305d7bd49e
Remove upstreamed patches. Add a new patch to fix a new warning.
1184 lines
30 KiB
C++
1184 lines
30 KiB
C++
/*
|
|
Bullet Continuous Collision Detection and Physics Library
|
|
Copyright (c) 2003-2006 Erwin Coumans https://bulletphysics.org
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
#include "btGjkPairDetector.h"
|
|
#include "BulletCollision/CollisionShapes/btConvexShape.h"
|
|
#include "BulletCollision/NarrowPhaseCollision/btSimplexSolverInterface.h"
|
|
#include "BulletCollision/NarrowPhaseCollision/btConvexPenetrationDepthSolver.h"
|
|
|
|
#if defined(DEBUG) || defined(_DEBUG)
|
|
//#define TEST_NON_VIRTUAL 1
|
|
#include <stdio.h> //for debug printf
|
|
#ifdef __SPU__
|
|
#include <spu_printf.h>
|
|
#define printf spu_printf
|
|
#endif //__SPU__
|
|
#endif
|
|
|
|
//must be above the machine epsilon
|
|
#ifdef BT_USE_DOUBLE_PRECISION
|
|
#define REL_ERROR2 btScalar(1.0e-12)
|
|
btScalar gGjkEpaPenetrationTolerance = 1.0e-12;
|
|
#else
|
|
#define REL_ERROR2 btScalar(1.0e-6)
|
|
btScalar gGjkEpaPenetrationTolerance = 0.001;
|
|
#endif
|
|
|
|
|
|
btGjkPairDetector::btGjkPairDetector(const btConvexShape *objectA, const btConvexShape *objectB, btSimplexSolverInterface *simplexSolver, btConvexPenetrationDepthSolver *penetrationDepthSolver)
|
|
: m_cachedSeparatingAxis(btScalar(0.), btScalar(1.), btScalar(0.)),
|
|
m_penetrationDepthSolver(penetrationDepthSolver),
|
|
m_simplexSolver(simplexSolver),
|
|
m_minkowskiA(objectA),
|
|
m_minkowskiB(objectB),
|
|
m_shapeTypeA(objectA->getShapeType()),
|
|
m_shapeTypeB(objectB->getShapeType()),
|
|
m_marginA(objectA->getMargin()),
|
|
m_marginB(objectB->getMargin()),
|
|
m_ignoreMargin(false),
|
|
m_lastUsedMethod(-1),
|
|
m_catchDegeneracies(1),
|
|
m_fixContactNormalDirection(1)
|
|
{
|
|
}
|
|
btGjkPairDetector::btGjkPairDetector(const btConvexShape *objectA, const btConvexShape *objectB, int shapeTypeA, int shapeTypeB, btScalar marginA, btScalar marginB, btSimplexSolverInterface *simplexSolver, btConvexPenetrationDepthSolver *penetrationDepthSolver)
|
|
: m_cachedSeparatingAxis(btScalar(0.), btScalar(1.), btScalar(0.)),
|
|
m_penetrationDepthSolver(penetrationDepthSolver),
|
|
m_simplexSolver(simplexSolver),
|
|
m_minkowskiA(objectA),
|
|
m_minkowskiB(objectB),
|
|
m_shapeTypeA(shapeTypeA),
|
|
m_shapeTypeB(shapeTypeB),
|
|
m_marginA(marginA),
|
|
m_marginB(marginB),
|
|
m_ignoreMargin(false),
|
|
m_lastUsedMethod(-1),
|
|
m_catchDegeneracies(1),
|
|
m_fixContactNormalDirection(1)
|
|
{
|
|
}
|
|
|
|
void btGjkPairDetector::getClosestPoints(const ClosestPointInput &input, Result &output, class btIDebugDraw *debugDraw, bool swapResults)
|
|
{
|
|
(void)swapResults;
|
|
|
|
getClosestPointsNonVirtual(input, output, debugDraw);
|
|
}
|
|
|
|
static void btComputeSupport(const btConvexShape *convexA, const btTransform &localTransA, const btConvexShape *convexB, const btTransform &localTransB, const btVector3 &dir, bool check2d, btVector3 &supAworld, btVector3 &supBworld, btVector3 &aMinb)
|
|
{
|
|
btVector3 separatingAxisInA = (dir)*localTransA.getBasis();
|
|
btVector3 separatingAxisInB = (-dir) * localTransB.getBasis();
|
|
|
|
btVector3 pInANoMargin = convexA->localGetSupportVertexWithoutMarginNonVirtual(separatingAxisInA);
|
|
btVector3 qInBNoMargin = convexB->localGetSupportVertexWithoutMarginNonVirtual(separatingAxisInB);
|
|
|
|
btVector3 pInA = pInANoMargin;
|
|
btVector3 qInB = qInBNoMargin;
|
|
|
|
supAworld = localTransA(pInA);
|
|
supBworld = localTransB(qInB);
|
|
|
|
if (check2d)
|
|
{
|
|
supAworld[2] = 0.f;
|
|
supBworld[2] = 0.f;
|
|
}
|
|
|
|
aMinb = supAworld - supBworld;
|
|
}
|
|
|
|
struct btSupportVector
|
|
{
|
|
btVector3 v; //!< Support point in minkowski sum
|
|
btVector3 v1; //!< Support point in obj1
|
|
btVector3 v2; //!< Support point in obj2
|
|
};
|
|
|
|
struct btSimplex
|
|
{
|
|
btSupportVector ps[4];
|
|
int last; //!< index of last added point
|
|
};
|
|
|
|
static btVector3 ccd_vec3_origin(0, 0, 0);
|
|
|
|
inline void btSimplexInit(btSimplex *s)
|
|
{
|
|
s->last = -1;
|
|
}
|
|
|
