godot/drivers/gles3/shaders/scene.glsl

2101 lines
61 KiB
GLSL

/* clang-format off */
[vertex]
#define M_PI 3.14159265359
#define SHADER_IS_SRGB false
/*
from VisualServer:
ARRAY_VERTEX=0,
ARRAY_NORMAL=1,
ARRAY_TANGENT=2,
ARRAY_COLOR=3,
ARRAY_TEX_UV=4,
ARRAY_TEX_UV2=5,
ARRAY_BONES=6,
ARRAY_WEIGHTS=7,
ARRAY_INDEX=8,
*/
// hack to use uv if no uv present so it works with lightmap
/* INPUT ATTRIBS */
layout(location = 0) in highp vec4 vertex_attrib;
/* clang-format on */
layout(location = 1) in vec3 normal_attrib;
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
layout(location = 2) in vec4 tangent_attrib;
#endif
#if defined(ENABLE_COLOR_INTERP)
layout(location = 3) in vec4 color_attrib;
#endif
#if defined(ENABLE_UV_INTERP)
layout(location = 4) in vec2 uv_attrib;
#endif
#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
layout(location = 5) in vec2 uv2_attrib;
#endif
uniform float normal_mult;
#ifdef USE_SKELETON
layout(location = 6) in uvec4 bone_indices; // attrib:6
layout(location = 7) in vec4 bone_weights; // attrib:7
#endif
#ifdef USE_INSTANCING
layout(location = 8) in highp vec4 instance_xform0;
layout(location = 9) in highp vec4 instance_xform1;
layout(location = 10) in highp vec4 instance_xform2;
layout(location = 11) in lowp vec4 instance_color;
#if defined(ENABLE_INSTANCE_CUSTOM)
layout(location = 12) in highp vec4 instance_custom_data;
#endif
#endif
layout(std140) uniform SceneData { // ubo:0
highp mat4 projection_matrix;
highp mat4 inv_projection_matrix;
highp mat4 camera_inverse_matrix;
highp mat4 camera_matrix;
mediump vec4 ambient_light_color;
mediump vec4 bg_color;
mediump vec4 fog_color_enabled;
mediump vec4 fog_sun_color_amount;
mediump float ambient_energy;
mediump float bg_energy;
mediump float z_offset;
mediump float z_slope_scale;
highp float shadow_dual_paraboloid_render_zfar;
highp float shadow_dual_paraboloid_render_side;
highp vec2 viewport_size;
highp vec2 screen_pixel_size;
highp vec2 shadow_atlas_pixel_size;
highp vec2 directional_shadow_pixel_size;
highp float time;
highp float z_far;
mediump float reflection_multiplier;
mediump float subsurface_scatter_width;
mediump float ambient_occlusion_affect_light;
mediump float ambient_occlusion_affect_ao_channel;
mediump float opaque_prepass_threshold;
bool fog_depth_enabled;
highp float fog_depth_begin;
highp float fog_depth_curve;
bool fog_transmit_enabled;
highp float fog_transmit_curve;
bool fog_height_enabled;
highp float fog_height_min;
highp float fog_height_max;
highp float fog_height_curve;
};
uniform highp mat4 world_transform;
#ifdef USE_LIGHT_DIRECTIONAL
layout(std140) uniform DirectionalLightData { //ubo:3
highp vec4 light_pos_inv_radius;
mediump vec4 light_direction_attenuation;
mediump vec4 light_color_energy;
mediump vec4 light_params; // cone attenuation, angle, specular, shadow enabled,
mediump vec4 light_clamp;
mediump vec4 shadow_color_contact;
highp mat4 shadow_matrix1;
highp mat4 shadow_matrix2;
highp mat4 shadow_matrix3;
highp mat4 shadow_matrix4;
mediump vec4 shadow_split_offsets;
};
#endif
#ifdef USE_VERTEX_LIGHTING
//omni and spot
struct LightData {
highp vec4 light_pos_inv_radius;
mediump vec4 light_direction_attenuation;
mediump vec4 light_color_energy;
mediump vec4 light_params; // cone attenuation, angle, specular, shadow enabled,
mediump vec4 light_clamp;
mediump vec4 shadow_color_contact;
highp mat4 shadow_matrix;
};
layout(std140) uniform OmniLightData { //ubo:4
LightData omni_lights[MAX_LIGHT_DATA_STRUCTS];
};
layout(std140) uniform SpotLightData { //ubo:5
LightData spot_lights[MAX_LIGHT_DATA_STRUCTS];
};
#ifdef USE_FORWARD_LIGHTING
uniform int omni_light_indices[MAX_FORWARD_LIGHTS];
uniform int omni_light_count;
uniform int spot_light_indices[MAX_FORWARD_LIGHTS];
uniform int spot_light_count;
#endif
out vec4 diffuse_light_interp;
out vec4 specular_light_interp;
void light_compute(vec3 N, vec3 L, vec3 V, vec3 light_color, float roughness, inout vec3 diffuse, inout vec3 specular) {
float dotNL = max(dot(N, L), 0.0);
diffuse += dotNL * light_color / M_PI;
if (roughness > 0.0) {
vec3 H = normalize(V + L);
float dotNH = max(dot(N, H), 0.0);
float intensity = (roughness >= 1.0 ? 1.0 : pow(dotNH, (1.0 - roughness) * 256.0));
specular += light_color * intensity;
}
}
void light_process_omni(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, float roughness, inout vec3 diffuse, inout vec3 specular) {
vec3 light_rel_vec = omni_lights[idx].light_pos_inv_radius.xyz - vertex;
float light_length = length(light_rel_vec);
float normalized_distance = light_length * omni_lights[idx].light_pos_inv_radius.w;
vec3 light_attenuation = vec3(pow(max(1.0 - normalized_distance, 0.0), omni_lights[idx].light_direction_attenuation.w));
light_compute(normal, normalize(light_rel_vec), eye_vec, omni_lights[idx].light_color_energy.rgb * light_attenuation, roughness, diffuse, specular);
}
void light_process_spot(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, float roughness, inout vec3 diffuse, inout vec3 specular) {
vec3 light_rel_vec = spot_lights[idx].light_pos_inv_radius.xyz - vertex;
float light_length = length(light_rel_vec);
float normalized_distance = light_length * spot_lights[idx].light_pos_inv_radius.w;
vec3 light_attenuation = vec3(pow(max(1.0 - normalized_distance, 0.001), spot_lights[idx].light_direction_attenuation.w));
vec3 spot_dir = spot_lights[idx].light_direction_attenuation.xyz;
float spot_cutoff = spot_lights[idx].light_params.y;
float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_cutoff);
float spot_rim = (1.0 - scos) / (1.0 - spot_cutoff);
light_attenuation *= 1.0 - pow(max(spot_rim, 0.001), spot_lights[idx].light_params.x);
light_compute(normal, normalize(light_rel_vec), eye_vec, spot_lights[idx].light_color_energy.rgb * light_attenuation, roughness, diffuse, specular);
}
#endif
/* Varyings */
out highp vec3 vertex_interp;
out vec3 normal_interp;
#if defined(ENABLE_COLOR_INTERP)
out vec4 color_interp;
#endif
#if defined(ENABLE_UV_INTERP)
out vec2 uv_interp;
#endif
#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
out vec2 uv2_interp;
#endif
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
out vec3 tangent_interp;
out vec3 binormal_interp;
#endif
#if defined(USE_MATERIAL)
/* clang-format off */
layout(std140) uniform UniformData { // ubo:1
MATERIAL_UNIFORMS
};
/* clang-format on */
#endif
/* clang-format off */
VERTEX_SHADER_GLOBALS
/* clang-format on */
#ifdef RENDER_DEPTH_DUAL_PARABOLOID
out highp float dp_clip;
#endif
#define SKELETON_TEXTURE_WIDTH 256
#ifdef USE_SKELETON
uniform highp sampler2D skeleton_texture; // texunit:-1
#endif
out highp vec4 position_interp;
// FIXME: This triggers a Mesa bug that breaks rendering, so disabled for now.
