godot/drivers/gles2/rasterizer_gles2.h
2019-06-04 11:41:49 +02:00

1691 lines
49 KiB
C++

/*************************************************************************/
/* rasterizer_gles2.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef RASTERIZER_GLES2_H
#define RASTERIZER_GLES2_H
#include "servers/visual/rasterizer.h"
#define MAX_POLYGON_VERTICES 4096 //used for WebGL canvas_draw_polygon call.
#ifdef GLES2_ENABLED
#include "camera_matrix.h"
#include "image.h"
#include "list.h"
#include "map.h"
#include "rid.h"
#include "self_list.h"
#include "servers/visual_server.h"
#include "sort.h"
#include "platform_config.h"
#ifndef GLES2_INCLUDE_H
#include <GLES2/gl2.h>
#else
#include GLES2_INCLUDE_H
#endif
#include "drivers/gles2/shader_compiler_gles2.h"
#include "drivers/gles2/shaders/blur.glsl.gen.h"
#include "drivers/gles2/shaders/canvas.glsl.gen.h"
#include "drivers/gles2/shaders/canvas_shadow.glsl.gen.h"
#include "drivers/gles2/shaders/copy.glsl.gen.h"
#include "drivers/gles2/shaders/material.glsl.gen.h"
#include "servers/visual/particle_system_sw.h"
/**
@author Juan Linietsky <reduzio@gmail.com>
*/
class RasterizerGLES2 : public Rasterizer {
enum {
MAX_SCENE_LIGHTS = 2048,
LIGHT_SPOT_BIT = 0x80,
DEFAULT_SKINNED_BUFFER_SIZE = 2048, // 10k vertices
MAX_HW_LIGHTS = 1,
};
uint8_t *skinned_buffer;
int skinned_buffer_size;
bool pvr_supported;
bool pvr_srgb_supported;
bool s3tc_supported;
bool s3tc_srgb_supported;
bool latc_supported;
bool etc_supported;
bool atitc_supported;
bool npo2_textures_available;
bool read_depth_supported;
bool use_framebuffers;
bool full_float_fb_supported;
bool use_shadow_mapping;
bool use_fp16_fb;
bool srgb_supported;
bool float_supported;
bool float_linear_supported;
bool use_16bits_fbo;
ShadowFilterTechnique shadow_filter;
bool use_shadow_esm;
bool use_shadow_pcf;
bool use_hw_skeleton_xform;
bool use_depth24;
bool use_texture_instancing;
bool use_attribute_instancing;
bool use_rgba_shadowmaps;
bool use_anisotropic_filter;
float anisotropic_level;
bool use_half_float;
bool low_memory_2d;
bool shrink_textures_x2;
Vector<float> skel_default;
Image _get_gl_image_and_format(const Image &p_image, Image::Format p_format, uint32_t p_flags, GLenum &r_gl_format, GLenum &r_gl_internal_format, int &r_gl_components, bool &r_has_alpha_cache, bool &r_compressed);
struct RenderTarget;
struct Texture {
String path;
uint32_t flags;
int width, height;
int alloc_width, alloc_height;
Image::Format format;
GLenum target;
GLenum gl_format_cache;
GLenum gl_internal_format_cache;
int gl_components_cache;
int data_size; //original data size, useful for retrieving back
bool has_alpha;
bool format_has_alpha;
bool compressed;
bool disallow_mipmaps;
int total_data_size;
bool ignore_mipmaps;
ObjectID reloader;
StringName reloader_func;
Image image[6];
int mipmaps;
bool active;
GLuint tex_id;
RenderTarget *render_target;
Texture() {
ignore_mipmaps = false;
render_target = NULL;
flags = width = height = 0;
tex_id = 0;
data_size = 0;
format = Image::FORMAT_GRAYSCALE;
gl_components_cache = 0;
format_has_alpha = false;
has_alpha = false;
active = false;
disallow_mipmaps = false;
compressed = false;
total_data_size = 0;
target = GL_TEXTURE_2D;
mipmaps = 0;
reloader = 0;
}
~Texture() {
if (tex_id != 0) {
glDeleteTextures(1, &tex_id);
}
}
};
mutable RID_Owner<Texture> texture_owner;
struct Shader {
String vertex_code;
String fragment_code;
String light_code;
int vertex_line;
int fragment_line;
int light_line;
VS::ShaderMode mode;
uint32_t custom_code_id;
uint32_t version;
bool valid;
bool has_alpha;
bool can_zpass;
bool has_texscreen;
bool has_screen_uv;
bool writes_vertex;
bool uses_discard;
bool uses_time;
bool uses_normal;
bool uses_texpixel_size;
Map<StringName, ShaderLanguage::Uniform> uniforms;
StringName first_texture;
Map<StringName, RID> default_textures;
SelfList<Shader> dirty_list;
Shader() :
dirty_list(this) {
valid = false;
custom_code_id = 0;
has_alpha = false;
version = 1;
vertex_line = 0;
fragment_line = 0;
light_line = 0;
can_zpass = true;
has_texscreen = false;
has_screen_uv = false;
writes_vertex = false;
uses_discard = false;
uses_time = false;
uses_normal = false;
}
};
mutable RID_Owner<Shader> shader_owner;
mutable SelfList<Shader>::List _shader_dirty_list;
_FORCE_INLINE_ void _shader_make_dirty(Shader *p_shader);
void _update_shader(Shader *p_shader) const;
struct Material {
bool flags[VS::MATERIAL_FLAG_MAX];
VS::MaterialBlendMode blend_mode;
VS::MaterialDepthDrawMode depth_draw_mode;
float line_width;
bool has_alpha;
mutable uint32_t shader_version;
RID shader; // shader material
Shader *shader_cache;
struct UniformData {
bool inuse;
bool istexture;
Variant value;
int index;
};
mutable Map<StringName, UniformData> shader_params;
uint64_t last_pass;
Material() {
for (int i = 0; i < VS::MATERIAL_FLAG_MAX; i++)
flags[i] = false;
flags[VS::MATERIAL_FLAG_VISIBLE] = true;
line_width = 1;
has_alpha = false;
depth_draw_mode = VS::MATERIAL_DEPTH_DRAW_OPAQUE_ONLY;
blend_mode = VS::MATERIAL_BLEND_MODE_MIX;
last_pass = 0;
shader_version = 0;
shader_cache = NULL;
}
};
_FORCE_INLINE_ void _update_material_shader_params(Material *p_material) const;
mutable RID_Owner<Material> material_owner;
struct Geometry {
enum Type {
GEOMETRY_INVALID,
GEOMETRY_SURFACE,
GEOMETRY_IMMEDIATE,
GEOMETRY_PARTICLES,
GEOMETRY_MULTISURFACE,
};
Type type;
RID material;
bool has_alpha;
bool material_owned;
Geometry() {
has_alpha = false;
material_owned = false;
}
virtual ~Geometry(){};
};
struct GeometryOwner {
virtual ~GeometryOwner() {}
};
struct Mesh;
struct Surface : public Geometry {
struct ArrayData {
uint32_t ofs, size, datatype, count;
bool normalize;
bool bind;
ArrayData() {
ofs = 0;
size = 0;
count = 0;
datatype = 0;
normalize = 0;
bind = false;
}
};
Mesh *mesh;
Array data;
Array morph_data;
ArrayData array[VS::ARRAY_MAX];
// support for vertex array objects
GLuint array_object_id;
// support for vertex buffer object
GLuint vertex_id; // 0 means, unconfigured
GLuint index_id; // 0 means, unconfigured
// no support for the above, array in localmem.