|
inline int btSimplexSize(const btSimplex *s)
|
|
{
|
|
return s->last + 1;
|
|
}
|
|
|
|
inline const btSupportVector *btSimplexPoint(const btSimplex *s, int idx)
|
|
{
|
|
// here is no check on boundaries
|
|
return &s->ps[idx];
|
|
}
|
|
inline void btSupportCopy(btSupportVector *d, const btSupportVector *s)
|
|
{
|
|
*d = *s;
|
|
}
|
|
|
|
inline void btVec3Copy(btVector3 *v, const btVector3 *w)
|
|
{
|
|
*v = *w;
|
|
}
|
|
|
|
inline void ccdVec3Add(btVector3 *v, const btVector3 *w)
|
|
{
|
|
v->m_floats[0] += w->m_floats[0];
|
|
v->m_floats[1] += w->m_floats[1];
|
|
v->m_floats[2] += w->m_floats[2];
|
|
}
|
|
|
|
inline void ccdVec3Sub(btVector3 *v, const btVector3 *w)
|
|
{
|
|
*v -= *w;
|
|
}
|
|
inline void btVec3Sub2(btVector3 *d, const btVector3 *v, const btVector3 *w)
|
|
{
|
|
*d = (*v) - (*w);
|
|
}
|
|
inline btScalar btVec3Dot(const btVector3 *a, const btVector3 *b)
|
|
{
|
|
btScalar dot;
|
|
dot = a->dot(*b);
|
|
|
|
return dot;
|
|
}
|
|
|
|
inline btScalar ccdVec3Dist2(const btVector3 *a, const btVector3 *b)
|
|
{
|
|
btVector3 ab;
|
|
btVec3Sub2(&ab, a, b);
|
|
return btVec3Dot(&ab, &ab);
|
|
}
|
|
|
|
inline void btVec3Scale(btVector3 *d, btScalar k)
|
|
{
|
|
d->m_floats[0] *= k;
|
|
d->m_floats[1] *= k;
|
|
d->m_floats[2] *= k;
|
|
}
|
|
|
|
inline void btVec3Cross(btVector3 *d, const btVector3 *a, const btVector3 *b)
|
|
{
|
|
d->m_floats[0] = (a->m_floats[1] * b->m_floats[2]) - (a->m_floats[2] * b->m_floats[1]);
|
|
d->m_floats[1] = (a->m_floats[2] * b->m_floats[0]) - (a->m_floats[0] * b->m_floats[2]);
|
|
d->m_floats[2] = (a->m_floats[0] * b->m_floats[1]) - (a->m_floats[1] * b->m_floats[0]);
|
|
}
|
|
|
|
inline void btTripleCross(const btVector3 *a, const btVector3 *b,
|
|
const btVector3 *c, btVector3 *d)
|
|
{
|
|
btVector3 e;
|
|
btVec3Cross(&e, a, b);
|
|
btVec3Cross(d, &e, c);
|
|
}
|
|
|
|
inline int ccdEq(btScalar _a, btScalar _b)
|
|
{
|
|
btScalar ab;
|
|
btScalar a, b;
|
|
|
|
ab = btFabs(_a - _b);
|
|
if (btFabs(ab) < SIMD_EPSILON)
|
|
return 1;
|
|
|
|
a = btFabs(_a);
|
|
b = btFabs(_b);
|
|
if (b > a)
|
|
{
|
|
return ab < SIMD_EPSILON * b;
|
|
}
|
|
else
|
|
{
|
|
return ab < SIMD_EPSILON * a;
|
|
}
|
|
}
|
|
|
|
btScalar ccdVec3X(const btVector3 *v)
|
|
{
|
|
return v->x();
|
|
}
|
|
|
|
btScalar ccdVec3Y(const btVector3 *v)
|
|
{
|
|
return v->y();
|
|
}
|
|
|
|
btScalar ccdVec3Z(const btVector3 *v)
|
|
{
|
|
return v->z();
|
|
}
|
|
inline int btVec3Eq(const btVector3 *a, const btVector3 *b)
|
|
{
|
|
return ccdEq(ccdVec3X(a), ccdVec3X(b)) && ccdEq(ccdVec3Y(a), ccdVec3Y(b)) && ccdEq(ccdVec3Z(a), ccdVec3Z(b));
|
|
}
|
|
|
|
inline void btSimplexAdd(btSimplex *s, const btSupportVector *v)
|
|
{
|
|
// here is no check on boundaries in sake of speed
|
|
++s->last;
|
|
btSupportCopy(s->ps + s->last, v);
|
|
}
|
|
|
|
inline void btSimplexSet(btSimplex *s, size_t pos, const btSupportVector *a)
|
|
{
|
|
btSupportCopy(s->ps + pos, a);
|
|
}
|
|
|
|
inline void btSimplexSetSize(btSimplex *s, int size)
|
|
{
|
|
s->last = size - 1;
|
|
}
|
|
|
|
inline const btSupportVector *ccdSimplexLast(const btSimplex *s)
|
|
{
|
|
return btSimplexPoint(s, s->last);
|
|
}
|
|
|
|
inline int ccdSign(btScalar val)
|
|
{
|
|
if (btFuzzyZero(val))
|
|
{
|
|
return 0;
|
|
}
|
|
else if (val < btScalar(0))
|
|
{
|
|
return -1;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
inline btScalar btVec3PointSegmentDist2(const btVector3 *P,
|
|
const btVector3 *x0,
|
|
const btVector3 *b,
|
|
btVector3 *witness)
|
|
{
|
|
// The computation comes from solving equation of segment:
|
|
// S(t) = x0 + t.d
|
|
// where - x0 is initial point of segment
|
|
// - d is direction of segment from x0 (|d| > 0)
|
|
// - t belongs to <0, 1> interval
|
|
//
|
|
// Than, distance from a segment to some point P can be expressed:
|
|
// D(t) = |x0 + t.d - P|^2
|
|
// which is distance from any point on segment. Minimization
|
|
// of this function brings distance from P to segment.
|
|
// Minimization of D(t) leads to simple quadratic equation that's
|
|
// solving is straightforward.
