6f4f9aa6de
Also inlined some more math functions.
456 lines
10 KiB
C++
456 lines
10 KiB
C++
/*************************************************************************/
|
|
/* face3.cpp */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* http://www.godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
#include "face3.h"
|
|
#include "geometry.h"
|
|
|
|
int Face3::split_by_plane(const Plane& p_plane,Face3 p_res[3],bool p_is_point_over[3]) const {
|
|
|
|
ERR_FAIL_COND_V(is_degenerate(),0);
|
|
|
|
|
|
Vector3 above[4];
|
|
int above_count=0;
|
|
|
|
Vector3 below[4];
|
|
int below_count=0;
|
|
|
|
for (int i=0;i<3;i++) {
|
|
|
|
if (p_plane.has_point( vertex[i], CMP_EPSILON )) { // point is in plane
|
|
|
|
ERR_FAIL_COND_V(above_count>=4,0);
|
|
above[above_count++]=vertex[i];
|
|
ERR_FAIL_COND_V(below_count>=4,0);
|
|
below[below_count++]=vertex[i];
|
|
|
|
} else {
|
|
|
|
if (p_plane.is_point_over( vertex[i])) {
|
|
//Point is over
|
|
ERR_FAIL_COND_V(above_count>=4,0);
|
|
above[above_count++]=vertex[i];
|
|
|
|
} else {
|
|
//Point is under
|
|
ERR_FAIL_COND_V(below_count>=4,0);
|
|
below[below_count++]=vertex[i];
|
|
}
|
|
|
|
/* Check for Intersection between this and the next vertex*/
|
|
|
|
Vector3 inters;
|
|
if (!p_plane.intersects_segment( vertex[i],vertex[(i+1)%3],&inters))
|
|
continue;
|
|
|
|
/* Intersection goes to both */
|
|
ERR_FAIL_COND_V(above_count>=4,0);
|
|
above[above_count++]=inters;
|
|
ERR_FAIL_COND_V(below_count>=4,0);
|
|
below[below_count++]=inters;
|
|
}
|
|
}
|
|
|
|
int polygons_created=0;
|
|
|
|
ERR_FAIL_COND_V( above_count>=4 && below_count>=4 , 0 ); //bug in the algo
|
|
|
|
if (above_count>=3) {
|
|
|
|
p_res[polygons_created]=Face3( above[0], above[1], above[2] );
|
|
p_is_point_over[polygons_created]=true;
|
|
polygons_created++;
|
|
|
|
if (above_count==4) {
|
|
|
|
p_res[polygons_created]=Face3( above[2], above[3], above[0] );
|
|
p_is_point_over[polygons_created]=true;
|
|
polygons_created++;
|
|
|
|
}
|
|
}
|
|
|
|
if (below_count>=3) {
|
|
|
|
p_res[polygons_created]=Face3( below[0], below[1], below[2] );
|
|
p_is_point_over[polygons_created]=false;
|
|
polygons_created++;
|
|
|
|
if (below_count==4) {
|
|
|
|
p_res[polygons_created]=Face3( below[2], below[3], below[0] );
|
|
p_is_point_over[polygons_created]=false;
|
|
polygons_created++;
|
|
|
|
}
|
|
}
|
|
|
|
return polygons_created;
|
|
}
|
|
|
|
|
|
|
|
bool Face3::intersects_ray(const Vector3& p_from,const Vector3& p_dir,Vector3 * p_intersection) const {
|
|
|
|
return Geometry::ray_intersects_triangle(p_from,p_dir,vertex[0],vertex[1],vertex[2],p_intersection);
|
|
|
|
}
|
|
|
|
bool Face3::intersects_segment(const Vector3& p_from,const Vector3& p_dir,Vector3 * p_intersection) const {
|
|
|
|
return Geometry::segment_intersects_triangle(p_from,p_dir,vertex[0],vertex[1],vertex[2],p_intersection);
|
|
|
|
}
|
|
|
|
|
|
bool Face3::is_degenerate() const {
|
|
|
|
Vector3 normal=vec3_cross(vertex[0]-vertex[1], vertex[0]-vertex[2]);
|
|
return (normal.length_squared() < CMP_EPSILON2);
|
|
}
|
|
|
|
|
|
Face3::Side Face3::get_side_of(const Face3& p_face,ClockDirection p_clock_dir) const {
|
|
|
|
int over=0,under=0;
|
|
|
|
Plane plane=get_plane(p_clock_dir);
|
|
|
|
for (int i=0;i<3;i++) {
|