uint8_t *array_local;
uint8_t *index_array_local;
Vector<AABB> skeleton_bone_aabb;
Vector<bool> skeleton_bone_used;
//bool packed;
struct MorphTarget {
uint32_t configured_format;
uint8_t *array;
};
MorphTarget *morph_targets_local;
int morph_target_count;
AABB aabb;
int array_len;
int index_array_len;
int max_bone;
float vertex_scale;
float uv_scale;
float uv2_scale;
bool alpha_sort;
VS::PrimitiveType primitive;
uint32_t format;
uint32_t configured_format;
int stride;
int local_stride;
uint32_t morph_format;
bool active;
Point2 uv_min;
Point2 uv_max;
Surface() {
array_len = 0;
local_stride = 0;
morph_format = 0;
type = GEOMETRY_SURFACE;
primitive = VS::PRIMITIVE_POINTS;
index_array_len = 0;
vertex_scale = 1.0;
uv_scale = 1.0;
uv2_scale = 1.0;
alpha_sort = false;
format = 0;
stride = 0;
morph_targets_local = 0;
morph_target_count = 0;
array_local = index_array_local = 0;
vertex_id = index_id = 0;
active = false;
//packed=false;
}
~Surface() {
}
};
struct Mesh {
bool active;
Vector<Surface *> surfaces;
int morph_target_count;
VS::MorphTargetMode morph_target_mode;
AABB custom_aabb;
mutable uint64_t last_pass;
Mesh() {
morph_target_mode = VS::MORPH_MODE_NORMALIZED;
morph_target_count = 0;
last_pass = 0;
active = false;
}
};
mutable RID_Owner<Mesh> mesh_owner;
Error _surface_set_arrays(Surface *p_surface, uint8_t *p_mem, uint8_t *p_index_mem, const Array &p_arrays, bool p_main);
struct MultiMesh;
struct MultiMeshSurface : public Geometry {
Surface *surface;
MultiMeshSurface() { type = GEOMETRY_MULTISURFACE; }
};
struct MultiMesh : public GeometryOwner {
struct Element {
float matrix[16];
uint8_t color[4];
Element() {
matrix[0] = 1;
matrix[1] = 0;
matrix[2] = 0;
matrix[3] = 0;
matrix[4] = 0;
matrix[5] = 1;
matrix[6] = 0;
matrix[7] = 0;
matrix[8] = 0;
matrix[9] = 0;
matrix[10] = 1;
matrix[11] = 0;
matrix[12] = 0;
matrix[13] = 0;
matrix[14] = 0;
matrix[15] = 1;
};
};
AABB aabb;
RID mesh;
int visible;
//IDirect3DVertexBuffer9* instance_buffer;
Vector<Element> elements;
Vector<MultiMeshSurface> cache_surfaces;
mutable uint64_t last_pass;
GLuint tex_id;
int tw;
int th;
SelfList<MultiMesh> dirty_list;
MultiMesh() :
dirty_list(this) {
tw = 1;
th = 1;
tex_id = 0;
last_pass = 0;
visible = -1;
}
};
mutable RID_Owner<MultiMesh> multimesh_owner;
mutable SelfList<MultiMesh>::List _multimesh_dirty_list;
struct Immediate : public Geometry {
struct Chunk {
RID texture;
VS::PrimitiveType primitive;
Vector<Vector3> vertices;
Vector<Vector3> normals;
Vector<Plane> tangents;
Vector<Color> colors;
Vector<Vector2> uvs;
Vector<Vector2> uvs2;
};
List<Chunk> chunks;
bool building;
int mask;
AABB aabb;
Immediate() {
type = GEOMETRY_IMMEDIATE;
building = false;
}
};
mutable RID_Owner<Immediate> immediate_owner;
struct Particles : public Geometry {
ParticleSystemSW data; // software particle system
Particles() {
type = GEOMETRY_PARTICLES;
}
};
mutable RID_Owner<Particles> particles_owner;
struct ParticlesInstance : public GeometryOwner {
RID particles;
ParticleSystemProcessSW particles_process;
Transform transform;
ParticlesInstance() {}
};
mutable RID_Owner<ParticlesInstance> particles_instance_owner;
ParticleSystemDrawInfoSW particle_draw_info;
struct Skeleton {
struct Bone {
float mtx[4][4]; //used
Bone() {
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
mtx[i][j] = (i == j) ? 1 : 0;
}
}
}
_ALWAYS_INLINE_ void transform_add_mul3(const float *p_src, float *r_dst, float p_weight) const {
r_dst[0] += ((mtx[0][0] * p_src[0]) + (mtx[1][0] * p_src[1]) + (mtx[2][0] * p_src[2]) + mtx[3][0]) * p_weight;
r_dst[1] += ((mtx[0][1] * p_src[0]) + (mtx[1][1] * p_src[1]) + (mtx[2][1] * p_src[2]) + mtx[3][1]) * p_weight;
r_dst[2] += ((mtx[0][2] * p_src[0]) + (mtx[1][2] * p_src[1]) + (mtx[2][2] * p_src[2]) + mtx[3][2]) * p_weight;
}
_ALWAYS_INLINE_ void transform3_add_mul3(const float *p_src, float *r_dst, float p_weight) const {
r_dst[0] += ((mtx[0][0] * p_src[0]) + (mtx[1][0] * p_src[1]) + (mtx[2][0] * p_src[2])) * p_weight;
r_dst[1] += ((mtx[0][1] * p_src[0]) + (mtx[1][1] * p_src[1]) + (mtx[2][1] * p_src[2])) * p_weight;
r_dst[2] += ((mtx[0][2] * p_src[0]) + (mtx[1][2] * p_src[1]) + (mtx[2][2] * p_src[2])) * p_weight;
}
_ALWAYS_INLINE_ AABB transform_aabb(const AABB &p_aabb) const {
float vertices[8][3] = {
{ p_aabb.pos.x + p_aabb.size.x, p_aabb.pos.y + p_aabb.size.y, p_aabb.pos.z + p_aabb.size.z },
{ p_aabb.pos.x + p_aabb.size.x, p_aabb.pos.y + p_aabb.size.y, p_aabb.pos.z },
{ p_aabb.pos.x + p_aabb.size.x, p_aabb.pos.y, p_aabb.pos.z + p_aabb.size.z },
{ p_aabb.pos.x + p_aabb.size.x, p_aabb.pos.y, p_aabb.pos.z },
{ p_aabb.pos.x, p_aabb.pos.y + p_aabb.size.y, p_aabb.pos.z + p_aabb.size.z },
{ p_aabb.pos.x, p_aabb.pos.y + p_aabb.size.y, p_aabb.pos.z },
{ p_aabb.pos.x, p_aabb.pos.y, p_aabb.pos.z + p_aabb.size.z },
{ p_aabb.pos.x, p_aabb.pos.y, p_aabb.pos.z }
};
AABB ret;
for (int i = 0; i < 8; i++) {
Vector3 xv(
((mtx[0][0] * vertices[i][0]) + (mtx[1][0] * vertices[i][1]) + (mtx[2][0] * vertices[i][2]) + mtx[3][0]),
((mtx[0][1] * vertices[i][0]) + (mtx[1][1] * vertices[i][1]) + (mtx[2][1] * vertices[i][2]) + mtx[3][1]),
((mtx[0][2] * vertices[i][0]) + (mtx[1][2] * vertices[i][1]) + (mtx[2][2] * vertices[i][2]) + mtx[3][2]));
if (i == 0)
ret.pos = xv;
else
ret.expand_to(xv);
}
return ret;
}
};
GLuint tex_id;
float pixel_size; //for texture
Vector<Bone> bones;
SelfList<Skeleton> dirty_list;
Skeleton() :
dirty_list(this) {
tex_id = 0;
pixel_size = 1.0;
}
};
mutable RID_Owner<Skeleton> skeleton_owner;
mutable SelfList<Skeleton>::List _skeleton_dirty_list;
template <bool USE_NORMAL, bool USE_TANGENT, bool INPLACE>