|
|
//
|
|
// Bonus of this method is witness point for free.
|
|
|
|
btScalar dist, t;
|
|
btVector3 d, a;
|
|
|
|
// direction of segment
|
|
btVec3Sub2(&d, b, x0);
|
|
|
|
// precompute vector from P to x0
|
|
btVec3Sub2(&a, x0, P);
|
|
|
|
t = -btScalar(1.) * btVec3Dot(&a, &d);
|
|
t /= btVec3Dot(&d, &d);
|
|
|
|
if (t < btScalar(0) || btFuzzyZero(t))
|
|
{
|
|
dist = ccdVec3Dist2(x0, P);
|
|
if (witness)
|
|
btVec3Copy(witness, x0);
|
|
}
|
|
else if (t > btScalar(1) || ccdEq(t, btScalar(1)))
|
|
{
|
|
dist = ccdVec3Dist2(b, P);
|
|
if (witness)
|
|
btVec3Copy(witness, b);
|
|
}
|
|
else
|
|
{
|
|
if (witness)
|
|
{
|
|
btVec3Copy(witness, &d);
|
|
btVec3Scale(witness, t);
|
|
ccdVec3Add(witness, x0);
|
|
dist = ccdVec3Dist2(witness, P);
|
|
}
|
|
else
|
|
{
|
|
// recycling variables
|
|
btVec3Scale(&d, t);
|
|
ccdVec3Add(&d, &a);
|
|
dist = btVec3Dot(&d, &d);
|
|
}
|
|
}
|
|
|
|
return dist;
|
|
}
|
|
|
|
btScalar btVec3PointTriDist2(const btVector3 *P,
|
|
const btVector3 *x0, const btVector3 *B,
|
|
const btVector3 *C,
|
|
btVector3 *witness)
|
|
{
|
|
// Computation comes from analytic expression for triangle (x0, B, C)
|
|
// T(s, t) = x0 + s.d1 + t.d2, where d1 = B - x0 and d2 = C - x0 and
|
|
// Then equation for distance is:
|
|
// D(s, t) = | T(s, t) - P |^2
|
|
// This leads to minimization of quadratic function of two variables.
|
|
// The solution from is taken only if s is between 0 and 1, t is
|
|
// between 0 and 1 and t + s < 1, otherwise distance from segment is
|
|
// computed.
|
|
|
|
btVector3 d1, d2, a;
|
|
double u, v, w, p, q, r;
|
|
double s, t, dist, dist2;
|
|
btVector3 witness2;
|
|
|
|
btVec3Sub2(&d1, B, x0);
|
|
btVec3Sub2(&d2, C, x0);
|
|
btVec3Sub2(&a, x0, P);
|
|
|
|
u = btVec3Dot(&a, &a);
|
|
v = btVec3Dot(&d1, &d1);
|
|
w = btVec3Dot(&d2, &d2);
|
|
p = btVec3Dot(&a, &d1);
|
|
q = btVec3Dot(&a, &d2);
|
|
r = btVec3Dot(&d1, &d2);
|
|
|
|
s = (q * r - w * p) / (w * v - r * r);
|
|
t = (-s * r - q) / w;
|
|
|
|
if ((btFuzzyZero(s) || s > btScalar(0)) && (ccdEq(s, btScalar(1)) || s < btScalar(1)) && (btFuzzyZero(t) || t > btScalar(0)) && (ccdEq(t, btScalar(1)) || t < btScalar(1)) && (ccdEq(t + s, btScalar(1)) || t + s < btScalar(1)))
|
|
{
|
|
if (witness)
|
|
{
|
|
btVec3Scale(&d1, s);
|
|
btVec3Scale(&d2, t);
|
|
btVec3Copy(witness, x0);
|
|
ccdVec3Add(witness, &d1);
|
|
ccdVec3Add(witness, &d2);
|
|
|
|
dist = ccdVec3Dist2(witness, P);
|
|
}
|
|
else
|
|
{
|
|
dist = s * s * v;
|
|
dist += t * t * w;
|
|
dist += btScalar(2.) * s * t * r;
|
|
dist += btScalar(2.) * s * p;
|
|
dist += btScalar(2.) * t * q;
|
|
dist += u;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
dist = btVec3PointSegmentDist2(P, x0, B, witness);
|
|
|
|
dist2 = btVec3PointSegmentDist2(P, x0, C, &witness2);
|
|
if (dist2 < dist)
|
|
{
|
|
dist = dist2;
|
|
if (witness)
|
|
btVec3Copy(witness, &witness2);
|
|
}
|
|
|
|
dist2 = btVec3PointSegmentDist2(P, B, C, &witness2);
|
|
if (dist2 < dist)
|
|
{
|
|
dist = dist2;
|
|
if (witness)
|
|
btVec3Copy(witness, &witness2);
|
|
}
|
|
}
|
|
|
|
return dist;
|
|
}
|
|
|
|
static int btDoSimplex2(btSimplex *simplex, btVector3 *dir)
|
|
{
|
|
const btSupportVector *A, *B;
|
|
btVector3 AB, AO, tmp;
|
|
btScalar dot;
|
|
|
|
// get last added as A
|
|
A = ccdSimplexLast(simplex);
|
|
// get the other point
|
|
B = btSimplexPoint(simplex, 0);
|
|
// compute AB oriented segment
|
|
btVec3Sub2(&AB, &B->v, &A->v);
|
|
// compute AO vector
|
|
btVec3Copy(&AO, &A->v);
|
|
btVec3Scale(&AO, -btScalar(1));
|
|
|
|
// dot product AB . AO
|
|
dot = btVec3Dot(&AB, &AO);
|
|
|
|
// check if origin doesn't lie on AB segment
|
|
btVec3Cross(&tmp, &AB, &AO);
|
|
if (btFuzzyZero(btVec3Dot(&tmp, &tmp)) && dot > btScalar(0))
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
// check if origin is in area where AB segment is
|
|
if (btFuzzyZero(dot) || dot < btScalar(0))
