godot/thirdparty/enet/godot.cpp
Rémi Verschelde 70ae90e0e8
Core: Drop custom copymem/zeromem defines
We've been using standard C library functions `memcpy`/`memset` for these since
2016 with 67f65f6639.

There was still the possibility for third-party platform ports to override the
definitions with a custom header, but this doesn't seem useful anymore.

Backport of #48239.
2021-04-29 12:34:11 +02:00

554 lines
15 KiB
C++

/*************************************************************************/
/* godot.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
/**
@file godot.cpp
@brief ENet Godot specific functions
*/
#include "core/io/dtls_server.h"
#include "core/io/ip.h"
#include "core/io/net_socket.h"
#include "core/io/packet_peer_dtls.h"
#include "core/io/udp_server.h"
#include "core/os/os.h"
// This must be last for windows to compile (tested with MinGW)
#include "enet/enet.h"
/// Abstract ENet interface for UDP/DTLS.
class ENetGodotSocket {
public:
virtual Error bind(IP_Address p_ip, uint16_t p_port) = 0;
virtual Error sendto(const uint8_t *p_buffer, int p_len, int &r_sent, IP_Address p_ip, uint16_t p_port) = 0;
virtual Error recvfrom(uint8_t *p_buffer, int p_len, int &r_read, IP_Address &r_ip, uint16_t &r_port) = 0;
virtual int set_option(ENetSocketOption p_option, int p_value) = 0;
virtual void close() = 0;
virtual void set_refuse_new_connections(bool p_refuse) { /* Only used by dtls server */ }
virtual ~ENetGodotSocket(){};
};
class ENetDTLSClient;
class ENetDTLSServer;
/// NetSocket interface
class ENetUDP : public ENetGodotSocket {
friend class ENetDTLSClient;
friend class ENetDTLSServer;
private:
Ref<NetSocket> sock;
IP_Address address;
uint16_t port;
bool bound;
public:
ENetUDP() {
sock = Ref<NetSocket>(NetSocket::create());
IP::Type ip_type = IP::TYPE_ANY;
bound = false;
sock->open(NetSocket::TYPE_UDP, ip_type);
}
~ENetUDP() {
sock->close();
}
Error bind(IP_Address p_ip, uint16_t p_port) {
address = p_ip;
port = p_port;
bound = true;
return sock->bind(address, port);
}
Error sendto(const uint8_t *p_buffer, int p_len, int &r_sent, IP_Address p_ip, uint16_t p_port) {
return sock->sendto(p_buffer, p_len, r_sent, p_ip, p_port);
}
Error recvfrom(uint8_t *p_buffer, int p_len, int &r_read, IP_Address &r_ip, uint16_t &r_port) {
Error err = sock->poll(NetSocket::POLL_TYPE_IN, 0);
if (err != OK)
return err;
return sock->recvfrom(p_buffer, p_len, r_read, r_ip, r_port);
}
int set_option(ENetSocketOption p_option, int p_value) {
switch (p_option) {
case ENET_SOCKOPT_NONBLOCK: {
sock->set_blocking_enabled(p_value ? false : true);
return 0;
} break;
case ENET_SOCKOPT_BROADCAST: {
sock->set_broadcasting_enabled(p_value ? true : false);
return 0;
} break;
case ENET_SOCKOPT_REUSEADDR: {
sock->set_reuse_address_enabled(p_value ? true : false);
return 0;
} break;
case ENET_SOCKOPT_RCVBUF: {
return -1;
} break;
case ENET_SOCKOPT_SNDBUF: {
return -1;
} break;
case ENET_SOCKOPT_RCVTIMEO: {
return -1;
} break;
case ENET_SOCKOPT_SNDTIMEO: {
return -1;
} break;
case ENET_SOCKOPT_NODELAY: {
sock->set_tcp_no_delay_enabled(p_value ? true : false);
return 0;
} break;
}
return -1;
}
void close() {
sock->close();
}
};