// See GH-13450 and https://bugs.freedesktop.org/show_bug.cgi?id=100316
//invariant gl_Position;
void main() {
highp vec4 vertex = vertex_attrib; // vec4(vertex_attrib.xyz * data_attrib.x,1.0);
mat4 world_matrix = world_transform;
#ifdef USE_INSTANCING
{
highp mat4 m = mat4(instance_xform0, instance_xform1, instance_xform2, vec4(0.0, 0.0, 0.0, 1.0));
world_matrix = world_matrix * transpose(m);
}
#endif
vec3 normal = normal_attrib * normal_mult;
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
vec3 tangent = tangent_attrib.xyz;
tangent *= normal_mult;
float binormalf = tangent_attrib.a;
#endif
#if defined(ENABLE_COLOR_INTERP)
color_interp = color_attrib;
#if defined(USE_INSTANCING)
color_interp *= instance_color;
#endif
#endif
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
vec3 binormal = normalize(cross(normal, tangent) * binormalf);
#endif
#if defined(ENABLE_UV_INTERP)
uv_interp = uv_attrib;
#endif
#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
uv2_interp = uv2_attrib;
#endif
#if defined(USE_INSTANCING) && defined(ENABLE_INSTANCE_CUSTOM)
vec4 instance_custom = instance_custom_data;
#else
vec4 instance_custom = vec4(0.0);
#endif
highp mat4 local_projection = projection_matrix;
//using world coordinates
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
vertex = world_matrix * vertex;
#if defined(ENSURE_CORRECT_NORMALS)
mat3 normal_matrix = mat3(transpose(inverse(world_matrix)));
normal = normal_matrix * normal;
#else
normal = normalize((world_matrix * vec4(normal, 0.0)).xyz);
#endif
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
tangent = normalize((world_matrix * vec4(tangent, 0.0)).xyz);
binormal = normalize((world_matrix * vec4(binormal, 0.0)).xyz);
#endif
#endif
float roughness = 1.0;
//defines that make writing custom shaders easier
#define projection_matrix local_projection
#define world_transform world_matrix
#ifdef USE_SKELETON
{
//skeleton transform
ivec4 bone_indicesi = ivec4(bone_indices); // cast to signed int
ivec2 tex_ofs = ivec2(bone_indicesi.x % 256, (bone_indicesi.x / 256) * 3);
highp mat3x4 m;
m = mat3x4(
texelFetch(skeleton_texture, tex_ofs, 0),
texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0),
texelFetch(skeleton_texture, tex_ofs + ivec2(0, 2), 0)) *
bone_weights.x;
tex_ofs = ivec2(bone_indicesi.y % 256, (bone_indicesi.y / 256) * 3);
m += mat3x4(
texelFetch(skeleton_texture, tex_ofs, 0),
texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0),
texelFetch(skeleton_texture, tex_ofs + ivec2(0, 2), 0)) *
bone_weights.y;
tex_ofs = ivec2(bone_indicesi.z % 256, (bone_indicesi.z / 256) * 3);
m += mat3x4(
texelFetch(skeleton_texture, tex_ofs, 0),
texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0),
texelFetch(skeleton_texture, tex_ofs + ivec2(0, 2), 0)) *
bone_weights.z;
tex_ofs = ivec2(bone_indicesi.w % 256, (bone_indicesi.w / 256) * 3);
m += mat3x4(
texelFetch(skeleton_texture, tex_ofs, 0),
texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0),
texelFetch(skeleton_texture, tex_ofs + ivec2(0, 2), 0)) *
bone_weights.w;
mat4 bone_matrix = transpose(mat4(m[0], m[1], m[2], vec4(0.0, 0.0, 0.0, 1.0)));
world_matrix = bone_matrix * world_matrix;
}
#endif
mat4 modelview = camera_inverse_matrix * world_matrix;
{
/* clang-format off */
VERTEX_SHADER_CODE
/* clang-format on */
}
// using local coordinates (default)
#if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED)
vertex = modelview * vertex;
#if defined(ENSURE_CORRECT_NORMALS)
mat3 normal_matrix = mat3(transpose(inverse(modelview)));
normal = normal_matrix * normal;
#else
normal = normalize((modelview * vec4(normal, 0.0)).xyz);
#endif
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
tangent = normalize((modelview * vec4(tangent, 0.0)).xyz);
binormal = normalize((modelview * vec4(binormal, 0.0)).xyz);
#endif
#endif
//using world coordinates
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
vertex = camera_inverse_matrix * vertex;
normal = normalize((camera_inverse_matrix * vec4(normal, 0.0)).xyz);
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
tangent = normalize((camera_inverse_matrix * vec4(tangent, 0.0)).xyz);
binormal = normalize((camera_inverse_matrix * vec4(binormal, 0.0)).xyz);
#endif
#endif
vertex_interp = vertex.xyz;
normal_interp = normal;
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
tangent_interp = tangent;
binormal_interp = binormal;
#endif
#ifdef RENDER_DEPTH
#ifdef RENDER_DEPTH_DUAL_PARABOLOID
vertex_interp.z *= shadow_dual_paraboloid_render_side;
normal_interp.z *= shadow_dual_paraboloid_render_side;
dp_clip = vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias
//for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges
highp vec3 vtx = vertex_interp + normalize(vertex_interp) * z_offset;
highp float distance = length(vtx);
vtx = normalize(vtx);
vtx.xy /= 1.0 - vtx.z;
vtx.z = (distance / shadow_dual_paraboloid_render_zfar);
vtx.z = vtx.z * 2.0 - 1.0;
vertex_interp = vtx;
#else
float z_ofs = z_offset;
z_ofs += (1.0 - abs(normal_interp.z)) * z_slope_scale;
vertex_interp.z -= z_ofs;
#endif //RENDER_DEPTH_DUAL_PARABOLOID
#endif //RENDER_DEPTH
gl_Position = projection_matrix * vec4(vertex_interp, 1.0);
position_interp = gl_Position;
#ifdef USE_VERTEX_LIGHTING
diffuse_light_interp = vec4(0.0);
specular_light_interp = vec4(0.0);
#ifdef USE_FORWARD_LIGHTING
for (int i = 0; i < omni_light_count; i++) {
light_process_omni(omni_light_indices[i], vertex_interp, -normalize(vertex_interp), normal_interp, roughness, diffuse_light_interp.rgb, specular_light_interp.rgb);
}
for (int i = 0; i < spot_light_count; i++) {
light_process_spot(spot_light_indices[i], vertex_interp, -normalize(vertex_interp), normal_interp, roughness, diffuse_light_interp.rgb, specular_light_interp.rgb);
}
#endif
#ifdef USE_LIGHT_DIRECTIONAL
vec3 directional_diffuse = vec3(0.0);
vec3 directional_specular = vec3(0.0);
light_compute(normal_interp, -light_direction_attenuation.xyz, -normalize(vertex_interp), light_color_energy.rgb, roughness, directional_diffuse, directional_specular);
float diff_avg = dot(diffuse_light_interp.rgb, vec3(0.33333));
float diff_dir_avg = dot(directional_diffuse, vec3(0.33333));
if (diff_avg > 0.0) {
diffuse_light_interp.a = diff_dir_avg / (diff_avg + diff_dir_avg);
} else {
diffuse_light_interp.a = 1.0;
}
diffuse_light_interp.rgb += directional_diffuse;
float spec_avg = dot(specular_light_interp.rgb, vec3(0.33333));
float spec_dir_avg = dot(directional_specular, vec3(0.33333));
if (spec_avg > 0.0) {
specular_light_interp.a = spec_dir_avg / (spec_avg + spec_dir_avg);
} else {
specular_light_interp.a = 1.0;
}
specular_light_interp.rgb += directional_specular;
#endif //USE_LIGHT_DIRECTIONAL
#endif // USE_VERTEX_LIGHTING
}
/* clang-format off */
[fragment]
/* texture unit usage, N is max_texture_unity-N
1-skeleton
2-radiance
3-reflection_atlas
4-directional_shadow
5-shadow_atlas
6-decal_atlas
7-screen
8-depth
9-probe1
10-probe2
*/
uniform highp mat4 world_transform;
/* clang-format on */
#define M_PI 3.14159265359
#define SHADER_IS_SRGB false
/* Varyings */
#if defined(ENABLE_COLOR_INTERP)
in vec4 color_interp;
#endif
#if defined(ENABLE_UV_INTERP)
in vec2 uv_interp;
#endif
#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
in vec2 uv2_interp;
#endif
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
in vec3 tangent_interp;
in vec3 binormal_interp;
#endif
in highp vec3 vertex_interp;
in vec3 normal_interp;
/* PBR CHANNELS */
#ifdef USE_RADIANCE_MAP
layout(std140) uniform Radiance { // ubo:2
mat4 radiance_inverse_xform;
float radiance_ambient_contribution;
};
#define RADIANCE_MAX_LOD 5.0
#ifdef USE_RADIANCE_MAP_ARRAY
uniform sampler2DArray radiance_map; // texunit:-2
vec3 textureDualParaboloid(sampler2DArray p_tex, vec3 p_vec, float p_roughness) {
vec3 norm = normalize(p_vec);
norm.xy /= 1.0 + abs(norm.z);
norm.xy = norm.xy * vec2(0.5, 0.25) + vec2(0.5, 0.25);
// we need to lie the derivatives (normg) and assume that DP side is always the same
// to get proper texture filtering
vec2 normg = norm.xy;
if (norm.z > 0.0) {
norm.y = 0.5 - norm.y + 0.5;
}
// thanks to OpenGL spec using floor(layer + 0.5) for texture arrays,
// it's easy to have precision errors using fract() to interpolate layers
// as such, using fixed point to ensure it works.