|
|
{
|
|
// origin is in outside are of A
|
|
btSimplexSet(simplex, 0, A);
|
|
btSimplexSetSize(simplex, 1);
|
|
btVec3Copy(dir, &AO);
|
|
}
|
|
else
|
|
{
|
|
// origin is in area where AB segment is
|
|
|
|
// keep simplex untouched and set direction to
|
|
// AB x AO x AB
|
|
btTripleCross(&AB, &AO, &AB, dir);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btDoSimplex3(btSimplex *simplex, btVector3 *dir)
|
|
{
|
|
const btSupportVector *A, *B, *C;
|
|
btVector3 AO, AB, AC, ABC, tmp;
|
|
btScalar dot, dist;
|
|
|
|
// get last added as A
|
|
A = ccdSimplexLast(simplex);
|
|
// get the other points
|
|
B = btSimplexPoint(simplex, 1);
|
|
C = btSimplexPoint(simplex, 0);
|
|
|
|
// check touching contact
|
|
dist = btVec3PointTriDist2(&ccd_vec3_origin, &A->v, &B->v, &C->v, 0);
|
|
if (btFuzzyZero(dist))
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
// check if triangle is really triangle (has area > 0)
|
|
// if not simplex can't be expanded and thus no itersection is found
|
|
if (btVec3Eq(&A->v, &B->v) || btVec3Eq(&A->v, &C->v))
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
// compute AO vector
|
|
btVec3Copy(&AO, &A->v);
|
|
btVec3Scale(&AO, -btScalar(1));
|
|
|
|
// compute AB and AC segments and ABC vector (perpendircular to triangle)
|
|
btVec3Sub2(&AB, &B->v, &A->v);
|
|
btVec3Sub2(&AC, &C->v, &A->v);
|
|
btVec3Cross(&ABC, &AB, &AC);
|
|
|
|
btVec3Cross(&tmp, &ABC, &AC);
|
|
dot = btVec3Dot(&tmp, &AO);
|
|
if (btFuzzyZero(dot) || dot > btScalar(0))
|
|
{
|
|
dot = btVec3Dot(&AC, &AO);
|
|
if (btFuzzyZero(dot) || dot > btScalar(0))
|
|
{
|
|
// C is already in place
|
|
btSimplexSet(simplex, 1, A);
|
|
btSimplexSetSize(simplex, 2);
|
|
btTripleCross(&AC, &AO, &AC, dir);
|
|
}
|
|
else
|
|
{
|
|
dot = btVec3Dot(&AB, &AO);
|
|
if (btFuzzyZero(dot) || dot > btScalar(0))
|
|
{
|
|
btSimplexSet(simplex, 0, B);
|
|
btSimplexSet(simplex, 1, A);
|
|
btSimplexSetSize(simplex, 2);
|
|
btTripleCross(&AB, &AO, &AB, dir);
|
|
}
|
|
else
|
|
{
|
|
btSimplexSet(simplex, 0, A);
|
|
btSimplexSetSize(simplex, 1);
|
|
btVec3Copy(dir, &AO);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
btVec3Cross(&tmp, &AB, &ABC);
|
|
dot = btVec3Dot(&tmp, &AO);
|
|
if (btFuzzyZero(dot) || dot > btScalar(0))
|
|
{
|
|
dot = btVec3Dot(&AB, &AO);
|
|
if (btFuzzyZero(dot) || dot > btScalar(0))
|
|
{
|
|
btSimplexSet(simplex, 0, B);
|
|
btSimplexSet(simplex, 1, A);
|
|
btSimplexSetSize(simplex, 2);
|
|
btTripleCross(&AB, &AO, &AB, dir);
|
|
}
|
|
else
|
|
{
|
|
btSimplexSet(simplex, 0, A);
|
|
btSimplexSetSize(simplex, 1);
|
|
btVec3Copy(dir, &AO);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
dot = btVec3Dot(&ABC, &AO);
|
|
if (btFuzzyZero(dot) || dot > btScalar(0))
|
|
{
|
|
btVec3Copy(dir, &ABC);
|
|
}
|
|
else
|
|
{
|
|
btSupportVector tmp;
|
|
btSupportCopy(&tmp, C);
|
|
btSimplexSet(simplex, 0, B);
|
|
btSimplexSet(simplex, 1, &tmp);
|
|
|
|
btVec3Copy(dir, &ABC);
|
|
btVec3Scale(dir, -btScalar(1));
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btDoSimplex4(btSimplex *simplex, btVector3 *dir)
|
|
{
|
|
const btSupportVector *A, *B, *C, *D;
|
|
btVector3 AO, AB, AC, AD, ABC, ACD, ADB;
|
|
int B_on_ACD, C_on_ADB, D_on_ABC;
|
|
int AB_O, AC_O, AD_O;
|
|
btScalar dist;
|
|
|
|
// get last added as A
|
|
A = ccdSimplexLast(simplex);
|
|
// get the other points
|
|
B = btSimplexPoint(simplex, 2);
|
|
C = btSimplexPoint(simplex, 1);
|
|
D = btSimplexPoint(simplex, 0);
|
|
|
|
// check if tetrahedron is really tetrahedron (has volume > 0)
|
|
// if it is not simplex can't be expanded and thus no intersection is
|
|
// found
|
|
dist = btVec3PointTriDist2(&A->v, &B->v, &C->v, &D->v, 0);
|
|
if (btFuzzyZero(dist))
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
// check if origin lies on some of tetrahedron's face - if so objects
|
|
// intersect
|
|
