(errorCode)) {
return NULL;
}
for(i=0; i<UPRV_LENGTHOF(ambiguousConverters); ++i)
{
if(0==uprv_strcmp(name, ambiguousConverters[i].name))
{
return ambiguousConverters+i;
}
}
return NULL;
}
U_CAPI void U_EXPORT2
ucnv_fixFileSeparator(const UConverter *cnv,
UChar* source,
int32_t sourceLength) {
const UAmbiguousConverter *a;
int32_t i;
UChar variant5c;
if(cnv==NULL || source==NULL || sourceLength<=0 || (a=ucnv_getAmbiguous(cnv))==NULL)
{
return;
}
variant5c=a->variant5c;
for(i=0; i<sourceLength; ++i) {
if(source[i]==variant5c) {
source[i]=0x5c;
}
}
}
U_CAPI UBool U_EXPORT2
ucnv_isAmbiguous(const UConverter *cnv) {
return (UBool)(ucnv_getAmbiguous(cnv)!=NULL);
}
U_CAPI void U_EXPORT2
ucnv_setFallback(UConverter *cnv, UBool usesFallback)
{
cnv->useFallback = usesFallback;
}
U_CAPI UBool U_EXPORT2
ucnv_usesFallback(const UConverter *cnv)
{
return cnv->useFallback;
}
U_CAPI void U_EXPORT2
ucnv_getInvalidChars (const UConverter * converter,
char *errBytes,
int8_t * len,
UErrorCode * err)
{
if (err == NULL || U_FAILURE(*err))
{
return;
}
if (len == NULL || errBytes == NULL || converter == NULL)
{
*err = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
if (*len < converter->invalidCharLength)
{
*err = U_INDEX_OUTOFBOUNDS_ERROR;
return;
}
if ((*len = converter->invalidCharLength) > 0)
{
uprv_memcpy (errBytes, converter->invalidCharBuffer, *len);
}
}
U_CAPI void U_EXPORT2
ucnv_getInvalidUChars (const UConverter * converter,
UChar *errChars,
int8_t * len,
UErrorCode * err)
{
if (err == NULL || U_FAILURE(*err))
{
return;
}
if (len == NULL || errChars == NULL || converter == NULL)
{
*err = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
if (*len < converter->invalidUCharLength)
{
*err = U_INDEX_OUTOFBOUNDS_ERROR;
return;
}
if ((*len = converter->invalidUCharLength) > 0)
{
u_memcpy (errChars, converter->invalidUCharBuffer, *len);
}
}
#define SIG_MAX_LEN 5
U_CAPI const char* U_EXPORT2
ucnv_detectUnicodeSignature( const char* source,
int32_t sourceLength,
int32_t* signatureLength,
UErrorCode* pErrorCode) {
int32_t dummy;
/* initial 0xa5 bytes: make sure that if we read <SIG_MAX_LEN
* bytes we don't misdetect something
*/
char start[SIG_MAX_LEN]={ '\xa5', '\xa5', '\xa5', '\xa5', '\xa5' };
int i = 0;
if((pErrorCode==NULL) || U_FAILURE(*pErrorCode)){
return NULL;
}
if(source == NULL || sourceLength < -1){
*pErrorCode = U_ILLEGAL_ARGUMENT_ERROR;
return NULL;
}
if(signatureLength == NULL) {
signatureLength = &dummy;
}
if(sourceLength==-1){
sourceLength=(int32_t)uprv_strlen(source);
}
while(i<sourceLength&& i<SIG_MAX_LEN){
start[i]=source[i];
i++;
}
if(start[0] == '\xFE' && start[1] == '\xFF') {
*signatureLength=2;
return "UTF-16BE";
} else if(start[0] == '\xFF' && start[1] == '\xFE') {
if(start[2] == '\x00' && start[3] =='\x00') {
*signatureLength=4;
return "UTF-32LE";
} else {
*signatureLength=2;
return "UTF-16LE";
}
} else if(start[0] == '\xEF' && start[1] == '\xBB' && start[2] == '\xBF') {
*signatureLength=3;
return "UTF-8";
} else if(start[0] == '\x00' && start[1] == '\x00' &&
start[2] == '\xFE' && start[3]=='\xFF') {
*signatureLength=4;
return "UTF-32BE";
} else if(start[0] == '\x0E' && start[1] == '\xFE' && start[2] == '\xFF') {
*signatureLength=3;
return "SCSU";
} else if(start[0] == '\xFB' && start[1] == '\xEE' && start[2] == '\x28') {
*signatureLength=3;
return "BOCU-1";
} else if(start[0] == '\x2B' && start[1] == '\x2F' && start[2] == '\x76') {
/*
* UTF-7: Initial U+FEFF is encoded as +/v8 or +/v9 or +/v+ or +/v/
* depending on the second UTF-16 code unit.
* Detect the entire, closed Unicode mode sequence +/v8- for only U+FEFF
* if it occurs.
*
* So far we have +/v
*/
if(start[3] == '\x38' && start[4] == '\x2D') {
/* 5 bytes +/v8- */
*signatureLength=5;
return "UTF-7";
} else if(start[3] == '\x38' || start[3] == '\x39' || start[3] == '\x2B' || start[3] == '\x2F') {
/* 4 bytes +/v8 or +/v9 or +/v+ or +/v/ */
*signatureLength=4;
return "UTF-7";
}
}else if(start[0]=='\xDD' && start[1]== '\x73'&& start[2]=='\x66' && start[3]=='\x73'){
*signatureLength=4;
return "UTF-EBCDIC";
}
/* no known Unicode signature byte sequence recognized */
*signatureLength=0;
return NULL;
}
U_CAPI int32_t U_EXPORT2
ucnv_fromUCountPending(const UConverter* cnv, UErrorCode* status)
{
if(status == NULL || U_FAILURE(*status)){
return -1;
}
if(cnv == NULL){
*status = U_ILLEGAL_ARGUMENT_ERROR;
return -1;
}
if(cnv->preFromUFirstCP >= 0){
return U16_LENGTH(cnv->preFromUFirstCP)+cnv->preFromULength ;
}else if(cnv->preFromULength < 0){
return -cnv->preFromULength ;
}else if(cnv->fromUChar32 > 0){
return 1;
}
return 0;
}
U_CAPI int32_t U_EXPORT2
ucnv_toUCountPending(const UConverter* cnv, UErrorCode* status){
if(status == NULL || U_FAILURE(*status)){
return -1;
}
if(cnv == NULL){
*status = U_ILLEGAL_ARGUMENT_ERROR;
return -1;
}
if(cnv->preToULength > 0){
return cnv->preToULength ;
}else if(cnv->preToULength < 0){
return -cnv->preToULength;
}else if(cnv->toULength > 0){
return cnv->toULength;
}
return 0;
}
U_CAPI UBool U_EXPORT2
ucnv_isFixedWidth(UConverter *cnv, UErrorCode *status){
if (U_FAILURE(*status)) {
return FALSE;
}
if (cnv == NULL) {
*status = U_ILLEGAL_ARGUMENT_ERROR;
return FALSE;
}
switch (ucnv_getType(cnv)) {
case UCNV_SBCS:
case UCNV_DBCS:
case UCNV_UTF32_BigEndian:
case UCNV_UTF32_LittleEndian:
case UCNV_UTF32:
case UCNV_US_ASCII:
return TRUE;
default:
return FALSE;
}
}
#endif
/*
* Hey, Emacs, please set the following:
*
* Local Variables:
* indent-tabs-mode: nil
* End:
*
*/