float index = p_roughness * RADIANCE_MAX_LOD;
int indexi = int(index * 256.0);
vec3 base = textureGrad(p_tex, vec3(norm.xy, float(indexi / 256)), dFdx(normg), dFdy(normg)).xyz;
vec3 next = textureGrad(p_tex, vec3(norm.xy, float(indexi / 256 + 1)), dFdx(normg), dFdy(normg)).xyz;
return mix(base, next, float(indexi % 256) / 256.0);
}
#else
uniform sampler2D radiance_map; // texunit:-2
vec3 textureDualParaboloid(sampler2D p_tex, vec3 p_vec, float p_roughness) {
vec3 norm = normalize(p_vec);
norm.xy /= 1.0 + abs(norm.z);
norm.xy = norm.xy * vec2(0.5, 0.25) + vec2(0.5, 0.25);
if (norm.z > 0.0) {
norm.y = 0.5 - norm.y + 0.5;
}
return textureLod(p_tex, norm.xy, p_roughness * RADIANCE_MAX_LOD).xyz;
}
#endif
#endif
/* Material Uniforms */
#if defined(USE_MATERIAL)
/* clang-format off */
layout(std140) uniform UniformData {
MATERIAL_UNIFORMS
};
/* clang-format on */
#endif
/* clang-format off */
FRAGMENT_SHADER_GLOBALS
/* clang-format on */
layout(std140) uniform SceneData {
highp mat4 projection_matrix;
highp mat4 inv_projection_matrix;
highp mat4 camera_inverse_matrix;
highp mat4 camera_matrix;
mediump vec4 ambient_light_color;
mediump vec4 bg_color;
mediump vec4 fog_color_enabled;
mediump vec4 fog_sun_color_amount;
mediump float ambient_energy;
mediump float bg_energy;
mediump float z_offset;
mediump float z_slope_scale;
highp float shadow_dual_paraboloid_render_zfar;
highp float shadow_dual_paraboloid_render_side;
highp vec2 viewport_size;
highp vec2 screen_pixel_size;
highp vec2 shadow_atlas_pixel_size;
highp vec2 directional_shadow_pixel_size;
highp float time;
highp float z_far;
mediump float reflection_multiplier;
mediump float subsurface_scatter_width;
mediump float ambient_occlusion_affect_light;
mediump float ambient_occlusion_affect_ao_channel;
mediump float opaque_prepass_threshold;
bool fog_depth_enabled;
highp float fog_depth_begin;
highp float fog_depth_curve;
bool fog_transmit_enabled;
highp float fog_transmit_curve;
bool fog_height_enabled;
highp float fog_height_min;
highp float fog_height_max;
highp float fog_height_curve;
};
//directional light data
#ifdef USE_LIGHT_DIRECTIONAL
layout(std140) uniform DirectionalLightData {
highp vec4 light_pos_inv_radius;
mediump vec4 light_direction_attenuation;
mediump vec4 light_color_energy;
mediump vec4 light_params; // cone attenuation, angle, specular, shadow enabled,
mediump vec4 light_clamp;
mediump vec4 shadow_color_contact;
highp mat4 shadow_matrix1;
highp mat4 shadow_matrix2;
highp mat4 shadow_matrix3;
highp mat4 shadow_matrix4;
mediump vec4 shadow_split_offsets;
};
uniform highp sampler2DShadow directional_shadow; // texunit:-4
#endif
#ifdef USE_VERTEX_LIGHTING
in vec4 diffuse_light_interp;
in vec4 specular_light_interp;
#endif
// omni and spot
struct LightData {
highp vec4 light_pos_inv_radius;
mediump vec4 light_direction_attenuation;
mediump vec4 light_color_energy;
mediump vec4 light_params; // cone attenuation, angle, specular, shadow enabled,
mediump vec4 light_clamp;
mediump vec4 shadow_color_contact;
highp mat4 shadow_matrix;
};
layout(std140) uniform OmniLightData { // ubo:4
LightData omni_lights[MAX_LIGHT_DATA_STRUCTS];
};
layout(std140) uniform SpotLightData { // ubo:5
LightData spot_lights[MAX_LIGHT_DATA_STRUCTS];
};
uniform highp sampler2DShadow shadow_atlas; // texunit:-5
struct ReflectionData {
mediump vec4 box_extents;
mediump vec4 box_offset;
mediump vec4 params; // intensity, 0, interior , boxproject
mediump vec4 ambient; // ambient color, energy
mediump vec4 atlas_clamp;
highp mat4 local_matrix; // up to here for spot and omni, rest is for directional
// notes: for ambientblend, use distance to edge to blend between already existing global environment
};
layout(std140) uniform ReflectionProbeData { //ubo:6
ReflectionData reflections[MAX_REFLECTION_DATA_STRUCTS];
};
uniform mediump sampler2D reflection_atlas; // texunit:-3
#ifdef USE_FORWARD_LIGHTING
uniform int omni_light_indices[MAX_FORWARD_LIGHTS];
uniform int omni_light_count;
uniform int spot_light_indices[MAX_FORWARD_LIGHTS];
uniform int spot_light_count;
uniform int reflection_indices[MAX_FORWARD_LIGHTS];
uniform int reflection_count;
#endif
#if defined(SCREEN_TEXTURE_USED)
uniform highp sampler2D screen_texture; // texunit:-7
#endif
#ifdef USE_MULTIPLE_RENDER_TARGETS
layout(location = 0) out vec4 diffuse_buffer;
layout(location = 1) out vec4 specular_buffer;
layout(location = 2) out vec4 normal_mr_buffer;
#if defined(ENABLE_SSS)
layout(location = 3) out float sss_buffer;
#endif
#else
layout(location = 0) out vec4 frag_color;
#endif
in highp vec4 position_interp;
uniform highp sampler2D depth_buffer; // texunit:-8
#ifdef USE_CONTACT_SHADOWS
float contact_shadow_compute(vec3 pos, vec3 dir, float max_distance) {
if (abs(dir.z) > 0.99)
return 1.0;
vec3 endpoint = pos + dir * max_distance;
vec4 source = position_interp;
vec4 dest = projection_matrix * vec4(endpoint, 1.0);
vec2 from_screen = (source.xy / source.w) * 0.5 + 0.5;
vec2 to_screen = (dest.xy / dest.w) * 0.5 + 0.5;
vec2 screen_rel = to_screen - from_screen;
if (length(screen_rel) < 0.00001)
return 1.0; // too small, don't do anything
/*
float pixel_size; // approximate pixel size
if (screen_rel.x > screen_rel.y) {
pixel_size = abs((pos.x - endpoint.x) / (screen_rel.x / screen_pixel_size.x));
} else {
pixel_size = abs((pos.y - endpoint.y) / (screen_rel.y / screen_pixel_size.y));
}
*/
vec4 bias = projection_matrix * vec4(pos + vec3(0.0, 0.0, max_distance * 0.5), 1.0);
vec2 pixel_incr = normalize(screen_rel) * screen_pixel_size;
float steps = length(screen_rel) / length(pixel_incr);
steps = min(2000.0, steps); // put a limit to avoid freezing in some strange situation
//steps = 10.0;
vec4 incr = (dest - source) / steps;
float ratio = 0.0;
float ratio_incr = 1.0 / steps;
while (steps > 0.0) {
source += incr * 2.0;
bias += incr * 2.0;
vec3 uv_depth = (source.xyz / source.w) * 0.5 + 0.5;
float depth = texture(depth_buffer, uv_depth.xy).r;
if (depth < uv_depth.z) {
if (depth > (bias.z / bias.w) * 0.5 + 0.5) {
return min(pow(ratio, 4.0), 1.0);
} else {
return 1.0;
}
}
ratio += ratio_incr;
steps -= 1.0;
}
return 1.0;
}
#endif
// This returns the G_GGX function divided by 2 cos_theta_m, where in practice cos_theta_m is either N.L or N.V.
// We're dividing this factor off because the overall term we'll end up looks like
// (see, for example, the first unnumbered equation in B. Burley, "Physically Based Shading at Disney", SIGGRAPH 2012):
//
// F(L.V) D(N.H) G(N.L) G(N.V) / (4 N.L N.V)
//
// We're basically regouping this as
//
// F(L.V) D(N.H) [G(N.L)/(2 N.L)] [G(N.V) / (2 N.V)]
//
// and thus, this function implements the [G(N.m)/(2 N.m)] part with m = L or V.
//
// The contents of the D and G (G1) functions (GGX) are taken from
// E. Heitz, "Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs", J. Comp. Graph. Tech. 3 (2) (2014).
// Eqns 71-72 and 85-86 (see also Eqns 43 and 80).
float G_GGX_2cos(float cos_theta_m, float alpha) {
// Schlick's approximation
// C. Schlick, "An Inexpensive BRDF Model for Physically-based Rendering", Computer Graphics Forum. 13 (3): 233 (1994)
// Eq. (19), although see Heitz (2014) the about the problems with his derivation.