/// DTLS Client ENet interface
class ENetDTLSClient : public ENetGodotSocket {
bool connected;
Ref<PacketPeerUDP> udp;
Ref<PacketPeerDTLS> dtls;
bool verify;
String for_hostname;
Ref<X509Certificate> cert;
public:
ENetDTLSClient(ENetUDP *p_base, Ref<X509Certificate> p_cert, bool p_verify, String p_for_hostname) {
verify = p_verify;
for_hostname = p_for_hostname;
cert = p_cert;
udp.instance();
dtls = Ref<PacketPeerDTLS>(PacketPeerDTLS::create());
p_base->close();
if (p_base->bound) {
bind(p_base->address, p_base->port);
}
connected = false;
}
~ENetDTLSClient() {
close();
}
Error bind(IP_Address p_ip, uint16_t p_port) {
return udp->listen(p_port, p_ip);
}
Error sendto(const uint8_t *p_buffer, int p_len, int &r_sent, IP_Address p_ip, uint16_t p_port) {
if (!connected) {
udp->connect_to_host(p_ip, p_port);
dtls->connect_to_peer(udp, verify, for_hostname, cert);
connected = true;
}
dtls->poll();
if (dtls->get_status() == PacketPeerDTLS::STATUS_HANDSHAKING)
return ERR_BUSY;
else if (dtls->get_status() != PacketPeerDTLS::STATUS_CONNECTED)
return FAILED;
r_sent = p_len;
return dtls->put_packet(p_buffer, p_len);
}
Error recvfrom(uint8_t *p_buffer, int p_len, int &r_read, IP_Address &r_ip, uint16_t &r_port) {
dtls->poll();
if (dtls->get_status() == PacketPeerDTLS::STATUS_HANDSHAKING)
return ERR_BUSY;
if (dtls->get_status() != PacketPeerDTLS::STATUS_CONNECTED)
return FAILED;
int pc = dtls->get_available_packet_count();
if (pc == 0)
return ERR_BUSY;
else if (pc < 0)
return FAILED;
const uint8_t *buffer;
Error err = dtls->get_packet(&buffer, r_read);
ERR_FAIL_COND_V(err != OK, err);
ERR_FAIL_COND_V(p_len < r_read, ERR_OUT_OF_MEMORY);
memcpy(p_buffer, buffer, r_read);
r_ip = udp->get_packet_address();
r_port = udp->get_packet_port();
return err;
}
int set_option(ENetSocketOption p_option, int p_value) {
return -1;
}
void close() {
dtls->disconnect_from_peer();
udp->close();
}
};
/// DTLSServer - ENet interface
class ENetDTLSServer : public ENetGodotSocket {
Ref<DTLSServer> server;
Ref<UDPServer> udp_server;
Map<String, Ref<PacketPeerDTLS> > peers;
int last_service;
public:
ENetDTLSServer(ENetUDP *p_base, Ref<CryptoKey> p_key, Ref<X509Certificate> p_cert) {
last_service = 0;
udp_server.instance();
p_base->close();
if (p_base->bound) {
bind(p_base->address, p_base->port);
}
server = Ref<DTLSServer>(DTLSServer::create());
server->setup(p_key, p_cert);
}
~ENetDTLSServer() {
close();
}
void set_refuse_new_connections(bool p_refuse) {
udp_server->set_max_pending_connections(p_refuse ? 0 : 16);
}
Error bind(IP_Address p_ip, uint16_t p_port) {
return udp_server->listen(p_port, p_ip);
}
Error sendto(const uint8_t *p_buffer, int p_len, int &r_sent, IP_Address p_ip, uint16_t p_port) {
String key = String(p_ip) + ":" + itos(p_port);
ERR_FAIL_COND_V(!peers.has(key), ERR_UNAVAILABLE);
Ref<PacketPeerDTLS> peer = peers[key];
Error err = peer->put_packet(p_buffer, p_len);
if (err == OK)
r_sent = p_len;
else if (err == ERR_BUSY)
r_sent = 0;
else
r_sent = -1;
return err;
}
Error recvfrom(uint8_t *p_buffer, int p_len, int &r_read, IP_Address &r_ip, uint16_t &r_port) {
udp_server->poll();
// TODO limits? Maybe we can better enforce allowed connections!