|
|
|
const Vector3 &v=p_face.vertex[i];
|
|
|
|
if (plane.has_point(v)) //coplanar, dont bother
|
|
continue;
|
|
|
|
if (plane.is_point_over(v))
|
|
over++;
|
|
else
|
|
under++;
|
|
|
|
}
|
|
|
|
if ( over > 0 && under == 0 )
|
|
return SIDE_OVER;
|
|
else if (under > 0 && over ==0 )
|
|
return SIDE_UNDER;
|
|
else if (under ==0 && over == 0)
|
|
return SIDE_COPLANAR;
|
|
else
|
|
return SIDE_SPANNING;
|
|
|
|
}
|
|
|
|
Vector3 Face3::get_random_point_inside() const {
|
|
|
|
real_t a=Math::random(0,1);
|
|
real_t b=Math::random(0,1);
|
|
if (a>b) {
|
|
SWAP(a,b);
|
|
}
|
|
|
|
return vertex[0]*a + vertex[1]*(b-a) + vertex[2]*(1.0-b);
|
|
|
|
}
|
|
|
|
Plane Face3::get_plane(ClockDirection p_dir) const {
|
|
|
|
return Plane( vertex[0], vertex[1], vertex[2] , p_dir );
|
|
|
|
}
|
|
|
|
Vector3 Face3::get_median_point() const {
|
|
|
|
return (vertex[0] + vertex[1] + vertex[2])/3.0;
|
|
}
|
|
|
|
|
|
real_t Face3::get_area() const {
|
|
|
|
return vec3_cross(vertex[0]-vertex[1], vertex[0]-vertex[2]).length();
|
|
}
|
|
|
|
ClockDirection Face3::get_clock_dir() const {
|
|
|
|
|
|
Vector3 normal=vec3_cross(vertex[0]-vertex[1], vertex[0]-vertex[2]);
|
|
//printf("normal is %g,%g,%g x %g,%g,%g- wtfu is %g\n",tofloat(normal.x),tofloat(normal.y),tofloat(normal.z),tofloat(vertex[0].x),tofloat(vertex[0].y),tofloat(vertex[0].z),tofloat( normal.dot( vertex[0] ) ) );
|
|
return ( normal.dot( vertex[0] ) >= 0 ) ? CLOCKWISE : COUNTERCLOCKWISE;
|
|
|
|
}
|
|
|
|
|
|
bool Face3::intersects_aabb(const Rect3& p_aabb) const {
|
|
|
|
/** TEST PLANE **/
|
|
if (!p_aabb.intersects_plane( get_plane() ))
|
|
return false;
|
|
|
|
/** TEST FACE AXIS */
|
|
|
|
#define TEST_AXIS(m_ax)\
|
|
{\
|
|
real_t aabb_min=p_aabb.pos.m_ax;\
|
|
real_t aabb_max=p_aabb.pos.m_ax+p_aabb.size.m_ax;\
|
|
real_t tri_min,tri_max;\
|
|
for (int i=0;i<3;i++) {\
|
|
if (i==0 || vertex[i].m_ax > tri_max)\
|
|
tri_max=vertex[i].m_ax;\
|
|
if (i==0 || vertex[i].m_ax < tri_min)\
|
|
tri_min=vertex[i].m_ax;\
|
|
}\
|
|
\
|
|
if (tri_max<aabb_min || aabb_max<tri_min)\
|
|
return false;\
|
|
}
|
|
|
|
TEST_AXIS(x);
|
|
TEST_AXIS(y);
|
|
TEST_AXIS(z);
|
|
|
|
/** TEST ALL EDGES **/
|
|
|
|
Vector3 edge_norms[3]={
|
|
vertex[0]-vertex[1],
|
|
vertex[1]-vertex[2],
|
|
vertex[2]-vertex[0],
|
|
};
|
|
|
|
for (int i=0;i<12;i++) {
|
|
|
|
Vector3 from,to;
|
|
p_aabb.get_edge(i,from,to);
|
|
Vector3 e1=from-to;
|
|
for (int j=0;j<3;j++) {
|
|
Vector3 e2=edge_norms[j];
|
|
|
|
Vector3 axis=vec3_cross( e1, e2 );
|
|
|
|
if (axis.length_squared()<0.0001)
|
|
continue; // coplanar
|
|
axis.normalize();
|
|
|
|
real_t minA,maxA,minB,maxB;
|
|
p_aabb.project_range_in_plane(Plane(axis,0),minA,maxA);
|
|
project_range(axis,Transform(),minB,maxB);
|
|
|
|
if (maxA<minB || maxB<minA)
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
|
|
}
|
|
|
|
Face3::operator String() const {
|
|
|
|
return String()+vertex[0]+", "+vertex[1]+", "+vertex[2];
|
|
}
|
|
|
|
void Face3::project_range(const Vector3& p_normal,const Transform& p_transform,real_t& r_min, real_t& r_max) const {
|
|
|
|
for (int i=0;i<3;i++) {
|
|
|
|
Vector3 v=p_transform.xform(vertex[i]);
|
|
real_t d=p_normal.dot(v);
|
|
|
|
if (i==0 || d > r_max)
|
|
r_max=d;
|
|
|
|
if (i==0 || d < r_min)
|
|