// It nevertheless approximates GGX well with k = alpha/2.
float k = 0.5 * alpha;
return 0.5 / (cos_theta_m * (1.0 - k) + k);
// float cos2 = cos_theta_m * cos_theta_m;
// float sin2 = (1.0 - cos2);
// return 1.0 / (cos_theta_m + sqrt(cos2 + alpha * alpha * sin2));
}
float D_GGX(float cos_theta_m, float alpha) {
float alpha2 = alpha * alpha;
float d = 1.0 + (alpha2 - 1.0) * cos_theta_m * cos_theta_m;
return alpha2 / (M_PI * d * d);
}
float G_GGX_anisotropic_2cos(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
float cos2 = cos_theta_m * cos_theta_m;
float sin2 = (1.0 - cos2);
float s_x = alpha_x * cos_phi;
float s_y = alpha_y * sin_phi;
return 1.0 / max(cos_theta_m + sqrt(cos2 + (s_x * s_x + s_y * s_y) * sin2), 0.001);
}
float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
float cos2 = cos_theta_m * cos_theta_m;
float sin2 = (1.0 - cos2);
float r_x = cos_phi / alpha_x;
float r_y = sin_phi / alpha_y;
float d = cos2 + sin2 * (r_x * r_x + r_y * r_y);
return 1.0 / max(M_PI * alpha_x * alpha_y * d * d, 0.001);
}
float SchlickFresnel(float u) {
float m = 1.0 - u;
float m2 = m * m;
return m2 * m2 * m; // pow(m,5)
}
float GTR1(float NdotH, float a) {
if (a >= 1.0) return 1.0 / M_PI;
float a2 = a * a;
float t = 1.0 + (a2 - 1.0) * NdotH * NdotH;
return (a2 - 1.0) / (M_PI * log(a2) * t);
}
vec3 F0(float metallic, float specular, vec3 albedo) {
float dielectric = 0.16 * specular * specular;
// use albedo * metallic as colored specular reflectance at 0 angle for metallic materials;
// see https://google.github.io/filament/Filament.md.html
return mix(vec3(dielectric), albedo, vec3(metallic));
}
void light_compute(vec3 N, vec3 L, vec3 V, vec3 B, vec3 T, vec3 light_color, vec3 attenuation, vec3 diffuse_color, vec3 transmission, float specular_blob_intensity, float roughness, float metallic, float specular, float rim, float rim_tint, float clearcoat, float clearcoat_gloss, float anisotropy, inout vec3 diffuse_light, inout vec3 specular_light) {
#if defined(USE_LIGHT_SHADER_CODE)
// light is written by the light shader
vec3 normal = N;
vec3 albedo = diffuse_color;
vec3 light = L;
vec3 view = V;
/* clang-format off */
LIGHT_SHADER_CODE
/* clang-format on */
#else
float NdotL = dot(N, L);
float cNdotL = max(NdotL, 0.0); // clamped NdotL
float NdotV = dot(N, V);
float cNdotV = max(NdotV, 0.0);
if (metallic < 1.0) {
#if defined(DIFFUSE_OREN_NAYAR)
vec3 diffuse_brdf_NL;
#else
float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance
#endif
#if defined(DIFFUSE_LAMBERT_WRAP)
// energy conserving lambert wrap shader
diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness)));
#elif defined(DIFFUSE_OREN_NAYAR)
{
// see http://mimosa-pudica.net/improved-oren-nayar.html
float LdotV = dot(L, V);
float s = LdotV - NdotL * NdotV;
float t = mix(1.0, max(NdotL, NdotV), step(0.0, s));
float sigma2 = roughness * roughness; // TODO: this needs checking
vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13));
float B = 0.45 * sigma2 / (sigma2 + 0.09);
diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI);
}
#elif defined(DIFFUSE_TOON)
diffuse_brdf_NL = smoothstep(-roughness, max(roughness, 0.01), NdotL);
#elif defined(DIFFUSE_BURLEY)
{
vec3 H = normalize(V + L);
float cLdotH = max(0.0, dot(L, H));
float FD90 = 0.5 + 2.0 * cLdotH * cLdotH * roughness;
float FdV = 1.0 + (FD90 - 1.0) * SchlickFresnel(cNdotV);
float FdL = 1.0 + (FD90 - 1.0) * SchlickFresnel(cNdotL);
diffuse_brdf_NL = (1.0 / M_PI) * FdV * FdL * cNdotL;
/*
float energyBias = mix(roughness, 0.0, 0.5);
float energyFactor = mix(roughness, 1.0, 1.0 / 1.51);
float fd90 = energyBias + 2.0 * VoH * VoH * roughness;
float f0 = 1.0;
float lightScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotL, 5.0);
float viewScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotV, 5.0);
diffuse_brdf_NL = lightScatter * viewScatter * energyFactor;
*/
}
#else
// lambert
diffuse_brdf_NL = cNdotL * (1.0 / M_PI);
#endif
diffuse_light += light_color * diffuse_color * diffuse_brdf_NL * attenuation;
#if defined(TRANSMISSION_USED)
diffuse_light += light_color * diffuse_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * transmission * attenuation;
#endif
#if defined(LIGHT_USE_RIM)
float rim_light = pow(max(0.0, 1.0 - cNdotV), max(0.0, (1.0 - roughness) * 16.0));
diffuse_light += rim_light * rim * mix(vec3(1.0), diffuse_color, rim_tint) * light_color;
#endif
}
if (roughness > 0.0) { // FIXME: roughness == 0 should not disable specular light entirely
// D
#if defined(SPECULAR_BLINN)
//normalized blinn
vec3 H = normalize(V + L);
float cNdotH = max(dot(N, H), 0.0);
float cVdotH = max(dot(V, H), 0.0);
float cLdotH = max(dot(L, H), 0.0);
float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
float blinn = pow(cNdotH, shininess);
blinn *= (shininess + 8.0) / (8.0 * 3.141592654);
float intensity = (blinn) / max(4.0 * cNdotV * cNdotL, 0.75);
specular_light += light_color * intensity * specular_blob_intensity * attenuation;
#elif defined(SPECULAR_PHONG)
vec3 R = normalize(-reflect(L, N));
float cRdotV = max(0.0, dot(R, V));
float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
float phong = pow(cRdotV, shininess);
phong *= (shininess + 8.0) / (8.0 * 3.141592654);
float intensity = (phong) / max(4.0 * cNdotV * cNdotL, 0.75);
specular_light += light_color * intensity * specular_blob_intensity * attenuation;
#elif defined(SPECULAR_TOON)
vec3 R = normalize(-reflect(L, N));
float RdotV = dot(R, V);
float mid = 1.0 - roughness;
mid *= mid;
float intensity = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid;
diffuse_light += light_color * intensity * specular_blob_intensity * attenuation; // write to diffuse_light, as in toon shading you generally want no reflection
#elif defined(SPECULAR_DISABLED)
// none..
#elif defined(SPECULAR_SCHLICK_GGX)
// shlick+ggx as default
vec3 H = normalize(V + L);
float cNdotH = max(dot(N, H), 0.0);
float cLdotH = max(dot(L, H), 0.0);
#if defined(LIGHT_USE_ANISOTROPY)
float alpha = roughness * roughness;
float aspect = sqrt(1.0 - anisotropy * 0.9);
float ax = alpha / aspect;
float ay = alpha * aspect;
float XdotH = dot(T, H);
float YdotH = dot(B, H);
float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH);
float G = G_GGX_anisotropic_2cos(cNdotL, ax, ay, XdotH, YdotH) * G_GGX_anisotropic_2cos(cNdotV, ax, ay, XdotH, YdotH);
#else
float alpha = roughness * roughness;
float D = D_GGX(cNdotH, alpha);
float G = G_GGX_2cos(cNdotL, alpha) * G_GGX_2cos(cNdotV, alpha);
#endif
// F
vec3 f0 = F0(metallic, specular, diffuse_color);
float cLdotH5 = SchlickFresnel(cLdotH);
vec3 F = mix(vec3(cLdotH5), vec3(1.0), f0);
vec3 specular_brdf_NL = cNdotL * D * F * G;
specular_light += specular_brdf_NL * light_color * specular_blob_intensity * attenuation;
#endif
#if defined(LIGHT_USE_CLEARCOAT)
if (clearcoat_gloss > 0.0) {
#if !defined(SPECULAR_SCHLICK_GGX) && !defined(SPECULAR_BLINN)
vec3 H = normalize(V + L);
#endif
#if !defined(SPECULAR_SCHLICK_GGX)
float cNdotH = max(dot(N, H), 0.0);
float cLdotH = max(dot(L, H), 0.0);
float cLdotH5 = SchlickFresnel(cLdotH);
#endif
float Dr = GTR1(cNdotH, mix(.1, .001, clearcoat_gloss));
float Fr = mix(.04, 1.0, cLdotH5);
float Gr = G_GGX_2cos(cNdotL, .25) * G_GGX_2cos(cNdotV, .25);
float specular_brdf_NL = 0.25 * clearcoat * Gr * Fr * Dr * cNdotL;
specular_light += specular_brdf_NL * light_color * specular_blob_intensity * attenuation;
}
#endif
}
#endif //defined(USE_LIGHT_SHADER_CODE)
}
float sample_shadow(highp sampler2DShadow shadow, vec2 shadow_pixel_size, vec2 pos, float depth, vec4 clamp_rect) {
#ifdef SHADOW_MODE_PCF_13
float avg = textureProj(shadow, vec4(pos, depth, 1.0));
avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x, 0.0), depth, 1.0));
avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x, 0.0), depth, 1.0));
avg += textureProj(shadow, vec4(pos + vec2(0.0, shadow_pixel_size.y), depth, 1.0));
avg += textureProj(shadow, vec4(pos + vec2(0.0, -shadow_pixel_size.y), depth, 1.0));
avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x, shadow_pixel_size.y), depth, 1.0));
avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x, shadow_pixel_size.y), depth, 1.0));
avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x, -shadow_pixel_size.y), depth, 1.0));
avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x, -shadow_pixel_size.y), depth, 1.0));
avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x * 2.0, 0.0), depth, 1.0));
avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x * 2.0, 0.0), depth, 1.0));
avg += textureProj(shadow, vec4(pos + vec2(0.0, shadow_pixel_size.y * 2.0), depth, 1.0));
avg += textureProj(shadow, vec4(pos + vec2(0.0, -shadow_pixel_size.y * 2.0), depth, 1.0));
return avg * (1.0 / 13.0);
#endif
#ifdef SHADOW_MODE_PCF_5
float avg = textureProj(shadow, vec4(pos, depth, 1.0));
avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x, 0.0), depth, 1.0));
avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x, 0.0), depth, 1.0));
avg += textureProj(shadow, vec4(pos + vec2(0.0, shadow_pixel_size.y), depth, 1.0));
avg += textureProj(shadow, vec4(pos + vec2(0.0, -shadow_pixel_size.y), depth, 1.0));
return avg * (1.0 / 5.0);
#endif
#if !defined(SHADOW_MODE_PCF_5) || !defined(SHADOW_MODE_PCF_13)
return textureProj(shadow, vec4(pos, depth, 1.0));
#endif
}
#ifdef RENDER_DEPTH_DUAL_PARABOLOID
in highp float dp_clip;
#endif
#if 0
// need to save texture depth for this
vec3 light_transmittance(float translucency,vec3 light_vec, vec3 normal, vec3 pos, float distance) {
float scale = 8.25 * (1.0 - translucency) / subsurface_scatter_width;
float d = scale * distance;
/**
* Armed with the thickness, we can now calculate the color by means of the
* precalculated transmittance profile.