void _skeleton_xform(const uint8_t *p_src_array, int p_src_stride, uint8_t *p_dst_array, int p_dst_stride, int p_elements, const uint8_t *p_src_bones, const uint8_t *p_src_weights, const Skeleton::Bone *p_bone_xforms);
struct Light {
VS::LightType type;
float vars[VS::LIGHT_PARAM_MAX];
Color colors[3];
bool shadow_enabled;
RID projector;
bool volumetric_enabled;
Color volumetric_color;
VS::LightOmniShadowMode omni_shadow_mode;
VS::LightDirectionalShadowMode directional_shadow_mode;
float directional_shadow_param[3];
Light() {
vars[VS::LIGHT_PARAM_SPOT_ATTENUATION] = 1;
vars[VS::LIGHT_PARAM_SPOT_ANGLE] = 45;
vars[VS::LIGHT_PARAM_ATTENUATION] = 1.0;
vars[VS::LIGHT_PARAM_ENERGY] = 1.0;
vars[VS::LIGHT_PARAM_RADIUS] = 1.0;
vars[VS::LIGHT_PARAM_SHADOW_DARKENING] = 0.0;
vars[VS::LIGHT_PARAM_SHADOW_Z_OFFSET] = 0.2;
vars[VS::LIGHT_PARAM_SHADOW_Z_SLOPE_SCALE] = 1.4;
vars[VS::LIGHT_PARAM_SHADOW_ESM_MULTIPLIER] = 60.0;
vars[VS::LIGHT_PARAM_SHADOW_BLUR_PASSES] = 1;
colors[VS::LIGHT_COLOR_DIFFUSE] = Color(1, 1, 1);
colors[VS::LIGHT_COLOR_SPECULAR] = Color(1, 1, 1);
shadow_enabled = false;
volumetric_enabled = false;
directional_shadow_param[VS::LIGHT_DIRECTIONAL_SHADOW_PARAM_PSSM_SPLIT_WEIGHT] = 0.5;
directional_shadow_param[VS::LIGHT_DIRECTIONAL_SHADOW_PARAM_MAX_DISTANCE] = 0;
directional_shadow_param[VS::LIGHT_DIRECTIONAL_SHADOW_PARAM_PSSM_ZOFFSET_SCALE] = 2.0;
omni_shadow_mode = VS::LIGHT_OMNI_SHADOW_DEFAULT;
directional_shadow_mode = VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL;
}
};
struct Environment {
VS::EnvironmentBG bg_mode;
Variant bg_param[VS::ENV_BG_PARAM_MAX];
bool fx_enabled[VS::ENV_FX_MAX];
Variant fx_param[VS::ENV_FX_PARAM_MAX];
Environment() {
bg_mode = VS::ENV_BG_DEFAULT_COLOR;
bg_param[VS::ENV_BG_PARAM_COLOR] = Color(0, 0, 0);
bg_param[VS::ENV_BG_PARAM_TEXTURE] = RID();
bg_param[VS::ENV_BG_PARAM_CUBEMAP] = RID();
bg_param[VS::ENV_BG_PARAM_ENERGY] = 1.0;
bg_param[VS::ENV_BG_PARAM_SCALE] = 1.0;
bg_param[VS::ENV_BG_PARAM_GLOW] = 0.0;
bg_param[VS::ENV_BG_PARAM_CANVAS_MAX_LAYER] = 0;
for (int i = 0; i < VS::ENV_FX_MAX; i++)
fx_enabled[i] = false;
fx_param[VS::ENV_FX_PARAM_GLOW_BLUR_PASSES] = 1;
fx_param[VS::ENV_FX_PARAM_GLOW_BLUR_SCALE] = 1.0;
fx_param[VS::ENV_FX_PARAM_GLOW_BLUR_STRENGTH] = 1.0;
fx_param[VS::ENV_FX_PARAM_GLOW_BLUR_BLEND_MODE] = 0;
fx_param[VS::ENV_FX_PARAM_GLOW_BLOOM] = 0.0;
fx_param[VS::ENV_FX_PARAM_GLOW_BLOOM_TRESHOLD] = 0.5;
fx_param[VS::ENV_FX_PARAM_DOF_BLUR_PASSES] = 1;
fx_param[VS::ENV_FX_PARAM_DOF_BLUR_BEGIN] = 100.0;
fx_param[VS::ENV_FX_PARAM_DOF_BLUR_RANGE] = 10.0;
fx_param[VS::ENV_FX_PARAM_HDR_TONEMAPPER] = VS::ENV_FX_HDR_TONE_MAPPER_LINEAR;
fx_param[VS::ENV_FX_PARAM_HDR_EXPOSURE] = 0.4;
fx_param[VS::ENV_FX_PARAM_HDR_WHITE] = 1.0;
fx_param[VS::ENV_FX_PARAM_HDR_GLOW_TRESHOLD] = 0.95;
fx_param[VS::ENV_FX_PARAM_HDR_GLOW_SCALE] = 0.2;
fx_param[VS::ENV_FX_PARAM_HDR_MIN_LUMINANCE] = 0.4;
fx_param[VS::ENV_FX_PARAM_HDR_MAX_LUMINANCE] = 8.0;
fx_param[VS::ENV_FX_PARAM_HDR_EXPOSURE_ADJUST_SPEED] = 0.5;
fx_param[VS::ENV_FX_PARAM_FOG_BEGIN] = 100.0;
fx_param[VS::ENV_FX_PARAM_FOG_ATTENUATION] = 1.0;
fx_param[VS::ENV_FX_PARAM_FOG_BEGIN_COLOR] = Color(0, 0, 0);
fx_param[VS::ENV_FX_PARAM_FOG_END_COLOR] = Color(0, 0, 0);
fx_param[VS::ENV_FX_PARAM_FOG_BG] = true;
fx_param[VS::ENV_FX_PARAM_BCS_BRIGHTNESS] = 1.0;
fx_param[VS::ENV_FX_PARAM_BCS_CONTRAST] = 1.0;
fx_param[VS::ENV_FX_PARAM_BCS_SATURATION] = 1.0;
}
};
mutable RID_Owner<Environment> environment_owner;
struct SampledLight {
int w, h;
GLuint texture;
float multiplier;
bool is_float;
};
mutable RID_Owner<SampledLight> sampled_light_owner;
struct ViewportData {
//1x1 fbo+texture for storing previous HDR value
GLuint lum_fbo;
GLuint lum_color;
ViewportData() {
lum_fbo = 0;
lum_color = 0;
}
};
mutable RID_Owner<ViewportData> viewport_data_owner;
struct RenderTarget {
Texture *texture_ptr;
RID texture;
GLuint fbo;
GLuint color;
GLuint depth;
int width, height;
uint64_t last_pass;
};
mutable RID_Owner<RenderTarget> render_target_owner;
struct ShadowBuffer;
struct LightInstance {
struct SplitInfo {
CameraMatrix camera;
Transform transform;
float near;
float far;
};
RID light;
Light *base;
Transform transform;
CameraMatrix projection;
Transform custom_transform[4];
CameraMatrix custom_projection[4];
Vector3 light_vector;
Vector3 spot_vector;
float linear_att;
uint64_t shadow_pass;
uint64_t last_pass;
uint16_t sort_key;
Vector2 dp;
CameraMatrix shadow_projection[4];
float shadow_split[4];
ShadowBuffer *near_shadow_buffer;
void clear_shadow_buffers() {
clear_near_shadow_buffers();
}
void clear_near_shadow_buffers() {
if (near_shadow_buffer) {
near_shadow_buffer->owner = NULL;
near_shadow_buffer = NULL;
}
}
LightInstance() {
shadow_pass = 0;
last_pass = 0;
sort_key = 0;
near_shadow_buffer = NULL;
}
};
mutable RID_Owner<Light> light_owner;
mutable RID_Owner<LightInstance> light_instance_owner;
LightInstance *light_instances[MAX_SCENE_LIGHTS];
LightInstance *directional_lights[4];
int light_instance_count;
int directional_light_count;
int last_light_id;
bool current_depth_test;
bool current_depth_mask;
VS::MaterialBlendMode current_blend_mode;
bool use_fast_texture_filter;
int max_texture_size;
bool fragment_lighting;
RID shadow_material;
RID shadow_material_double_sided;
Material *shadow_mat_ptr;
Material *shadow_mat_double_sided_ptr;
int max_texture_units;
GLuint base_framebuffer;
GLuint gui_quad_buffer;
GLuint indices_buffer;
struct RenderList {
enum {
DEFAULT_MAX_ELEMENTS = 4096,
MAX_LIGHTS = 4,
SORT_FLAG_SKELETON = 1,
SORT_FLAG_INSTANCING = 2,
};
static int max_elements;
struct Element {
float depth;