r_min=d;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void Face3::get_support(const Vector3& p_normal,const Transform& p_transform,Vector3 *p_vertices,int* p_count,int p_max) const {
|
|
|
|
#define _FACE_IS_VALID_SUPPORT_TRESHOLD 0.98
|
|
#define _EDGE_IS_VALID_SUPPORT_TRESHOLD 0.05
|
|
|
|
if (p_max<=0)
|
|
return;
|
|
|
|
Vector3 n=p_transform.basis.xform_inv(p_normal);
|
|
|
|
/** TEST FACE AS SUPPORT **/
|
|
if (get_plane().normal.dot(n) > _FACE_IS_VALID_SUPPORT_TRESHOLD) {
|
|
|
|
*p_count=MIN(3,p_max);
|
|
|
|
for (int i=0;i<*p_count;i++) {
|
|
|
|
p_vertices[i]=p_transform.xform(vertex[i]);
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
/** FIND SUPPORT VERTEX **/
|
|
|
|
int vert_support_idx=-1;
|
|
real_t support_max;
|
|
|
|
for (int i=0;i<3;i++) {
|
|
|
|
real_t d=n.dot(vertex[i]);
|
|
|
|
if (i==0 || d > support_max) {
|
|
support_max=d;
|
|
vert_support_idx=i;
|
|
}
|
|
}
|
|
|
|
/** TEST EDGES AS SUPPORT **/
|
|
|
|
for (int i=0;i<3;i++) {
|
|
|
|
if (i!=vert_support_idx && i+1!=vert_support_idx)
|
|
continue;
|
|
|
|
// check if edge is valid as a support
|
|
real_t dot=(vertex[i]-vertex[(i+1)%3]).normalized().dot(n);
|
|
dot=ABS(dot);
|
|
if (dot < _EDGE_IS_VALID_SUPPORT_TRESHOLD) {
|
|
|
|
*p_count=MIN(2,p_max);
|
|
|
|
for (int j=0;j<*p_count;j++)
|
|
p_vertices[j]=p_transform.xform(vertex[(j+i)%3]);
|
|
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
*p_count=1;
|
|
p_vertices[0]=p_transform.xform(vertex[vert_support_idx]);
|
|
|
|
}
|
|
|
|
|
|
Vector3 Face3::get_closest_point_to(const Vector3& p_point) const {
|
|
|
|
Vector3 edge0 = vertex[1] - vertex[0];
|
|
Vector3 edge1 = vertex[2] - vertex[0];
|
|
Vector3 v0 = vertex[0] - p_point;
|
|
|
|
real_t a = edge0.dot( edge0 );
|
|
real_t b = edge0.dot( edge1 );
|
|
real_t c = edge1.dot( edge1 );
|
|
real_t d = edge0.dot( v0 );
|
|
real_t e = edge1.dot( v0 );
|
|
|
|
real_t det = a*c - b*b;
|
|
real_t s = b*e - c*d;
|
|
real_t t = b*d - a*e;
|
|
|
|
if ( s + t < det )
|
|
{
|
|
if ( s < 0.f )
|
|
{
|
|
if ( t < 0.f )
|
|
{
|
|
if ( d < 0.f )
|
|
{
|
|
s = CLAMP( -d/a, 0.f, 1.f );
|
|
t = 0.f;
|
|
}
|
|
else
|
|
{
|
|
s = 0.f;
|
|
t = CLAMP( -e/c, 0.f, 1.f );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
s = 0.f;
|
|
t = CLAMP( -e/c, 0.f, 1.f );
|
|
}
|
|
}
|
|
else if ( t < 0.f )
|
|
{
|
|
s = CLAMP( -d/a, 0.f, 1.f );
|
|
t = 0.f;
|
|
}
|
|
else
|
|
{
|
|
real_t invDet = 1.f / det;
|
|
s *= invDet;
|
|
t *= invDet;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if ( s < 0.f )
|
|
{
|
|
real_t tmp0 = b+d;
|
|
real_t tmp1 = c+e;
|
|
if ( tmp1 > tmp0 )
|
|
{
|
|
real_t numer = tmp1 - tmp0;
|
|
real_t denom = a-2*b+c;
|
|
s = CLAMP( numer/denom, 0.f, 1.f );
|
|
t = 1-s;
|
|
}
|
|
else
|
|
{
|
|
t = CLAMP( -e/c, 0.f, 1.f );
|
|
s = 0.f;
|
|
}
|
|
}
|
|
else if ( t < 0.f )
|
|
{
|
|
if ( a+d > b+e )
|
|
{
|
|
real_t numer = c+e-b-d;
|
|
real_t denom = a-2*b+c;
|
|
s = CLAMP( numer/denom, 0.f, 1.f );
|
|
t = 1-s;
|
|
}
|
|
else
|
|
{
|
|
s = CLAMP( -e/c, 0.f, 1.f );
|
|
t = 0.f;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
real_t numer = c+e-b-d;
|
|
real_t denom = a-2*b+c;
|
|
s = CLAMP( numer/denom, 0.f, 1.f );
|
|
t = 1.f - s;
|
|
}
|
|
}
|
|
|
|
return vertex[0] + s * edge0 + t * edge1;
|
|
|
|
}
|