* (It can be precomputed into a texture, for maximum performance):
*/
float dd = -d * d;
vec3 profile =
vec3(0.233, 0.455, 0.649) * exp(dd / 0.0064) +
vec3(0.1, 0.336, 0.344) * exp(dd / 0.0484) +
vec3(0.118, 0.198, 0.0) * exp(dd / 0.187) +
vec3(0.113, 0.007, 0.007) * exp(dd / 0.567) +
vec3(0.358, 0.004, 0.0) * exp(dd / 1.99) +
vec3(0.078, 0.0, 0.0) * exp(dd / 7.41);
/**
* Using the profile, we finally approximate the transmitted lighting from
* the back of the object:
*/
return profile * clamp(0.3 + dot(light_vec, normal),0.0,1.0);
}
#endif
void light_process_omni(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 binormal, vec3 tangent, vec3 albedo, vec3 transmission, float roughness, float metallic, float specular, float rim, float rim_tint, float clearcoat, float clearcoat_gloss, float anisotropy, float p_blob_intensity, inout vec3 diffuse_light, inout vec3 specular_light) {
vec3 light_rel_vec = omni_lights[idx].light_pos_inv_radius.xyz - vertex;
float light_length = length(light_rel_vec);
float normalized_distance = light_length * omni_lights[idx].light_pos_inv_radius.w;
float omni_attenuation = pow(max(1.0 - normalized_distance, 0.0), omni_lights[idx].light_direction_attenuation.w);
vec3 light_attenuation = vec3(omni_attenuation);
#if !defined(SHADOWS_DISABLED)
if (omni_lights[idx].light_params.w > 0.5) {
// there is a shadowmap
highp vec3 splane = (omni_lights[idx].shadow_matrix * vec4(vertex, 1.0)).xyz;
float shadow_len = length(splane);
splane = normalize(splane);
vec4 clamp_rect = omni_lights[idx].light_clamp;
if (splane.z >= 0.0) {
splane.z += 1.0;
clamp_rect.y += clamp_rect.w;
} else {
splane.z = 1.0 - splane.z;
/*
if (clamp_rect.z < clamp_rect.w) {
clamp_rect.x += clamp_rect.z;
} else {
clamp_rect.y += clamp_rect.w;
}
*/
}
splane.xy /= splane.z;
splane.xy = splane.xy * 0.5 + 0.5;
splane.z = shadow_len * omni_lights[idx].light_pos_inv_radius.w;
splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw;
float shadow = sample_shadow(shadow_atlas, shadow_atlas_pixel_size, splane.xy, splane.z, clamp_rect);
#ifdef USE_CONTACT_SHADOWS
if (shadow > 0.01 && omni_lights[idx].shadow_color_contact.a > 0.0) {
float contact_shadow = contact_shadow_compute(vertex, normalize(light_rel_vec), min(light_length, omni_lights[idx].shadow_color_contact.a));
shadow = min(shadow, contact_shadow);
}
#endif
light_attenuation *= mix(omni_lights[idx].shadow_color_contact.rgb, vec3(1.0), shadow);
}
#endif //SHADOWS_DISABLED
light_compute(normal, normalize(light_rel_vec), eye_vec, binormal, tangent, omni_lights[idx].light_color_energy.rgb, light_attenuation, albedo, transmission, omni_lights[idx].light_params.z * p_blob_intensity, roughness, metallic, specular, rim * omni_attenuation, rim_tint, clearcoat, clearcoat_gloss, anisotropy, diffuse_light, specular_light);
}
void light_process_spot(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 binormal, vec3 tangent, vec3 albedo, vec3 transmission, float roughness, float metallic, float specular, float rim, float rim_tint, float clearcoat, float clearcoat_gloss, float anisotropy, float p_blob_intensity, inout vec3 diffuse_light, inout vec3 specular_light) {
vec3 light_rel_vec = spot_lights[idx].light_pos_inv_radius.xyz - vertex;
float light_length = length(light_rel_vec);
float normalized_distance = light_length * spot_lights[idx].light_pos_inv_radius.w;
float spot_attenuation = pow(max(1.0 - normalized_distance, 0.001), spot_lights[idx].light_direction_attenuation.w);
vec3 spot_dir = spot_lights[idx].light_direction_attenuation.xyz;
float spot_cutoff = spot_lights[idx].light_params.y;
float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_cutoff);
float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_cutoff));
spot_attenuation *= 1.0 - pow(spot_rim, spot_lights[idx].light_params.x);
vec3 light_attenuation = vec3(spot_attenuation);
#if !defined(SHADOWS_DISABLED)
if (spot_lights[idx].light_params.w > 0.5) {
//there is a shadowmap
highp vec4 splane = (spot_lights[idx].shadow_matrix * vec4(vertex, 1.0));
splane.xyz /= splane.w;
float shadow = sample_shadow(shadow_atlas, shadow_atlas_pixel_size, splane.xy, splane.z, spot_lights[idx].light_clamp);
#ifdef USE_CONTACT_SHADOWS
if (shadow > 0.01 && spot_lights[idx].shadow_color_contact.a > 0.0) {
float contact_shadow = contact_shadow_compute(vertex, normalize(light_rel_vec), min(light_length, spot_lights[idx].shadow_color_contact.a));
shadow = min(shadow, contact_shadow);
}
#endif
light_attenuation *= mix(spot_lights[idx].shadow_color_contact.rgb, vec3(1.0), shadow);
}
#endif //SHADOWS_DISABLED
light_compute(normal, normalize(light_rel_vec), eye_vec, binormal, tangent, spot_lights[idx].light_color_energy.rgb, light_attenuation, albedo, transmission, spot_lights[idx].light_params.z * p_blob_intensity, roughness, metallic, specular, rim * spot_attenuation, rim_tint, clearcoat, clearcoat_gloss, anisotropy, diffuse_light, specular_light);
}
void reflection_process(int idx, vec3 vertex, vec3 normal, vec3 binormal, vec3 tangent, float roughness, float anisotropy, vec3 ambient, vec3 skybox, inout highp vec4 reflection_accum, inout highp vec4 ambient_accum) {
vec3 ref_vec = normalize(reflect(vertex, normal));
vec3 local_pos = (reflections[idx].local_matrix * vec4(vertex, 1.0)).xyz;
vec3 box_extents = reflections[idx].box_extents.xyz;
if (any(greaterThan(abs(local_pos), box_extents))) { //out of the reflection box
return;
}
vec3 inner_pos = abs(local_pos / box_extents);
float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z));
//make blend more rounded
blend = mix(length(inner_pos), blend, blend);
blend *= blend;
blend = max(0.0, 1.0 - blend);
if (reflections[idx].params.x > 0.0) { // compute reflection
vec3 local_ref_vec = (reflections[idx].local_matrix * vec4(ref_vec, 0.0)).xyz;
if (reflections[idx].params.w > 0.5) { //box project
vec3 nrdir = normalize(local_ref_vec);
vec3 rbmax = (box_extents - local_pos) / nrdir;
vec3 rbmin = (-box_extents - local_pos) / nrdir;
vec3 rbminmax = mix(rbmin, rbmax, greaterThan(nrdir, vec3(0.0, 0.0, 0.0)));
float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z);
vec3 posonbox = local_pos + nrdir * fa;
local_ref_vec = posonbox - reflections[idx].box_offset.xyz;
}
vec4 clamp_rect = reflections[idx].atlas_clamp;
vec3 norm = normalize(local_ref_vec);
norm.xy /= 1.0 + abs(norm.z);
norm.xy = norm.xy * vec2(0.5, 0.25) + vec2(0.5, 0.25);
if (norm.z > 0.0) {
norm.y = 0.5 - norm.y + 0.5;
}
vec2 atlas_uv = norm.xy * clamp_rect.zw + clamp_rect.xy;
atlas_uv = clamp(atlas_uv, clamp_rect.xy, clamp_rect.xy + clamp_rect.zw);
highp vec4 reflection;
reflection.rgb = textureLod(reflection_atlas, atlas_uv, roughness * 5.0).rgb;
if (reflections[idx].params.z < 0.5) {
reflection.rgb = mix(skybox, reflection.rgb, blend);
}
reflection.rgb *= reflections[idx].params.x;
reflection.a = blend;
reflection.rgb *= reflection.a;
reflection_accum += reflection;
}