if (udp_server->is_connection_available()) {
Ref<PacketPeerUDP> udp = udp_server->take_connection();
IP_Address peer_ip = udp->get_packet_address();
int peer_port = udp->get_packet_port();
Ref<PacketPeerDTLS> peer = server->take_connection(udp);
PacketPeerDTLS::Status status = peer->get_status();
if (status == PacketPeerDTLS::STATUS_HANDSHAKING || status == PacketPeerDTLS::STATUS_CONNECTED) {
String key = String(peer_ip) + ":" + itos(peer_port);
peers[key] = peer;
}
}
List<String> remove;
Error err = ERR_BUSY;
// TODO this needs to be fair!
for (Map<String, Ref<PacketPeerDTLS> >::Element *E = peers.front(); E; E = E->next()) {
Ref<PacketPeerDTLS> peer = E->get();
peer->poll();
if (peer->get_status() == PacketPeerDTLS::STATUS_HANDSHAKING)
continue;
else if (peer->get_status() != PacketPeerDTLS::STATUS_CONNECTED) {
// Peer disconnected, removing it.
remove.push_back(E->key());
continue;
}
if (peer->get_available_packet_count() > 0) {
const uint8_t *buffer;
err = peer->get_packet(&buffer, r_read);
if (err != OK || p_len < r_read) {
// Something wrong with this peer, removing it.
remove.push_back(E->key());
err = FAILED;
continue;
}
Vector<String> s = E->key().rsplit(":", false, 1);
ERR_CONTINUE(s.size() != 2); // BUG!
memcpy(p_buffer, buffer, r_read);
r_ip = s[0];
r_port = s[1].to_int();
break; // err = OK
}
}
// Remove disconnected peers from map.
for (List<String>::Element *E = remove.front(); E; E = E->next()) {
peers.erase(E->get());
}
return err; // OK, ERR_BUSY, or possibly an error.
}
int set_option(ENetSocketOption p_option, int p_value) {
return -1;
}
void close() {
for (Map<String, Ref<PacketPeerDTLS> >::Element *E = peers.front(); E; E = E->next()) {
E->get()->disconnect_from_peer();
}
peers.clear();
udp_server->stop();
server->stop();
}
};
static enet_uint32 timeBase = 0;
int enet_initialize(void) {
return 0;
}
void enet_deinitialize(void) {
}
enet_uint32 enet_host_random_seed(void) {
return (enet_uint32)OS::get_singleton()->get_unix_time();
}
enet_uint32 enet_time_get(void) {
return OS::get_singleton()->get_ticks_msec() - timeBase;
}
void enet_time_set(enet_uint32 newTimeBase) {
timeBase = OS::get_singleton()->get_ticks_msec() - newTimeBase;
}
int enet_address_set_host(ENetAddress *address, const char *name) {
IP_Address ip = IP::get_singleton()->resolve_hostname(name);
ERR_FAIL_COND_V(!ip.is_valid(), -1);
enet_address_set_ip(address, ip.get_ipv6(), 16);
return 0;
}
void enet_address_set_ip(ENetAddress *address, const uint8_t *ip, size_t size) {
int len = size > 16 ? 16 : size;
memset(address->host, 0, 16);
memcpy(address->host, ip, len);
}
int enet_address_get_host_ip(const ENetAddress *address, char *name, size_t nameLength) {
return -1;
}
int enet_address_get_host(const ENetAddress *address, char *name, size_t nameLength) {
return -1;
}
ENetSocket enet_socket_create(ENetSocketType type) {
ENetUDP *socket = memnew(ENetUDP);
return socket;
}
void enet_host_dtls_server_setup(ENetHost *host, void *p_key, void *p_cert) {
ENetUDP *sock = (ENetUDP *)host->socket;
host->socket = memnew(ENetDTLSServer(sock, Ref<CryptoKey>((CryptoKey *)p_key), Ref<X509Certificate>((X509Certificate *)p_cert)));
memdelete(sock);
}