const InstanceData *instance;
const Skeleton *skeleton;
const Geometry *geometry;
const Geometry *geometry_cmp;
const Material *material;
const GeometryOwner *owner;
bool *additive_ptr;
bool additive;
bool mirror;
union {
#ifdef BIG_ENDIAN_ENABLED
struct {
uint8_t sort_flags;
uint8_t light_type;
uint16_t light;
};
#else
struct {
uint16_t light;
uint8_t light_type;
uint8_t sort_flags;
};
#endif
uint32_t sort_key;
};
};
Element *_elements;
Element **elements;
int element_count;
void clear() {
element_count = 0;
}
struct SortZ {
_FORCE_INLINE_ bool operator()(const Element *A, const Element *B) const {
return A->depth > B->depth;
}
};
void sort_z() {
SortArray<Element *, SortZ> sorter;
sorter.sort(elements, element_count);
}
struct SortMatGeom {
_FORCE_INLINE_ bool operator()(const Element *A, const Element *B) const {
// TODO move to a single uint64 (one comparison)
if (A->material->shader_cache == B->material->shader_cache) {
if (A->material == B->material) {
return A->geometry_cmp < B->geometry_cmp;
} else {
return (A->material < B->material);
}
} else {
return A->material->shader_cache < B->material->shader_cache;
}
}
};
void sort_mat_geom() {
SortArray<Element *, SortMatGeom> sorter;
sorter.sort(elements, element_count);
}
struct SortMatLight {
_FORCE_INLINE_ bool operator()(const Element *A, const Element *B) const {
if (A->geometry_cmp == B->geometry_cmp) {
if (A->material == B->material) {
return A->light < B->light;
} else {
return (A->material < B->material);
}
} else {
return (A->geometry_cmp < B->geometry_cmp);
}
}
};
void sort_mat_light() {
SortArray<Element *, SortMatLight> sorter;
sorter.sort(elements, element_count);
}
struct SortMatLightType {
_FORCE_INLINE_ bool operator()(const Element *A, const Element *B) const {
if (A->light_type == B->light_type) {
if (A->material->shader_cache == B->material->shader_cache) {
if (A->material == B->material) {
return (A->geometry_cmp < B->geometry_cmp);
} else {
return (A->material < B->material);
}
} else {
return (A->material->shader_cache < B->material->shader_cache);
}
} else {
return A->light_type < B->light_type;
}
}
};
void sort_mat_light_type() {
SortArray<Element *, SortMatLightType> sorter;
sorter.sort(elements, element_count);
}
struct SortMatLightTypeFlags {
_FORCE_INLINE_ bool operator()(const Element *A, const Element *B) const {
if (A->sort_key == B->sort_key) {
if (A->material->shader_cache == B->material->shader_cache) {
if (A->material == B->material) {
return (A->geometry_cmp < B->geometry_cmp);
} else {
return (A->material < B->material);
}
} else {
return (A->material->shader_cache < B->material->shader_cache);
}
} else {
return A->sort_key < B->sort_key; //one is null and one is not
}
}
};
void sort_mat_light_type_flags() {
SortArray<Element *, SortMatLightTypeFlags> sorter;
sorter.sort(elements, element_count);
}
_FORCE_INLINE_ Element *add_element() {
if (element_count >= max_elements)
return NULL;
elements[element_count] = &_elements[element_count];
return elements[element_count++];
}
void init() {
element_count = 0;
elements = memnew_arr(Element *, max_elements);
_elements = memnew_arr(Element, max_elements);
for (int i = 0; i < max_elements; i++)
elements[i] = &_elements[i]; // assign elements
}
RenderList() {
}
~RenderList() {
memdelete_arr(elements);
memdelete_arr(_elements);
}
};
RenderList opaque_render_list;
RenderList alpha_render_list;
RID default_material;
CameraMatrix camera_projection;
Transform camera_transform;
Transform camera_transform_inverse;
float camera_z_near;
float camera_z_far;
Size2 camera_vp_size;
bool camera_ortho;
Set<String> extensions;
bool texscreen_copied;
bool texscreen_used;
Plane camera_plane;
void _add_geometry(const Geometry *p_geometry, const InstanceData *p_instance, const Geometry *p_geometry_cmp, const GeometryOwner *p_owner, int p_material = -1);
void _render_list_forward(RenderList *p_render_list, const Transform &p_view_transform, const Transform &p_view_transform_inverse, const CameraMatrix &p_projection, bool p_reverse_cull = false, bool p_fragment_light = false, bool p_alpha_pass = false);
//void _setup_light(LightInstance* p_instance, int p_idx);
void _setup_light(uint16_t p_light);
_FORCE_INLINE_ void _setup_shader_params(const Material *p_material);
bool _setup_material(const Geometry *p_geometry, const Material *p_material, bool p_no_const_light, bool p_opaque_pass);
void _setup_skeleton(const Skeleton *p_skeleton);
Error _setup_geometry(const Geometry *p_geometry, const Material *p_material, const Skeleton *p_skeleton, const float *p_morphs);
void _render(const Geometry *p_geometry, const Material *p_material, const Skeleton *p_skeleton, const GeometryOwner *p_owner, const Transform &p_xform);
/***********/
/* SHADOWS */
/***********/
struct ShadowBuffer {
int size;
GLuint fbo;
GLuint rbo;
GLuint depth;
GLuint rgba; //for older devices
#if 0
GLuint fbo_blur;
GLuint rbo_blur;
GLuint blur;
#endif
LightInstance *owner;
bool init(int p_size, bool p_use_depth);
ShadowBuffer() {
size = 0;
depth = 0;
owner = NULL;
}
};
Vector<ShadowBuffer> near_shadow_buffers;
ShadowBuffer blur_shadow_buffer;
Vector<ShadowBuffer> far_shadow_buffers;
LightInstance *shadow;
int shadow_pass;
float shadow_near_far_split_size_ratio;
bool _allocate_shadow_buffers(LightInstance *p_instance, Vector<ShadowBuffer> &p_buffers);
void _debug_draw_shadow(GLuint tex, const Rect2 &p_rect);
void _debug_draw_shadows_type(Vector<ShadowBuffer> &p_shadows, Point2 &ofs);
void _debug_shadows();
void _debug_luminances();
void _debug_samplers();
/***********/
/* FBOs */
/***********/