dist = btVec3PointTriDist2(&ccd_vec3_origin, &A->v, &B->v, &C->v, 0);
|
|
if (btFuzzyZero(dist))
|
|
return 1;
|
|
dist = btVec3PointTriDist2(&ccd_vec3_origin, &A->v, &C->v, &D->v, 0);
|
|
if (btFuzzyZero(dist))
|
|
return 1;
|
|
dist = btVec3PointTriDist2(&ccd_vec3_origin, &A->v, &B->v, &D->v, 0);
|
|
if (btFuzzyZero(dist))
|
|
return 1;
|
|
dist = btVec3PointTriDist2(&ccd_vec3_origin, &B->v, &C->v, &D->v, 0);
|
|
if (btFuzzyZero(dist))
|
|
return 1;
|
|
|
|
// compute AO, AB, AC, AD segments and ABC, ACD, ADB normal vectors
|
|
btVec3Copy(&AO, &A->v);
|
|
btVec3Scale(&AO, -btScalar(1));
|
|
btVec3Sub2(&AB, &B->v, &A->v);
|
|
btVec3Sub2(&AC, &C->v, &A->v);
|
|
btVec3Sub2(&AD, &D->v, &A->v);
|
|
btVec3Cross(&ABC, &AB, &AC);
|
|
btVec3Cross(&ACD, &AC, &AD);
|
|
btVec3Cross(&ADB, &AD, &AB);
|
|
|
|
// side (positive or negative) of B, C, D relative to planes ACD, ADB
|
|
// and ABC respectively
|
|
B_on_ACD = ccdSign(btVec3Dot(&ACD, &AB));
|
|
C_on_ADB = ccdSign(btVec3Dot(&ADB, &AC));
|
|
D_on_ABC = ccdSign(btVec3Dot(&ABC, &AD));
|
|
|
|
// whether origin is on same side of ACD, ADB, ABC as B, C, D
|
|
// respectively
|
|
AB_O = ccdSign(btVec3Dot(&ACD, &AO)) == B_on_ACD;
|
|
AC_O = ccdSign(btVec3Dot(&ADB, &AO)) == C_on_ADB;
|
|
AD_O = ccdSign(btVec3Dot(&ABC, &AO)) == D_on_ABC;
|
|
|
|
if (AB_O && AC_O && AD_O)
|
|
{
|
|
// origin is in tetrahedron
|
|
return 1;
|
|
// rearrange simplex to triangle and call btDoSimplex3()
|
|
}
|
|
else if (!AB_O)
|
|
{
|
|
// B is farthest from the origin among all of the tetrahedron's
|
|
// points, so remove it from the list and go on with the triangle
|
|
// case
|
|
|
|
// D and C are in place
|
|
btSimplexSet(simplex, 2, A);
|
|
btSimplexSetSize(simplex, 3);
|
|
}
|
|
else if (!AC_O)
|
|
{
|
|
// C is farthest
|
|
btSimplexSet(simplex, 1, D);
|
|
btSimplexSet(simplex, 0, B);
|
|
btSimplexSet(simplex, 2, A);
|
|
btSimplexSetSize(simplex, 3);
|
|
}
|
|
else
|
|
{ // (!AD_O)
|
|
btSimplexSet(simplex, 0, C);
|
|
btSimplexSet(simplex, 1, B);
|
|
btSimplexSet(simplex, 2, A);
|
|
btSimplexSetSize(simplex, 3);
|
|
}
|
|
|
|
return btDoSimplex3(simplex, dir);
|
|
}
|
|
|
|
static int btDoSimplex(btSimplex *simplex, btVector3 *dir)
|
|
{
|
|
if (btSimplexSize(simplex) == 2)
|
|
{
|
|
// simplex contains segment only one segment
|
|
return btDoSimplex2(simplex, dir);
|
|
}
|
|
else if (btSimplexSize(simplex) == 3)
|
|
{
|
|
// simplex contains triangle
|
|
return btDoSimplex3(simplex, dir);
|
|
}
|
|
else
|
|
{ // btSimplexSize(simplex) == 4
|
|
// tetrahedron - this is the only shape which can encapsule origin
|
|
// so btDoSimplex4() also contains test on it
|
|
return btDoSimplex4(simplex, dir);
|
|
}
|
|
}
|
|
|
|
#ifdef __SPU__
|
|
void btGjkPairDetector::getClosestPointsNonVirtual(const ClosestPointInput &input, Result &output, class btIDebugDraw *debugDraw)
|
|
#else
|
|
void btGjkPairDetector::getClosestPointsNonVirtual(const ClosestPointInput &input, Result &output, class btIDebugDraw *debugDraw)
|
|
#endif
|
|
{
|
|
m_cachedSeparatingDistance = 0.f;
|
|
|
|
btScalar distance = btScalar(0.);
|
|
btVector3 normalInB(btScalar(0.), btScalar(0.), btScalar(0.));
|
|
|
|
btVector3 pointOnA, pointOnB;
|
|
btTransform localTransA = input.m_transformA;
|
|
btTransform localTransB = input.m_transformB;
|
|
btVector3 positionOffset = (localTransA.getOrigin() + localTransB.getOrigin()) * btScalar(0.5);
|
|
localTransA.getOrigin() -= positionOffset;
|
|
localTransB.getOrigin() -= positionOffset;
|
|
|
|
bool check2d = m_minkowskiA->isConvex2d() && m_minkowskiB->isConvex2d();
|
|
|
|
btScalar marginA = m_marginA;
|
|
btScalar marginB = m_marginB;
|
|
|
|
|
|
//for CCD we don't use margins
|
|
if (m_ignoreMargin)
|
|
{
|
|
marginA = btScalar(0.);
|
|
marginB = btScalar(0.);
|
|
}
|
|
|
|
m_curIter = 0;
|
|
int gGjkMaxIter = 1000; //this is to catch invalid input, perhaps check for #NaN?