void enet_host_dtls_client_setup(ENetHost *host, void *p_cert, uint8_t p_verify, const char *p_for_hostname) {
ENetUDP *sock = (ENetUDP *)host->socket;
host->socket = memnew(ENetDTLSClient(sock, Ref<X509Certificate>((X509Certificate *)p_cert), p_verify, String(p_for_hostname)));
memdelete(sock);
}
void enet_host_refuse_new_connections(ENetHost *host, int p_refuse) {
ERR_FAIL_COND(!host->socket);
((ENetGodotSocket *)host->socket)->set_refuse_new_connections(p_refuse);
}
int enet_socket_bind(ENetSocket socket, const ENetAddress *address) {
IP_Address ip;
if (address->wildcard) {
ip = IP_Address("*");
} else {
ip.set_ipv6(address->host);
}
ENetGodotSocket *sock = (ENetGodotSocket *)socket;
if (sock->bind(ip, address->port) != OK) {
return -1;
}
return 0;
}
void enet_socket_destroy(ENetSocket socket) {
ENetGodotSocket *sock = (ENetGodotSocket *)socket;
sock->close();
memdelete(sock);
}
int enet_socket_send(ENetSocket socket, const ENetAddress *address, const ENetBuffer *buffers, size_t bufferCount) {
ERR_FAIL_COND_V(address == NULL, -1);
ENetGodotSocket *sock = (ENetGodotSocket *)socket;
IP_Address dest;
Error err;
size_t i = 0;
dest.set_ipv6(address->host);
// Create a single packet.
PoolVector<uint8_t> out;
PoolVector<uint8_t>::Write w;
int size = 0;
int pos = 0;
for (i = 0; i < bufferCount; i++) {
size += buffers[i].dataLength;
}
out.resize(size);
w = out.write();
for (i = 0; i < bufferCount; i++) {
memcpy(&w[pos], buffers[i].data, buffers[i].dataLength);
pos += buffers[i].dataLength;
}
int sent = 0;
err = sock->sendto((const uint8_t *)&w[0], size, sent, dest, address->port);
if (err != OK) {
if (err == ERR_BUSY) { // Blocking call
return 0;
}
WARN_PRINT("Sending failed!");
return -1;
}
return sent;
}
int enet_socket_receive(ENetSocket socket, ENetAddress *address, ENetBuffer *buffers, size_t bufferCount) {
ERR_FAIL_COND_V(bufferCount != 1, -1);
ENetGodotSocket *sock = (ENetGodotSocket *)socket;
int read;
IP_Address ip;
Error err = sock->recvfrom((uint8_t *)buffers[0].data, buffers[0].dataLength, read, ip, address->port);
if (err == ERR_BUSY)
return 0;
if (err != OK)
return -1;
enet_address_set_ip(address, ip.get_ipv6(), 16);
return read;
}
// Not implemented
int enet_socket_wait(ENetSocket socket, enet_uint32 *condition, enet_uint32 timeout) {
return 0; // do we need this function?
}
int enet_socket_get_address(ENetSocket socket, ENetAddress *address) {
return -1; // do we need this function?
}
int enet_socketset_select(ENetSocket maxSocket, ENetSocketSet *readSet, ENetSocketSet *writeSet, enet_uint32 timeout) {
return -1;
}
int enet_socket_listen(ENetSocket socket, int backlog) {
return -1;
}
int enet_socket_set_option(ENetSocket socket, ENetSocketOption option, int value) {
ENetGodotSocket *sock = (ENetGodotSocket *)socket;
return sock->set_option(option, value);
}
int enet_socket_get_option(ENetSocket socket, ENetSocketOption option, int *value) {
return -1;
}
int enet_socket_connect(ENetSocket socket, const ENetAddress *address) {
return -1;
}
ENetSocket enet_socket_accept(ENetSocket socket, ENetAddress *address) {
return NULL;
}
int enet_socket_shutdown(ENetSocket socket, ENetSocketShutdown how) {
return -1;
}