struct FrameBuffer {
GLuint fbo;
GLuint color;
GLuint depth;
int width, height;
int scale;
bool active;
int blur_size;
struct Blur {
GLuint fbo;
GLuint color;
Blur() {
fbo = 0;
color = 0;
}
} blur[3];
struct Luminance {
int size;
GLuint fbo;
GLuint color;
Luminance() {
fbo = 0;
color = 0;
size = 0;
}
};
Vector<Luminance> luminance;
GLuint sample_fbo;
GLuint sample_color;
FrameBuffer() {
blur_size = 0;
}
} framebuffer;
void _update_framebuffer();
void _process_glow_and_bloom();
//void _update_blur_buffer();
/*********/
/* FRAME */
/*********/
struct _Rinfo {
int texture_mem;
int vertex_count;
int object_count;
int mat_change_count;
int surface_count;
int shader_change_count;
int ci_draw_commands;
int draw_calls;
} _rinfo;
/*******************/
/* CANVAS OCCLUDER */
/*******************/
struct CanvasOccluder {
GLuint vertex_id; // 0 means, unconfigured
GLuint index_id; // 0 means, unconfigured
DVector<Vector2> lines;
int len;
};
RID_Owner<CanvasOccluder> canvas_occluder_owner;
/***********************/
/* CANVAS LIGHT SHADOW */
/***********************/
struct CanvasLightShadow {
int size;
int height;
GLuint fbo;
GLuint rbo;
GLuint depth;
GLuint rgba; //for older devices
GLuint blur;
};
RID_Owner<CanvasLightShadow> canvas_light_shadow_owner;
RID canvas_shadow_blur;
/* ETC */
RenderTarget *current_rt;
bool current_rt_transparent;
bool current_rt_vflip;
ViewportData *current_vd;
GLuint white_tex;
RID canvas_tex;
float canvas_opacity;
Color canvas_modulate;
bool canvas_use_modulate;
bool uses_texpixel_size;
bool rebind_texpixel_size;
Transform canvas_transform;
CanvasItemMaterial *canvas_last_material;
bool canvas_texscreen_used;
Vector2 normal_flip;
_FORCE_INLINE_ void _canvas_normal_set_flip(const Vector2 &p_flip);
_FORCE_INLINE_ Texture *_bind_canvas_texture(const RID &p_texture);
VS::MaterialBlendMode canvas_blend_mode;
int _setup_geometry_vinfo;
bool pack_arrays;
bool keep_copies;
bool use_reload_hooks;
bool cull_front;
bool lights_use_shadow;
_FORCE_INLINE_ void _set_cull(bool p_front, bool p_reverse_cull = false);
_FORCE_INLINE_ Color _convert_color(const Color &p_color);
void _process_glow_bloom();
void _process_hdr();
void _draw_tex_bg();
bool using_canvas_bg;
Size2 window_size;
VS::ViewportRect viewport;
double last_time;
double scaled_time;
double time_delta;
uint64_t frame;
uint64_t scene_pass;
bool draw_next_frame;
Environment *current_env;
VS::ScenarioDebugMode current_debug;
RID overdraw_material;
float shader_time_rollback;
float time_scale;
mutable MaterialShaderGLES2 material_shader;
mutable CanvasShaderGLES2 canvas_shader;
BlurShaderGLES2 blur_shader;
CopyShaderGLES2 copy_shader;
mutable CanvasShadowShaderGLES2 canvas_shadow_shader;
mutable ShaderCompilerGLES2 shader_precompiler;
void _draw_primitive(int p_points, const Vector3 *p_vertices, const Vector3 *p_normals, const Color *p_colors, const Vector3 *p_uvs, const Plane *p_tangents = NULL, int p_instanced = 1);
_FORCE_INLINE_ void _draw_gui_primitive(int p_points, const Vector2 *p_vertices, const Color *p_colors, const Vector2 *p_uvs);
_FORCE_INLINE_ void _draw_gui_primitive2(int p_points, const Vector2 *p_vertices, const Color *p_colors, const Vector2 *p_uvs, const Vector2 *p_uvs2);
void _draw_textured_quad(const Rect2 &p_rect, const Rect2 &p_src_region, const Size2 &p_tex_size, bool p_h_flip = false, bool p_v_flip = false, bool p_transpose = false);
void _draw_quad(const Rect2 &p_rect);
void _copy_screen_quad();
void _copy_to_texscreen();
bool _test_depth_shadow_buffer();
Vector3 chunk_vertex;
Vector3 chunk_normal;
Plane chunk_tangent;
Color chunk_color;
Vector2 chunk_uv;
Vector2 chunk_uv2;
GLuint tc0_id_cache;
GLuint tc0_idx;
template <bool use_normalmap>
_FORCE_INLINE_ void _canvas_item_render_commands(CanvasItem *p_item, CanvasItem *current_clip, bool &reclip);
_FORCE_INLINE_ void _canvas_item_setup_shader_params(CanvasItemMaterial *material, Shader *p_shader);
_FORCE_INLINE_ void _canvas_item_setup_shader_uniforms(CanvasItemMaterial *material, Shader *p_shader);
public:
/* TEXTURE API */
virtual RID texture_create();
virtual void texture_allocate(RID p_texture, int p_width, int p_height, Image::Format p_format, uint32_t p_flags = VS::TEXTURE_FLAGS_DEFAULT);
virtual void texture_set_data(RID p_texture, const Image &p_image, VS::CubeMapSide p_cube_side = VS::CUBEMAP_LEFT);
virtual Image texture_get_data(RID p_texture, VS::CubeMapSide p_cube_side = VS::CUBEMAP_LEFT) const;
virtual void texture_set_flags(RID p_texture, uint32_t p_flags);
virtual uint32_t texture_get_flags(RID p_texture) const;
virtual Image::Format texture_get_format(RID p_texture) const;
virtual uint32_t texture_get_width(RID p_texture) const;
virtual uint32_t texture_get_height(RID p_texture) const;
virtual bool texture_has_alpha(RID p_texture) const;
virtual void texture_set_size_override(RID p_texture, int p_width, int p_height);
virtual void texture_set_reload_hook(RID p_texture, ObjectID p_owner, const StringName &p_function) const;
virtual void texture_set_path(RID p_texture, const String &p_path);
virtual String texture_get_path(RID p_texture) const;
virtual void texture_debug_usage(List<VS::TextureInfo> *r_info);
virtual void texture_set_shrink_all_x2_on_set_data(bool p_enable);
GLuint _texture_get_name(RID p_tex);
/* SHADER API */
virtual RID shader_create(VS::ShaderMode p_mode = VS::SHADER_MATERIAL);
virtual void shader_set_mode(RID p_shader, VS::ShaderMode p_mode);
virtual VS::ShaderMode shader_get_mode(RID p_shader) const;
virtual void shader_set_code(RID p_shader, const String &p_vertex, const String &p_fragment, const String &p_light, int p_vertex_ofs = 0, int p_fragment_ofs = 0, int p_light_ofs = 0);