|
|
m_cachedSeparatingAxis.setValue(0, 1, 0);
|
|
|
|
bool isValid = false;
|
|
bool checkSimplex = false;
|
|
bool checkPenetration = true;
|
|
m_degenerateSimplex = 0;
|
|
|
|
m_lastUsedMethod = -1;
|
|
int status = -2;
|
|
btVector3 orgNormalInB(0, 0, 0);
|
|
btScalar margin = marginA + marginB;
|
|
|
|
//we add a separate implementation to check if the convex shapes intersect
|
|
//See also "Real-time Collision Detection with Implicit Objects" by Leif Olvang
|
|
//Todo: integrate the simplex penetration check directly inside the Bullet btVoronoiSimplexSolver
|
|
//and remove this temporary code from libCCD
|
|
//this fixes issue https://github.com/bulletphysics/bullet3/issues/1703
|
|
//note, for large differences in shapes, use double precision build!
|
|
{
|
|
btScalar squaredDistance = BT_LARGE_FLOAT;
|
|
btScalar delta = btScalar(0.);
|
|
|
|
btSimplex simplex1;
|
|
btSimplex *simplex = &simplex1;
|
|
btSimplexInit(simplex);
|
|
|
|
btVector3 dir(1, 0, 0);
|
|
|
|
{
|
|
btVector3 lastSupV;
|
|
btVector3 supAworld;
|
|
btVector3 supBworld;
|
|
btComputeSupport(m_minkowskiA, localTransA, m_minkowskiB, localTransB, dir, check2d, supAworld, supBworld, lastSupV);
|
|
|
|
btSupportVector last;
|
|
last.v = lastSupV;
|
|
last.v1 = supAworld;
|
|
last.v2 = supBworld;
|
|
|
|
btSimplexAdd(simplex, &last);
|
|
|
|
dir = -lastSupV;
|
|
|
|
// start iterations
|
|
for (int iterations = 0; iterations < gGjkMaxIter; iterations++)
|
|
{
|
|
// obtain support point
|
|
btComputeSupport(m_minkowskiA, localTransA, m_minkowskiB, localTransB, dir, check2d, supAworld, supBworld, lastSupV);
|
|
|
|
// check if farthest point in Minkowski difference in direction dir
|
|
// isn't somewhere before origin (the test on negative dot product)
|
|
// - because if it is, objects are not intersecting at all.
|
|
btScalar delta = lastSupV.dot(dir);
|
|
if (delta < 0)
|
|
{
|
|
//no intersection, besides margin
|
|
status = -1;
|
|
break;
|
|
}
|
|
|
|
// add last support vector to simplex
|
|
last.v = lastSupV;
|
|
last.v1 = supAworld;
|
|
last.v2 = supBworld;
|
|
|
|
btSimplexAdd(simplex, &last);
|
|
|
|
// if btDoSimplex returns 1 if objects intersect, -1 if objects don't
|
|
// intersect and 0 if algorithm should continue
|
|
|
|
btVector3 newDir;
|
|
int do_simplex_res = btDoSimplex(simplex, &dir);
|
|
|
|
if (do_simplex_res == 1)
|
|
{
|
|
status = 0; // intersection found
|
|
break;
|
|
}
|
|
else if (do_simplex_res == -1)
|
|
{
|
|
// intersection not found
|
|
status = -1;
|
|
break;
|
|
}
|
|
|
|
if (btFuzzyZero(btVec3Dot(&dir, &dir)))
|
|
{
|
|
// intersection not found
|
|
status = -1;
|
|
}
|
|
|
|
if (dir.length2() < SIMD_EPSILON)
|
|
{
|
|
//no intersection, besides margin
|
|
status = -1;
|
|
break;
|
|
}
|
|
|
|
if (dir.fuzzyZero())
|
|
{
|
|
// intersection not found
|
|
status = -1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
m_simplexSolver->reset();
|
|
if (status == 0)
|
|
{
|
|
//status = 0;
|
|
//printf("Intersect!\n");
|
|
}
|
|
|
|
if (status == -1)
|
|
{
|
|
//printf("not intersect\n");
|
|
}
|
|
//printf("dir=%f,%f,%f\n",dir[0],dir[1],dir[2]);
|
|
if (1)
|
|
{
|
|
for (;;)
|
|
//while (true)
|
|
{
|
|
btVector3 separatingAxisInA = (-m_cachedSeparatingAxis) * localTransA.getBasis();
|
|
btVector3 separatingAxisInB = m_cachedSeparatingAxis * localTransB.getBasis();
|
|
|
|
btVector3 pInA = m_minkowskiA->localGetSupportVertexWithoutMarginNonVirtual(separatingAxisInA);
|
|
btVector3 qInB = m_minkowskiB->localGetSupportVertexWithoutMarginNonVirtual(separatingAxisInB);
|
|
|
|
btVector3 pWorld = localTransA(pInA);
|
|
btVector3 qWorld = localTransB(qInB);
|
|
|
|
if (check2d)
|
|
{
|
|
pWorld[2] = 0.f;
|
|
qWorld[2] = 0.f;
|
|
}
|
|
|
|
btVector3 w = pWorld - qWorld;
|
|
delta = m_cachedSeparatingAxis.dot(w);
|
|
|
|
// potential exit, they don't overlap
|
|
if ((delta > btScalar(0.0)) && (delta * delta > squaredDistance * input.m_maximumDistanceSquared))
|
|
{
|
|
m_degenerateSimplex = 10;
|
|
checkSimplex = true;
|
|
//checkPenetration = false;
|
|
break;
|
|
}
|
|
|
|
//exit 0: the new point is already in the simplex, or we didn't come any closer
|
|
if (m_simplexSolver->inSimplex(w))
|
|
{
|
|
m_degenerateSimplex = 1;
|
|
checkSimplex = true;
|
|
break;
|
|
}
|
|
// are we getting any closer ?
|
|
btScalar f0 = squaredDistance - delta;
|
|
btScalar f1 = squaredDistance * REL_ERROR2;
|
|
|
|
if (f0 <= f1)
|
|
{
|
|
if (f0 <= btScalar(0.))