#if !defined(USE_LIGHTMAP) && !defined(USE_LIGHTMAP_CAPTURE)
if (reflections[idx].ambient.a > 0.0) { //compute ambient using skybox
vec3 local_amb_vec = (reflections[idx].local_matrix * vec4(normal, 0.0)).xyz;
vec3 splane = normalize(local_amb_vec);
vec4 clamp_rect = reflections[idx].atlas_clamp;
splane.z *= -1.0;
if (splane.z >= 0.0) {
splane.z += 1.0;
clamp_rect.y += clamp_rect.w;
} else {
splane.z = 1.0 - splane.z;
splane.y = -splane.y;
}
splane.xy /= splane.z;
splane.xy = splane.xy * 0.5 + 0.5;
splane.xy = splane.xy * clamp_rect.zw + clamp_rect.xy;
splane.xy = clamp(splane.xy, clamp_rect.xy, clamp_rect.xy + clamp_rect.zw);
highp vec4 ambient_out;
ambient_out.a = blend;
ambient_out.rgb = textureLod(reflection_atlas, splane.xy, 5.0).rgb;
ambient_out.rgb = mix(reflections[idx].ambient.rgb, ambient_out.rgb, reflections[idx].ambient.a);
if (reflections[idx].params.z < 0.5) {
ambient_out.rgb = mix(ambient, ambient_out.rgb, blend);
}
ambient_out.rgb *= ambient_out.a;
ambient_accum += ambient_out;
} else {
highp vec4 ambient_out;
ambient_out.a = blend;
ambient_out.rgb = reflections[idx].ambient.rgb;
if (reflections[idx].params.z < 0.5) {
ambient_out.rgb = mix(ambient, ambient_out.rgb, blend);
}
ambient_out.rgb *= ambient_out.a;
ambient_accum += ambient_out;
}
#endif
}
#ifdef USE_LIGHTMAP
uniform mediump sampler2D lightmap; //texunit:-9
uniform mediump float lightmap_energy;
#endif
#ifdef USE_LIGHTMAP_CAPTURE
uniform mediump vec4[12] lightmap_captures;
uniform bool lightmap_capture_sky;
#endif
#ifdef USE_GI_PROBES
uniform mediump sampler3D gi_probe1; //texunit:-9
uniform highp mat4 gi_probe_xform1;
uniform highp vec3 gi_probe_bounds1;
uniform highp vec3 gi_probe_cell_size1;
uniform highp float gi_probe_multiplier1;
uniform highp float gi_probe_bias1;
uniform highp float gi_probe_normal_bias1;
uniform bool gi_probe_blend_ambient1;
uniform mediump sampler3D gi_probe2; //texunit:-10
uniform highp mat4 gi_probe_xform2;
uniform highp vec3 gi_probe_bounds2;
uniform highp vec3 gi_probe_cell_size2;
uniform highp float gi_probe_multiplier2;
uniform highp float gi_probe_bias2;
uniform highp float gi_probe_normal_bias2;
uniform bool gi_probe2_enabled;
uniform bool gi_probe_blend_ambient2;
vec3 voxel_cone_trace(mediump sampler3D probe, vec3 cell_size, vec3 pos, vec3 ambient, bool blend_ambient, vec3 direction, float tan_half_angle, float max_distance, float p_bias) {
float dist = p_bias; //1.0; //dot(direction,mix(vec3(-1.0),vec3(1.0),greaterThan(direction,vec3(0.0))))*2.0;
float alpha = 0.0;
vec3 color = vec3(0.0);
while (dist < max_distance && alpha < 0.95) {
float diameter = max(1.0, 2.0 * tan_half_angle * dist);
vec4 scolor = textureLod(probe, (pos + dist * direction) * cell_size, log2(diameter));
float a = (1.0 - alpha);
color += scolor.rgb * a;
alpha += a * scolor.a;
dist += diameter * 0.5;
}
if (blend_ambient) {
color.rgb = mix(ambient, color.rgb, min(1.0, alpha / 0.95));
}
return color;
}
void gi_probe_compute(mediump sampler3D probe, mat4 probe_xform, vec3 bounds, vec3 cell_size, vec3 pos, vec3 ambient, vec3 environment, bool blend_ambient, float multiplier, mat3 normal_mtx, vec3 ref_vec, float roughness, float p_bias, float p_normal_bias, inout vec4 out_spec, inout vec4 out_diff) {
vec3 probe_pos = (probe_xform * vec4(pos, 1.0)).xyz;
vec3 ref_pos = (probe_xform * vec4(pos + ref_vec, 1.0)).xyz;
ref_vec = normalize(ref_pos - probe_pos);
probe_pos += (probe_xform * vec4(normal_mtx[2], 0.0)).xyz * p_normal_bias;
/* out_diff.rgb = voxel_cone_trace(probe,cell_size,probe_pos,normalize((probe_xform * vec4(ref_vec,0.0)).xyz),0.0 ,100.0);
out_diff.a = 1.0;
return;*/
//out_diff = vec4(textureLod(probe,probe_pos*cell_size,3.0).rgb,1.0);
//return;
//this causes corrupted pixels, i have no idea why..
if (any(bvec2(any(lessThan(probe_pos, vec3(0.0))), any(greaterThan(probe_pos, bounds))))) {
return;
}
vec3 blendv = abs(probe_pos / bounds * 2.0 - 1.0);
float blend = clamp(1.0 - max(blendv.x, max(blendv.y, blendv.z)), 0.0, 1.0);
//float blend=1.0;
float max_distance = length(bounds);
//radiance
#ifdef VCT_QUALITY_HIGH
#define MAX_CONE_DIRS 6
vec3 cone_dirs[MAX_CONE_DIRS] = vec3[](
vec3(0, 0, 1),
vec3(0.866025, 0, 0.5),
vec3(0.267617, 0.823639, 0.5),
vec3(-0.700629, 0.509037, 0.5),
vec3(-0.700629, -0.509037, 0.5),
vec3(0.267617, -0.823639, 0.5));
float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.15, 0.15, 0.15, 0.15, 0.15);
float cone_angle_tan = 0.577;
float min_ref_tan = 0.0;
#else
#define MAX_CONE_DIRS 4
vec3 cone_dirs[MAX_CONE_DIRS] = vec3[](
vec3(0.707107, 0, 0.707107),
vec3(0, 0.707107, 0.707107),
vec3(-0.707107, 0, 0.707107),
vec3(0, -0.707107, 0.707107));
float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.25, 0.25, 0.25);
float cone_angle_tan = 0.98269;
max_distance *= 0.5;
float min_ref_tan = 0.2;
#endif
vec3 light = vec3(0.0);
for (int i = 0; i < MAX_CONE_DIRS; i++) {
vec3 dir = normalize((probe_xform * vec4(pos + normal_mtx * cone_dirs[i], 1.0)).xyz - probe_pos);
light += cone_weights[i] * voxel_cone_trace(probe, cell_size, probe_pos, ambient, blend_ambient, dir, cone_angle_tan, max_distance, p_bias);
}
light *= multiplier;
out_diff += vec4(light * blend, blend);
//irradiance
vec3 irr_light = voxel_cone_trace(probe, cell_size, probe_pos, environment, blend_ambient, ref_vec, max(min_ref_tan, tan(roughness * 0.5 * M_PI)), max_distance, p_bias);
irr_light *= multiplier;
//irr_light=vec3(0.0);
out_spec += vec4(irr_light * blend, blend);
}
void gi_probes_compute(vec3 pos, vec3 normal, float roughness, inout vec3 out_specular, inout vec3 out_ambient) {
roughness = roughness * roughness;
vec3 ref_vec = normalize(reflect(normalize(pos), normal));
//find arbitrary tangent and bitangent, then build a matrix
vec3 v0 = abs(normal.z) < 0.999 ? vec3(0, 0, 1) : vec3(0, 1, 0);
vec3 tangent = normalize(cross(v0, normal));
vec3 bitangent = normalize(cross(tangent, normal));
mat3 normal_mat = mat3(tangent, bitangent, normal);
vec4 diff_accum = vec4(0.0);
vec4 spec_accum = vec4(0.0);
vec3 ambient = out_ambient;
out_ambient = vec3(0.0);
vec3 environment = out_specular;
out_specular = vec3(0.0);
gi_probe_compute(gi_probe1, gi_probe_xform1, gi_probe_bounds1, gi_probe_cell_size1, pos, ambient, environment, gi_probe_blend_ambient1, gi_probe_multiplier1, normal_mat, ref_vec, roughness, gi_probe_bias1, gi_probe_normal_bias1, spec_accum, diff_accum);
if (gi_probe2_enabled) {
gi_probe_compute(gi_probe2, gi_probe_xform2, gi_probe_bounds2, gi_probe_cell_size2, pos, ambient, environment, gi_probe_blend_ambient2, gi_probe_multiplier2, normal_mat, ref_vec, roughness, gi_probe_bias2, gi_probe_normal_bias2, spec_accum, diff_accum);
}
if (diff_accum.a > 0.0) {
diff_accum.rgb /= diff_accum.a;
}
if (spec_accum.a > 0.0) {
spec_accum.rgb /= spec_accum.a;
}
out_specular += spec_accum.rgb;
out_ambient += diff_accum.rgb;
}
#endif
void main() {
#ifdef RENDER_DEPTH_DUAL_PARABOLOID
if (dp_clip > 0.0)
discard;
#endif