virtual String shader_get_fragment_code(RID p_shader) const;
virtual String shader_get_vertex_code(RID p_shader) const;
virtual String shader_get_light_code(RID p_shader) const;
virtual void shader_get_param_list(RID p_shader, List<PropertyInfo> *p_param_list) const;
virtual void shader_set_default_texture_param(RID p_shader, const StringName &p_name, RID p_texture);
virtual RID shader_get_default_texture_param(RID p_shader, const StringName &p_name) const;
virtual Variant shader_get_default_param(RID p_shader, const StringName &p_name);
/* COMMON MATERIAL API */
virtual RID material_create();
virtual void material_set_shader(RID p_shader_material, RID p_shader);
virtual RID material_get_shader(RID p_shader_material) const;
virtual void material_set_param(RID p_material, const StringName &p_param, const Variant &p_value);
virtual Variant material_get_param(RID p_material, const StringName &p_param) const;
virtual void material_set_flag(RID p_material, VS::MaterialFlag p_flag, bool p_enabled);
virtual bool material_get_flag(RID p_material, VS::MaterialFlag p_flag) const;
virtual void material_set_depth_draw_mode(RID p_material, VS::MaterialDepthDrawMode p_mode);
virtual VS::MaterialDepthDrawMode material_get_depth_draw_mode(RID p_material) const;
virtual void material_set_blend_mode(RID p_material, VS::MaterialBlendMode p_mode);
virtual VS::MaterialBlendMode material_get_blend_mode(RID p_material) const;
virtual void material_set_line_width(RID p_material, float p_line_width);
virtual float material_get_line_width(RID p_material) const;
/* MESH API */
virtual RID mesh_create();
virtual void mesh_add_surface(RID p_mesh, VS::PrimitiveType p_primitive, const Array &p_arrays, const Array &p_blend_shapes = Array(), bool p_alpha_sort = false);
virtual Array mesh_get_surface_arrays(RID p_mesh, int p_surface) const;
virtual Array mesh_get_surface_morph_arrays(RID p_mesh, int p_surface) const;
virtual void mesh_add_custom_surface(RID p_mesh, const Variant &p_dat);
virtual void mesh_set_morph_target_count(RID p_mesh, int p_amount);
virtual int mesh_get_morph_target_count(RID p_mesh) const;
virtual void mesh_set_morph_target_mode(RID p_mesh, VS::MorphTargetMode p_mode);
virtual VS::MorphTargetMode mesh_get_morph_target_mode(RID p_mesh) const;
virtual void mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material, bool p_owned = false);
virtual RID mesh_surface_get_material(RID p_mesh, int p_surface) const;
virtual int mesh_surface_get_array_len(RID p_mesh, int p_surface) const;
virtual int mesh_surface_get_array_index_len(RID p_mesh, int p_surface) const;
virtual uint32_t mesh_surface_get_format(RID p_mesh, int p_surface) const;
virtual VS::PrimitiveType mesh_surface_get_primitive_type(RID p_mesh, int p_surface) const;
virtual void mesh_remove_surface(RID p_mesh, int p_index);
virtual int mesh_get_surface_count(RID p_mesh) const;
virtual AABB mesh_get_aabb(RID p_mesh, RID p_skeleton = RID()) const;
virtual void mesh_set_custom_aabb(RID p_mesh, const AABB &p_aabb);
virtual AABB mesh_get_custom_aabb(RID p_mesh) const;
/* MULTIMESH API */
virtual RID multimesh_create();
virtual void multimesh_set_instance_count(RID p_multimesh, int p_count);
virtual int multimesh_get_instance_count(RID p_multimesh) const;
virtual void multimesh_set_mesh(RID p_multimesh, RID p_mesh);
virtual void multimesh_set_aabb(RID p_multimesh, const AABB &p_aabb);
virtual void multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform &p_transform);
virtual void multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color);
virtual RID multimesh_get_mesh(RID p_multimesh) const;
virtual AABB multimesh_get_aabb(RID p_multimesh) const;
virtual Transform multimesh_instance_get_transform(RID p_multimesh, int p_index) const;
virtual Color multimesh_instance_get_color(RID p_multimesh, int p_index) const;
virtual void multimesh_set_visible_instances(RID p_multimesh, int p_visible);
virtual int multimesh_get_visible_instances(RID p_multimesh) const;
/* IMMEDIATE API */
virtual RID immediate_create();
virtual void immediate_begin(RID p_immediate, VS::PrimitiveType p_rimitive, RID p_texture = RID());
virtual void immediate_vertex(RID p_immediate, const Vector3 &p_vertex);
virtual void immediate_normal(RID p_immediate, const Vector3 &p_normal);
virtual void immediate_tangent(RID p_immediate, const Plane &p_tangent);
virtual void immediate_color(RID p_immediate, const Color &p_color);
virtual void immediate_uv(RID p_immediate, const Vector2 &tex_uv);
virtual void immediate_uv2(RID p_immediate, const Vector2 &tex_uv);
virtual void immediate_end(RID p_immediate);
virtual void immediate_clear(RID p_immediate);
virtual AABB immediate_get_aabb(RID p_immediate) const;
virtual void immediate_set_material(RID p_immediate, RID p_material);
virtual RID immediate_get_material(RID p_immediate) const;
/* PARTICLES API */
virtual RID particles_create();
virtual void particles_set_amount(RID p_particles, int p_amount);
virtual int particles_get_amount(RID p_particles) const;
virtual void particles_set_emitting(RID p_particles, bool p_emitting);
virtual bool particles_is_emitting(RID p_particles) const;
virtual void particles_set_visibility_aabb(RID p_particles, const AABB &p_visibility);
virtual AABB particles_get_visibility_aabb(RID p_particles) const;
virtual void particles_set_emission_half_extents(RID p_particles, const Vector3 &p_half_extents);
virtual Vector3 particles_get_emission_half_extents(RID p_particles) const;