|
|
{
|
|
m_degenerateSimplex = 2;
|
|
}
|
|
else
|
|
{
|
|
m_degenerateSimplex = 11;
|
|
}
|
|
checkSimplex = true;
|
|
break;
|
|
}
|
|
|
|
//add current vertex to simplex
|
|
m_simplexSolver->addVertex(w, pWorld, qWorld);
|
|
btVector3 newCachedSeparatingAxis;
|
|
|
|
//calculate the closest point to the origin (update vector v)
|
|
if (!m_simplexSolver->closest(newCachedSeparatingAxis))
|
|
{
|
|
m_degenerateSimplex = 3;
|
|
checkSimplex = true;
|
|
break;
|
|
}
|
|
|
|
if (newCachedSeparatingAxis.length2() < REL_ERROR2)
|
|
{
|
|
m_cachedSeparatingAxis = newCachedSeparatingAxis;
|
|
m_degenerateSimplex = 6;
|
|
checkSimplex = true;
|
|
break;
|
|
}
|
|
|
|
btScalar previousSquaredDistance = squaredDistance;
|
|
squaredDistance = newCachedSeparatingAxis.length2();
|
|
#if 0
|
|
///warning: this termination condition leads to some problems in 2d test case see Bullet/Demos/Box2dDemo
|
|
if (squaredDistance > previousSquaredDistance)
|
|
{
|
|
m_degenerateSimplex = 7;
|
|
squaredDistance = previousSquaredDistance;
|
|
checkSimplex = false;
|
|
break;
|
|
}
|
|
#endif //
|
|
|
|
//redundant m_simplexSolver->compute_points(pointOnA, pointOnB);
|
|
|
|
//are we getting any closer ?
|
|
if (previousSquaredDistance - squaredDistance <= SIMD_EPSILON * previousSquaredDistance)
|
|
{
|
|
// m_simplexSolver->backup_closest(m_cachedSeparatingAxis);
|
|
checkSimplex = true;
|
|
m_degenerateSimplex = 12;
|
|
|
|
break;
|
|
}
|
|
|
|
m_cachedSeparatingAxis = newCachedSeparatingAxis;
|
|
|
|
//degeneracy, this is typically due to invalid/uninitialized worldtransforms for a btCollisionObject
|
|
if (m_curIter++ > gGjkMaxIter)
|
|
{
|
|
#if defined(DEBUG) || defined(_DEBUG)
|
|
|
|
printf("btGjkPairDetector maxIter exceeded:%i\n", m_curIter);
|
|
printf("sepAxis=(%f,%f,%f), squaredDistance = %f, shapeTypeA=%i,shapeTypeB=%i\n",
|
|
m_cachedSeparatingAxis.getX(),
|
|
m_cachedSeparatingAxis.getY(),
|
|
m_cachedSeparatingAxis.getZ(),
|
|
squaredDistance,
|
|
m_minkowskiA->getShapeType(),
|
|
m_minkowskiB->getShapeType());
|
|
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
bool check = (!m_simplexSolver->fullSimplex());
|
|
//bool check = (!m_simplexSolver->fullSimplex() && squaredDistance > SIMD_EPSILON * m_simplexSolver->maxVertex());
|
|
|
|
if (!check)
|
|
{
|
|
//do we need this backup_closest here ?
|
|
// m_simplexSolver->backup_closest(m_cachedSeparatingAxis);
|
|
m_degenerateSimplex = 13;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (checkSimplex)
|
|
{
|
|
m_simplexSolver->compute_points(pointOnA, pointOnB);
|
|
normalInB = m_cachedSeparatingAxis;
|
|
|
|
btScalar lenSqr = m_cachedSeparatingAxis.length2();
|
|
|
|
//valid normal
|
|
if (lenSqr < REL_ERROR2)
|
|
{
|
|
m_degenerateSimplex = 5;
|
|
}
|
|
if (lenSqr > SIMD_EPSILON * SIMD_EPSILON)
|
|
{
|
|
btScalar rlen = btScalar(1.) / btSqrt(lenSqr);
|
|
normalInB *= rlen; //normalize
|
|
|
|
btScalar s = btSqrt(squaredDistance);
|
|
|
|
btAssert(s > btScalar(0.0));
|
|
pointOnA -= m_cachedSeparatingAxis * (marginA / s);
|
|
pointOnB += m_cachedSeparatingAxis * (marginB / s);
|
|
distance = ((btScalar(1.) / rlen) - margin);
|
|
isValid = true;
|
|
orgNormalInB = normalInB;
|
|
|
|
m_lastUsedMethod = 1;
|
|
}
|
|
else
|
|
{
|
|
m_lastUsedMethod = 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool catchDegeneratePenetrationCase =
|
|
(m_catchDegeneracies && m_penetrationDepthSolver && m_degenerateSimplex && ((distance + margin) < gGjkEpaPenetrationTolerance));
|
|
|
|
//if (checkPenetration && !isValid)
|
|
if ((checkPenetration && (!isValid || catchDegeneratePenetrationCase)) || (status == 0))
|
|
{
|
|
//penetration case
|
|
|
|
//if there is no way to handle penetrations, bail out
|
|
if (m_penetrationDepthSolver)
|
|
{
|
|
// Penetration depth case.