//lay out everything, whathever is unused is optimized away anyway
highp vec3 vertex = vertex_interp;
vec3 albedo = vec3(1.0);
vec3 transmission = vec3(0.0);
float metallic = 0.0;
float specular = 0.5;
vec3 emission = vec3(0.0);
float roughness = 1.0;
float rim = 0.0;
float rim_tint = 0.0;
float clearcoat = 0.0;
float clearcoat_gloss = 0.0;
float anisotropy = 0.0;
vec2 anisotropy_flow = vec2(1.0, 0.0);
#if defined(ENABLE_AO)
float ao = 1.0;
float ao_light_affect = 0.0;
#endif
float alpha = 1.0;
#if defined(DO_SIDE_CHECK)
float side = gl_FrontFacing ? 1.0 : -1.0;
#else
float side = 1.0;
#endif
#if defined(ALPHA_SCISSOR_USED)
float alpha_scissor = 0.5;
#endif
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
vec3 binormal = normalize(binormal_interp) * side;
vec3 tangent = normalize(tangent_interp) * side;
#else
vec3 binormal = vec3(0.0);
vec3 tangent = vec3(0.0);
#endif
vec3 normal = normalize(normal_interp) * side;
#if defined(ENABLE_UV_INTERP)
vec2 uv = uv_interp;
#endif
#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
vec2 uv2 = uv2_interp;
#endif
#if defined(ENABLE_COLOR_INTERP)
vec4 color = color_interp;
#endif
#if defined(ENABLE_NORMALMAP)
vec3 normalmap = vec3(0.5);
#endif
float normaldepth = 1.0;
#if defined(SCREEN_UV_USED)
vec2 screen_uv = gl_FragCoord.xy * screen_pixel_size;
#endif
#if defined(ENABLE_SSS)
float sss_strength = 0.0;
#endif
{
/* clang-format off */
FRAGMENT_SHADER_CODE
/* clang-format on */
}
#if defined(ALPHA_SCISSOR_USED)
if (alpha < alpha_scissor) {
discard;
}
#endif
#ifdef USE_OPAQUE_PREPASS
if (alpha < opaque_prepass_threshold) {
discard;
}
#endif
#if defined(ENABLE_NORMALMAP)
normalmap.xy = normalmap.xy * 2.0 - 1.0;
normalmap.z = sqrt(max(0.0, 1.0 - dot(normalmap.xy, normalmap.xy))); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc.
normal = normalize(mix(normal_interp, tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z, normaldepth)) * side;
#endif
#if defined(LIGHT_USE_ANISOTROPY)
if (anisotropy > 0.01) {
//rotation matrix
mat3 rot = mat3(tangent, binormal, normal);
//make local to space
tangent = normalize(rot * vec3(anisotropy_flow.x, anisotropy_flow.y, 0.0));
binormal = normalize(rot * vec3(-anisotropy_flow.y, anisotropy_flow.x, 0.0));
}
#endif
#ifdef ENABLE_CLIP_ALPHA
if (albedo.a < 0.99) {
//used for doublepass and shadowmapping
discard;
}
#endif
/////////////////////// LIGHTING //////////////////////////////
//apply energy conservation
#ifdef USE_VERTEX_LIGHTING
vec3 specular_light = specular_light_interp.rgb;
vec3 diffuse_light = diffuse_light_interp.rgb;
#else
vec3 specular_light = vec3(0.0, 0.0, 0.0);
vec3 diffuse_light = vec3(0.0, 0.0, 0.0);
#endif
vec3 ambient_light;
vec3 env_reflection_light = vec3(0.0, 0.0, 0.0);
vec3 eye_vec = -normalize(vertex_interp);
#ifdef USE_RADIANCE_MAP
#ifdef AMBIENT_LIGHT_DISABLED
ambient_light = vec3(0.0, 0.0, 0.0);
#else
{
{ //read radiance from dual paraboloid
vec3 ref_vec = reflect(-eye_vec, normal); //2.0 * ndotv * normal - view; // reflect(v, n);
ref_vec = normalize((radiance_inverse_xform * vec4(ref_vec, 0.0)).xyz);
vec3 radiance = textureDualParaboloid(radiance_map, ref_vec, roughness) * bg_energy;
env_reflection_light = radiance;
}
//no longer a cubemap
//vec3 radiance = textureLod(radiance_cube, r, lod).xyz * ( brdf.x + brdf.y);
}
#ifndef USE_LIGHTMAP
{
vec3 ambient_dir = normalize((radiance_inverse_xform * vec4(normal, 0.0)).xyz);
vec3 env_ambient = textureDualParaboloid(radiance_map, ambient_dir, 1.0) * bg_energy;
ambient_light = mix(ambient_light_color.rgb, env_ambient, radiance_ambient_contribution);
//ambient_light=vec3(0.0,0.0,0.0);
}
#endif
#endif //AMBIENT_LIGHT_DISABLED
#else
#ifdef AMBIENT_LIGHT_DISABLED
ambient_light = vec3(0.0, 0.0, 0.0);
#else
ambient_light = ambient_light_color.rgb;
#endif //AMBIENT_LIGHT_DISABLED
#endif
ambient_light *= ambient_energy;
float specular_blob_intensity = 1.0;
#if defined(SPECULAR_TOON)
specular_blob_intensity *= specular * 2.0;
#endif
#if defined(USE_LIGHT_DIRECTIONAL)
vec3 light_attenuation = vec3(1.0);
float depth_z = -vertex.z;
#ifdef LIGHT_DIRECTIONAL_SHADOW
#if !defined(SHADOWS_DISABLED)
#ifdef LIGHT_USE_PSSM4
if (depth_z < shadow_split_offsets.w) {
#elif defined(LIGHT_USE_PSSM2)
if (depth_z < shadow_split_offsets.y) {
#else
if (depth_z < shadow_split_offsets.x) {
#endif //LIGHT_USE_PSSM4
vec3 pssm_coord;
float pssm_fade = 0.0;
#ifdef LIGHT_USE_PSSM_BLEND
float pssm_blend;
vec3 pssm_coord2;
bool use_blend = true;
#endif
#ifdef LIGHT_USE_PSSM4
if (depth_z < shadow_split_offsets.y) {
if (depth_z < shadow_split_offsets.x) {
highp vec4 splane = (shadow_matrix1 * vec4(vertex, 1.0));
pssm_coord = splane.xyz / splane.w;
#if defined(LIGHT_USE_PSSM_BLEND)
splane = (shadow_matrix2 * vec4(vertex, 1.0));
pssm_coord2 = splane.xyz / splane.w;
pssm_blend = smoothstep(0.0, shadow_split_offsets.x, depth_z);
#endif
} else {
highp vec4 splane = (shadow_matrix2 * vec4(vertex, 1.0));
pssm_coord = splane.xyz / splane.w;
#if defined(LIGHT_USE_PSSM_BLEND)
splane = (shadow_matrix3 * vec4(vertex, 1.0));
pssm_coord2 = splane.xyz / splane.w;
pssm_blend = smoothstep(shadow_split_offsets.x, shadow_split_offsets.y, depth_z);
#endif
}
} else {
if (depth_z < shadow_split_offsets.z) {
highp vec4 splane = (shadow_matrix3 * vec4(vertex, 1.0));
pssm_coord = splane.xyz / splane.w;
#if defined(LIGHT_USE_PSSM_BLEND)
splane = (shadow_matrix4 * vec4(vertex, 1.0));
pssm_coord2 = splane.xyz / splane.w;
pssm_blend = smoothstep(shadow_split_offsets.y, shadow_split_offsets.z, depth_z);
#endif
} else {
highp vec4 splane = (shadow_matrix4 * vec4(vertex, 1.0));
pssm_coord = splane.xyz / splane.w;
pssm_fade = smoothstep(shadow_split_offsets.z, shadow_split_offsets.w, depth_z);
#if defined(LIGHT_USE_PSSM_BLEND)
use_blend = false;
#endif
}
}
#endif //LIGHT_USE_PSSM4
#ifdef LIGHT_USE_PSSM2
if (depth_z < shadow_split_offsets.x) {
highp vec4 splane = (shadow_matrix1 * vec4(vertex, 1.0));
pssm_coord = splane.xyz / splane.w;
#if defined(LIGHT_USE_PSSM_BLEND)
splane = (shadow_matrix2 * vec4(vertex, 1.0));
pssm_coord2 = splane.xyz / splane.w;
pssm_blend = smoothstep(0.0, shadow_split_offsets.x, depth_z);
#endif
} else {
highp vec4 splane = (shadow_matrix2 * vec4(vertex, 1.0));
pssm_coord = splane.xyz / splane.w;
pssm_fade = smoothstep(shadow_split_offsets.x, shadow_split_offsets.y, depth_z);
#if defined(LIGHT_USE_PSSM_BLEND)
use_blend = false;
#endif
}
#endif //LIGHT_USE_PSSM2
#if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2)
{ //regular orthogonal
highp vec4 splane = (shadow_matrix1 * vec4(vertex, 1.0));
pssm_coord = splane.xyz / splane.w;
}
#endif
//one one sample
float shadow = sample_shadow(directional_shadow, directional_shadow_pixel_size, pssm_coord.xy, pssm_coord.z, light_clamp);
#if defined(LIGHT_USE_PSSM_BLEND)
if (use_blend) {
shadow = mix(shadow, sample_shadow(directional_shadow, directional_shadow_pixel_size, pssm_coord2.xy, pssm_coord2.z, light_clamp), pssm_blend);