virtual void particles_set_emission_base_velocity(RID p_particles, const Vector3 &p_base_velocity);
virtual Vector3 particles_get_emission_base_velocity(RID p_particles) const;
virtual void particles_set_emission_points(RID p_particles, const DVector<Vector3> &p_points);
virtual DVector<Vector3> particles_get_emission_points(RID p_particles) const;
virtual void particles_set_gravity_normal(RID p_particles, const Vector3 &p_normal);
virtual Vector3 particles_get_gravity_normal(RID p_particles) const;
virtual void particles_set_variable(RID p_particles, VS::ParticleVariable p_variable, float p_value);
virtual float particles_get_variable(RID p_particles, VS::ParticleVariable p_variable) const;
virtual void particles_set_randomness(RID p_particles, VS::ParticleVariable p_variable, float p_randomness);
virtual float particles_get_randomness(RID p_particles, VS::ParticleVariable p_variable) const;
virtual void particles_set_color_phase_pos(RID p_particles, int p_phase, float p_pos);
virtual float particles_get_color_phase_pos(RID p_particles, int p_phase) const;
virtual void particles_set_color_phases(RID p_particles, int p_phases);
virtual int particles_get_color_phases(RID p_particles) const;
virtual void particles_set_color_phase_color(RID p_particles, int p_phase, const Color &p_color);
virtual Color particles_get_color_phase_color(RID p_particles, int p_phase) const;
virtual void particles_set_attractors(RID p_particles, int p_attractors);
virtual int particles_get_attractors(RID p_particles) const;
virtual void particles_set_attractor_pos(RID p_particles, int p_attractor, const Vector3 &p_pos);
virtual Vector3 particles_get_attractor_pos(RID p_particles, int p_attractor) const;
virtual void particles_set_attractor_strength(RID p_particles, int p_attractor, float p_force);
virtual float particles_get_attractor_strength(RID p_particles, int p_attractor) const;
virtual void particles_set_material(RID p_particles, RID p_material, bool p_owned = false);
virtual RID particles_get_material(RID p_particles) const;
virtual AABB particles_get_aabb(RID p_particles) const;
virtual void particles_set_height_from_velocity(RID p_particles, bool p_enable);
virtual bool particles_has_height_from_velocity(RID p_particles) const;
virtual void particles_set_use_local_coordinates(RID p_particles, bool p_enable);
virtual bool particles_is_using_local_coordinates(RID p_particles) const;
/* SKELETON API */
virtual RID skeleton_create();
virtual void skeleton_resize(RID p_skeleton, int p_bones);
virtual int skeleton_get_bone_count(RID p_skeleton) const;
virtual void skeleton_bone_set_transform(RID p_skeleton, int p_bone, const Transform &p_transform);
virtual Transform skeleton_bone_get_transform(RID p_skeleton, int p_bone);
/* LIGHT API */
virtual RID light_create(VS::LightType p_type);
virtual VS::LightType light_get_type(RID p_light) const;
virtual void light_set_color(RID p_light, VS::LightColor p_type, const Color &p_color);
virtual Color light_get_color(RID p_light, VS::LightColor p_type) const;
virtual void light_set_shadow(RID p_light, bool p_enabled);
virtual bool light_has_shadow(RID p_light) const;
virtual void light_set_volumetric(RID p_light, bool p_enabled);
virtual bool light_is_volumetric(RID p_light) const;
virtual void light_set_projector(RID p_light, RID p_texture);
virtual RID light_get_projector(RID p_light) const;
virtual void light_set_var(RID p_light, VS::LightParam p_var, float p_value);
virtual float light_get_var(RID p_light, VS::LightParam p_var) const;
virtual void light_set_operator(RID p_light, VS::LightOp p_op);
virtual VS::LightOp light_get_operator(RID p_light) const;
virtual void light_omni_set_shadow_mode(RID p_light, VS::LightOmniShadowMode p_mode);
virtual VS::LightOmniShadowMode light_omni_get_shadow_mode(RID p_light) const;
virtual void light_directional_set_shadow_mode(RID p_light, VS::LightDirectionalShadowMode p_mode);
virtual VS::LightDirectionalShadowMode light_directional_get_shadow_mode(RID p_light) const;
virtual void light_directional_set_shadow_param(RID p_light, VS::LightDirectionalShadowParam p_param, float p_value);
virtual float light_directional_get_shadow_param(RID p_light, VS::LightDirectionalShadowParam p_param) const;
virtual AABB light_get_aabb(RID p_poly) const;
virtual RID light_instance_create(RID p_light);
virtual void light_instance_set_transform(RID p_light_instance, const Transform &p_transform);
virtual ShadowType light_instance_get_shadow_type(RID p_light_instance, bool p_far = false) const;
virtual int light_instance_get_shadow_passes(RID p_light_instance) const;
virtual bool light_instance_get_pssm_shadow_overlap(RID p_light_instance) const;
virtual void light_instance_set_shadow_transform(RID p_light_instance, int p_index, const CameraMatrix &p_camera, const Transform &p_transform, float p_split_near = 0, float p_split_far = 0);
virtual int light_instance_get_shadow_size(RID p_light_instance, int p_index = 0) const;
virtual void shadow_clear_near();
virtual bool shadow_allocate_near(RID p_light);
virtual bool shadow_allocate_far(RID p_light);
/* SHADOW */
virtual RID particles_instance_create(RID p_particles);
virtual void particles_instance_set_transform(RID p_particles_instance, const Transform &p_transform);
/* VIEWPORT */
virtual RID viewport_data_create();
virtual RID render_target_create();
virtual void render_target_set_size(RID p_render_target, int p_width, int p_height);
virtual RID render_target_get_texture(RID p_render_target) const;
virtual bool render_target_renedered_in_frame(RID p_render_target);
/* RENDER API */