|
|
btVector3 tmpPointOnA, tmpPointOnB;
|
|
|
|
m_cachedSeparatingAxis.setZero();
|
|
|
|
bool isValid2 = m_penetrationDepthSolver->calcPenDepth(
|
|
*m_simplexSolver,
|
|
m_minkowskiA, m_minkowskiB,
|
|
localTransA, localTransB,
|
|
m_cachedSeparatingAxis, tmpPointOnA, tmpPointOnB,
|
|
debugDraw);
|
|
|
|
if (m_cachedSeparatingAxis.length2())
|
|
{
|
|
if (isValid2)
|
|
{
|
|
btVector3 tmpNormalInB = tmpPointOnB - tmpPointOnA;
|
|
btScalar lenSqr = tmpNormalInB.length2();
|
|
if (lenSqr <= (SIMD_EPSILON * SIMD_EPSILON))
|
|
{
|
|
tmpNormalInB = m_cachedSeparatingAxis;
|
|
lenSqr = m_cachedSeparatingAxis.length2();
|
|
}
|
|
|
|
if (lenSqr > (SIMD_EPSILON * SIMD_EPSILON))
|
|
{
|
|
tmpNormalInB /= btSqrt(lenSqr);
|
|
btScalar distance2 = -(tmpPointOnA - tmpPointOnB).length();
|
|
m_lastUsedMethod = 3;
|
|
//only replace valid penetrations when the result is deeper (check)
|
|
if (!isValid || (distance2 < distance))
|
|
{
|
|
distance = distance2;
|
|
pointOnA = tmpPointOnA;
|
|
pointOnB = tmpPointOnB;
|
|
normalInB = tmpNormalInB;
|
|
isValid = true;
|
|
}
|
|
else
|
|
{
|
|
m_lastUsedMethod = 8;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
m_lastUsedMethod = 9;
|
|
}
|
|
}
|
|
else
|
|
|
|
{
|
|
///this is another degenerate case, where the initial GJK calculation reports a degenerate case
|
|
///EPA reports no penetration, and the second GJK (using the supporting vector without margin)
|
|
///reports a valid positive distance. Use the results of the second GJK instead of failing.
|
|
///thanks to Jacob.Langford for the reproduction case
|
|
///http://code.google.com/p/bullet/issues/detail?id=250
|
|
|
|
if (m_cachedSeparatingAxis.length2() > btScalar(0.))
|
|
{
|
|
btScalar distance2 = (tmpPointOnA - tmpPointOnB).length() - margin;
|
|
//only replace valid distances when the distance is less
|
|
if (!isValid || (distance2 < distance))
|
|
{
|
|
distance = distance2;
|
|
pointOnA = tmpPointOnA;
|
|
pointOnB = tmpPointOnB;
|
|
pointOnA -= m_cachedSeparatingAxis * marginA;
|
|
pointOnB += m_cachedSeparatingAxis * marginB;
|
|
normalInB = m_cachedSeparatingAxis;
|
|
normalInB.normalize();
|
|
|
|
isValid = true;
|
|
m_lastUsedMethod = 6;
|
|
}
|
|
else
|
|
{
|
|
m_lastUsedMethod = 5;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
//printf("EPA didn't return a valid value\n");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (isValid && ((distance < 0) || (distance * distance < input.m_maximumDistanceSquared)))
|
|
{
|
|
m_cachedSeparatingAxis = normalInB;
|
|
m_cachedSeparatingDistance = distance;
|
|
if (1)
|
|
{
|
|
///todo: need to track down this EPA penetration solver degeneracy
|
|
///the penetration solver reports penetration but the contact normal
|
|
///connecting the contact points is pointing in the opposite direction
|
|
///until then, detect the issue and revert the normal
|
|
|
|
btScalar d2 = 0.f;
|
|
{
|
|
btVector3 separatingAxisInA = (-orgNormalInB) * localTransA.getBasis();
|
|
btVector3 separatingAxisInB = orgNormalInB * localTransB.getBasis();
|
|
|
|
btVector3 pInA = m_minkowskiA->localGetSupportVertexWithoutMarginNonVirtual(separatingAxisInA);
|
|
btVector3 qInB = m_minkowskiB->localGetSupportVertexWithoutMarginNonVirtual(separatingAxisInB);
|
|
|
|
btVector3 pWorld = localTransA(pInA);
|
|
btVector3 qWorld = localTransB(qInB);
|
|
btVector3 w = pWorld - qWorld;
|
|
d2 = orgNormalInB.dot(w) - margin;
|
|
}
|
|
|
|
btScalar d1 = 0;
|
|
{
|
|
btVector3 separatingAxisInA = (normalInB)*localTransA.getBasis();
|
|
btVector3 separatingAxisInB = -normalInB * localTransB.getBasis();
|
|
|
|
btVector3 pInA = m_minkowskiA->localGetSupportVertexWithoutMarginNonVirtual(separatingAxisInA);
|
|
btVector3 qInB = m_minkowskiB->localGetSupportVertexWithoutMarginNonVirtual(separatingAxisInB);
|
|
|
|
btVector3 pWorld = localTransA(pInA);
|
|
btVector3 qWorld = localTransB(qInB);
|
|
btVector3 w = pWorld - qWorld;
|
|
d1 = (-normalInB).dot(w) - margin;
|
|
}
|
|
btScalar d0 = 0.f;
|
|
{
|
|
btVector3 separatingAxisInA = (-normalInB) * input.m_transformA.getBasis();
|
|
btVector3 separatingAxisInB = normalInB * input.m_transformB.getBasis();
|
|
|
|
btVector3 pInA = m_minkowskiA->localGetSupportVertexWithoutMarginNonVirtual(separatingAxisInA);
|
|
btVector3 qInB = m_minkowskiB->localGetSupportVertexWithoutMarginNonVirtual(separatingAxisInB);
|
|
|
|
btVector3 pWorld = localTransA(pInA);
|
|
btVector3 qWorld = localTransB(qInB);
|
|
btVector3 w = pWorld - qWorld;
|
|
d0 = normalInB.dot(w) - margin;
|
|
}
|
|
|
|
if (d1 > d0)
|
|
{
|
|
m_lastUsedMethod = 10;
|
|
normalInB *= -1;
|
|
}
|
|
|
|
if (orgNormalInB.length2())
|
|
{
|
|
if (d2 > d0 && d2 > d1 && d2 > distance)
|
|
{
|
|
normalInB = orgNormalInB;
|
|
distance = d2;
|
|
}
|
|
}
|
|
}
|
|
|
|
output.addContactPoint(
|
|
normalInB,
|
|
pointOnB + positionOffset,
|
|
distance);
|
|
}
|
|
else
|
|
{
|
|
//printf("invalid gjk query\n");
|
|
}
|
|
}
|