}
#endif
#ifdef USE_CONTACT_SHADOWS
if (shadow > 0.01 && shadow_color_contact.a > 0.0) {
float contact_shadow = contact_shadow_compute(vertex, -light_direction_attenuation.xyz, shadow_color_contact.a);
shadow = min(shadow, contact_shadow);
}
#endif
light_attenuation = mix(mix(shadow_color_contact.rgb, vec3(1.0), shadow), vec3(1.0), pssm_fade);
}
#endif // !defined(SHADOWS_DISABLED)
#endif //LIGHT_DIRECTIONAL_SHADOW
#ifdef USE_VERTEX_LIGHTING
diffuse_light *= mix(vec3(1.0), light_attenuation, diffuse_light_interp.a);
specular_light *= mix(vec3(1.0), light_attenuation, specular_light_interp.a);
#else
light_compute(normal, -light_direction_attenuation.xyz, eye_vec, binormal, tangent, light_color_energy.rgb, light_attenuation, albedo, transmission, light_params.z * specular_blob_intensity, roughness, metallic, specular, rim, rim_tint, clearcoat, clearcoat_gloss, anisotropy, diffuse_light, specular_light);
#endif
#endif //#USE_LIGHT_DIRECTIONAL
#ifdef USE_GI_PROBES
gi_probes_compute(vertex, normal, roughness, env_reflection_light, ambient_light);
#endif
#ifdef USE_LIGHTMAP
ambient_light = texture(lightmap, uv2).rgb * lightmap_energy;
#endif
#ifdef USE_LIGHTMAP_CAPTURE
{
vec3 cone_dirs[12] = vec3[](
vec3(0, 0, 1),
vec3(0.866025, 0, 0.5),
vec3(0.267617, 0.823639, 0.5),
vec3(-0.700629, 0.509037, 0.5),
vec3(-0.700629, -0.509037, 0.5),
vec3(0.267617, -0.823639, 0.5),
vec3(0, 0, -1),
vec3(0.866025, 0, -0.5),
vec3(0.267617, 0.823639, -0.5),
vec3(-0.700629, 0.509037, -0.5),
vec3(-0.700629, -0.509037, -0.5),
vec3(0.267617, -0.823639, -0.5));
vec3 local_normal = normalize(camera_matrix * vec4(normal, 0.0)).xyz;
vec4 captured = vec4(0.0);
float sum = 0.0;
for (int i = 0; i < 12; i++) {
float amount = max(0.0, dot(local_normal, cone_dirs[i])); //not correct, but creates a nice wrap around effect
captured += lightmap_captures[i] * amount;
sum += amount;
}
captured /= sum;
if (lightmap_capture_sky) {
ambient_light = mix(ambient_light, captured.rgb, captured.a);
} else {
ambient_light = captured.rgb;
}
}
#endif
#ifdef USE_FORWARD_LIGHTING
highp vec4 reflection_accum = vec4(0.0, 0.0, 0.0, 0.0);
highp vec4 ambient_accum = vec4(0.0, 0.0, 0.0, 0.0);
for (int i = 0; i < reflection_count; i++) {
reflection_process(reflection_indices[i], vertex, normal, binormal, tangent, roughness, anisotropy, ambient_light, env_reflection_light, reflection_accum, ambient_accum);
}
if (reflection_accum.a > 0.0) {
specular_light += reflection_accum.rgb / reflection_accum.a;
} else {
specular_light += env_reflection_light;
}
#if !defined(USE_LIGHTMAP) && !defined(USE_LIGHTMAP_CAPTURE)
if (ambient_accum.a > 0.0) {
ambient_light = ambient_accum.rgb / ambient_accum.a;
}
#endif
#ifdef USE_VERTEX_LIGHTING
diffuse_light *= albedo;
#else
for (int i = 0; i < omni_light_count; i++) {
light_process_omni(omni_light_indices[i], vertex, eye_vec, normal, binormal, tangent, albedo, transmission, roughness, metallic, specular, rim, rim_tint, clearcoat, clearcoat_gloss, anisotropy, specular_blob_intensity, diffuse_light, specular_light);
}
for (int i = 0; i < spot_light_count; i++) {
light_process_spot(spot_light_indices[i], vertex, eye_vec, normal, binormal, tangent, albedo, transmission, roughness, metallic, specular, rim, rim_tint, clearcoat, clearcoat_gloss, anisotropy, specular_blob_intensity, diffuse_light, specular_light);
}
#endif //USE_VERTEX_LIGHTING
#endif
#ifdef RENDER_DEPTH
//nothing happens, so a tree-ssa optimizer will result in no fragment shader :)
#else
specular_light *= reflection_multiplier;
ambient_light *= albedo; //ambient must be multiplied by albedo at the end
#if defined(ENABLE_AO)
ambient_light *= ao;
ao_light_affect = mix(1.0, ao, ao_light_affect);
specular_light *= ao_light_affect;
diffuse_light *= ao_light_affect;
#endif
// base color remapping
diffuse_light *= 1.0 - metallic; // TODO: avoid all diffuse and ambient light calculations when metallic == 1 up to this point
ambient_light *= 1.0 - metallic;
{
#if defined(DIFFUSE_TOON)
//simplify for toon, as
specular_light *= specular * metallic * albedo * 2.0;
#else
// Environment brdf approximation (Lazarov 2013)
// see https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile
const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);
const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04);
vec4 r = roughness * c0 + c1;
float ndotv = clamp(dot(normal, eye_vec), 0.0, 1.0);
float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y;
vec2 env = vec2(-1.04, 1.04) * a004 + r.zw;
vec3 f0 = F0(metallic, specular, albedo);
specular_light *= env.x * f0 + env.y;
#endif
}
if (fog_color_enabled.a > 0.5) {
float fog_amount = 0.0;
#ifdef USE_LIGHT_DIRECTIONAL
vec3 fog_color = mix(fog_color_enabled.rgb, fog_sun_color_amount.rgb, fog_sun_color_amount.a * pow(max(dot(normalize(vertex), -light_direction_attenuation.xyz), 0.0), 8.0));
#else
vec3 fog_color = fog_color_enabled.rgb;
#endif
//apply fog
if (fog_depth_enabled) {
float fog_z = smoothstep(fog_depth_begin, z_far, length(vertex));
fog_amount = pow(fog_z, fog_depth_curve);
if (fog_transmit_enabled) {
vec3 total_light = emission + ambient_light + specular_light + diffuse_light;
float transmit = pow(fog_z, fog_transmit_curve);
fog_color = mix(max(total_light, fog_color), fog_color, transmit);
}
}
if (fog_height_enabled) {
float y = (camera_matrix * vec4(vertex, 1.0)).y;
fog_amount = max(fog_amount, pow(smoothstep(fog_height_min, fog_height_max, y), fog_height_curve));
}
float rev_amount = 1.0 - fog_amount;
emission = emission * rev_amount + fog_color * fog_amount;
ambient_light *= rev_amount;
specular_light *= rev_amount;
diffuse_light *= rev_amount;
}
#ifdef USE_MULTIPLE_RENDER_TARGETS
#ifdef SHADELESS
diffuse_buffer = vec4(albedo.rgb, 0.0);
specular_buffer = vec4(0.0);
#else
//approximate ambient scale for SSAO, since we will lack full ambient
float max_emission = max(emission.r, max(emission.g, emission.b));
float max_ambient = max(ambient_light.r, max(ambient_light.g, ambient_light.b));
float max_diffuse = max(diffuse_light.r, max(diffuse_light.g, diffuse_light.b));
float total_ambient = max_ambient + max_diffuse + max_emission;
float ambient_scale = (total_ambient > 0.0) ? (max_ambient + ambient_occlusion_affect_light * max_diffuse) / total_ambient : 0.0;
#if defined(ENABLE_AO)
ambient_scale = mix(0.0, ambient_scale, ambient_occlusion_affect_ao_channel);
#endif
diffuse_buffer = vec4(emission + diffuse_light + ambient_light, ambient_scale);
specular_buffer = vec4(specular_light, metallic);
#endif //SHADELESS
normal_mr_buffer = vec4(normalize(normal) * 0.5 + 0.5, roughness);
#if defined(ENABLE_SSS)
sss_buffer = sss_strength;
#endif
#else //USE_MULTIPLE_RENDER_TARGETS
#ifdef SHADELESS
frag_color = vec4(albedo, alpha);
#else
frag_color = vec4(emission + ambient_light + diffuse_light + specular_light, alpha);
#endif //SHADELESS
#endif //USE_MULTIPLE_RENDER_TARGETS
#endif //RENDER_DEPTH
}