/* all calls (inside begin/end shadow) are always warranted to be in the following order: */
virtual void begin_frame();
virtual void set_viewport(const VS::ViewportRect &p_viewport);
virtual void set_render_target(RID p_render_target, bool p_transparent_bg = false, bool p_vflip = false);
virtual void clear_viewport(const Color &p_color);
virtual void capture_viewport(Image *r_capture);
virtual void begin_scene(RID p_viewport_data, RID p_env, VS::ScenarioDebugMode p_debug);
virtual void begin_shadow_map(RID p_light_instance, int p_shadow_pass);
virtual void set_camera(const Transform &p_world, const CameraMatrix &p_projection, bool p_ortho_hint);
virtual void add_light(RID p_light_instance); ///< all "add_light" calls happen before add_geometry calls
typedef Map<StringName, Variant> ParamOverrideMap;
virtual void add_mesh(const RID &p_mesh, const InstanceData *p_data);
virtual void add_multimesh(const RID &p_multimesh, const InstanceData *p_data);
virtual void add_immediate(const RID &p_immediate, const InstanceData *p_data);
virtual void add_particles(const RID &p_particle_instance, const InstanceData *p_data);
virtual void end_scene();
virtual void end_shadow_map();
virtual void end_frame();
/* CANVAS API */
virtual void begin_canvas_bg();
virtual void canvas_begin();
virtual void canvas_disable_blending();
virtual void canvas_set_opacity(float p_opacity);
virtual void canvas_set_blend_mode(VS::MaterialBlendMode p_mode);
virtual void canvas_begin_rect(const Matrix32 &p_transform);
virtual void canvas_set_clip(bool p_clip, const Rect2 &p_rect);
virtual void canvas_end_rect();
virtual void canvas_draw_line(const Point2 &p_from, const Point2 &p_to, const Color &p_color, float p_width);
virtual void canvas_draw_rect(const Rect2 &p_rect, int p_flags, const Rect2 &p_source, RID p_texture, const Color &p_modulate);
virtual void canvas_draw_style_box(const Rect2 &p_rect, const Rect2 &p_src_region, RID p_texture, const float *p_margins, bool p_draw_center = true, const Color &p_modulate = Color(1, 1, 1));
virtual void canvas_draw_primitive(const Vector<Point2> &p_points, const Vector<Color> &p_colors, const Vector<Point2> &p_uvs, RID p_texture, float p_width);
virtual void canvas_draw_polygon(int p_vertex_count, const int *p_indices, const Vector2 *p_vertices, const Vector2 *p_uvs, const Color *p_colors, const RID &p_texture, bool p_singlecolor);
virtual void canvas_set_transform(const Matrix32 &p_transform);
virtual void canvas_render_items(CanvasItem *p_item_list, int p_z, const Color &p_modulate, CanvasLight *p_light);
virtual void canvas_debug_viewport_shadows(CanvasLight *p_lights_with_shadow);
/* CANVAS LIGHT SHADOW */
//buffer
virtual RID canvas_light_shadow_buffer_create(int p_width);
virtual void canvas_light_shadow_buffer_update(RID p_buffer, const Matrix32 &p_light_xform, int p_light_mask, float p_near, float p_far, CanvasLightOccluderInstance *p_occluders, CameraMatrix *p_xform_cache);
//occluder
virtual RID canvas_light_occluder_create();
virtual void canvas_light_occluder_set_polylines(RID p_occluder, const DVector<Vector2> &p_lines);
/* ENVIRONMENT */
virtual RID environment_create();
virtual void environment_set_background(RID p_env, VS::EnvironmentBG p_bg);
virtual VS::EnvironmentBG environment_get_background(RID p_env) const;
virtual void environment_set_background_param(RID p_env, VS::EnvironmentBGParam p_param, const Variant &p_value);
virtual Variant environment_get_background_param(RID p_env, VS::EnvironmentBGParam p_param) const;
virtual void environment_set_enable_fx(RID p_env, VS::EnvironmentFx p_effect, bool p_enabled);
virtual bool environment_is_fx_enabled(RID p_env, VS::EnvironmentFx p_effect) const;
virtual void environment_fx_set_param(RID p_env, VS::EnvironmentFxParam p_param, const Variant &p_value);
virtual Variant environment_fx_get_param(RID p_env, VS::EnvironmentFxParam p_param) const;
/* SAMPLED LIGHT */
virtual RID sampled_light_dp_create(int p_width, int p_height);
virtual void sampled_light_dp_update(RID p_sampled_light, const Color *p_data, float p_multiplier);
/*MISC*/
virtual bool is_texture(const RID &p_rid) const;
virtual bool is_material(const RID &p_rid) const;
virtual bool is_mesh(const RID &p_rid) const;
virtual bool is_immediate(const RID &p_rid) const;
virtual bool is_multimesh(const RID &p_rid) const;
virtual bool is_particles(const RID &p_beam) const;
virtual bool is_light(const RID &p_rid) const;
virtual bool is_light_instance(const RID &p_rid) const;
virtual bool is_particles_instance(const RID &p_rid) const;
virtual bool is_skeleton(const RID &p_rid) const;
virtual bool is_environment(const RID &p_rid) const;
virtual bool is_shader(const RID &p_rid) const;
virtual bool is_canvas_light_occluder(const RID &p_rid) const;
virtual void set_time_scale(float p_scale);
virtual void free(const RID &p_rid);
virtual void init();
virtual void finish();
virtual int get_render_info(VS::RenderInfo p_info);
void set_base_framebuffer(GLuint p_id, Vector2 p_size = Vector2(0, 0));
virtual void flush_frame(); //not necesary in most cases
void set_extensions(const char *p_strings);
virtual bool needs_to_draw_next_frame() const;
void set_use_framebuffers(bool p_use);
void reload_vram();
virtual bool has_feature(VS::Features p_feature) const;
virtual void restore_framebuffer();
static RasterizerGLES2 *get_singleton();
virtual void set_force_16_bits_fbo(bool p_force);
RasterizerGLES2(bool p_compress_arrays = false, bool p_keep_ram_copy = true, bool p_default_fragment_lighting = true, bool p_use_reload_hooks = false);
virtual ~RasterizerGLES2();
};
#endif
#endif