godot/thirdparty/embree/kernels/common/scene_curves.h
jfons 767e374dce Upgrade Embree to the latest official release.
Since Embree v3.13.0 supports AARCH64, switch back to the
official repo instead of using Embree-aarch64.

`thirdparty/embree/patches/godot-changes.patch` should now contain
an accurate diff of the changes done to the library.
2021-05-21 17:00:24 +02:00

689 lines
28 KiB
C++

// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "default.h"
#include "geometry.h"
#include "buffer.h"
#include "../subdiv/bezier_curve.h"
#include "../subdiv/hermite_curve.h"
#include "../subdiv/bspline_curve.h"
#include "../subdiv/catmullrom_curve.h"
#include "../subdiv/linear_bezier_patch.h"
namespace embree
{
/*! represents an array of bicubic bezier curves */
struct CurveGeometry : public Geometry
{
/*! type of this geometry */
static const Geometry::GTypeMask geom_type = Geometry::MTY_CURVE4;
public:
/*! bezier curve construction */
CurveGeometry (Device* device, Geometry::GType gtype);
public:
void setMask(unsigned mask);
void setNumTimeSteps (unsigned int numTimeSteps);
void setVertexAttributeCount (unsigned int N);
void setBuffer(RTCBufferType type, unsigned int slot, RTCFormat format, const Ref<Buffer>& buffer, size_t offset, size_t stride, unsigned int num);
void* getBuffer(RTCBufferType type, unsigned int slot);
void updateBuffer(RTCBufferType type, unsigned int slot);
void commit();
bool verify();
void setTessellationRate(float N);
void setMaxRadiusScale(float s);
void addElementsToCount (GeometryCounts & counts) const;
public:
/*! returns the number of vertices */
__forceinline size_t numVertices() const {
return vertices[0].size();
}
/*! returns the i'th curve */
__forceinline const unsigned int& curve(size_t i) const {
return curves[i];
}
/*! returns i'th vertex of the first time step */
__forceinline Vec3ff vertex(size_t i) const {
return vertices0[i];
}
/*! returns i'th normal of the first time step */
__forceinline Vec3fa normal(size_t i) const {
return normals0[i];
}
/*! returns i'th tangent of the first time step */
__forceinline Vec3ff tangent(size_t i) const {
return tangents0[i];
}
/*! returns i'th normal derivative of the first time step */
__forceinline Vec3fa dnormal(size_t i) const {
return dnormals0[i];
}
/*! returns i'th radius of the first time step */
__forceinline float radius(size_t i) const {
return vertices0[i].w;
}
/*! returns i'th vertex of itime'th timestep */
__forceinline Vec3ff vertex(size_t i, size_t itime) const {
return vertices[itime][i];
}
/*! returns i'th normal of itime'th timestep */
__forceinline Vec3fa normal(size_t i, size_t itime) const {
return normals[itime][i];
}
/*! returns i'th tangent of itime'th timestep */
__forceinline Vec3ff tangent(size_t i, size_t itime) const {
return tangents[itime][i];
}
/*! returns i'th normal derivative of itime'th timestep */
__forceinline Vec3fa dnormal(size_t i, size_t itime) const {
return dnormals[itime][i];
}
/*! returns i'th radius of itime'th timestep */
__forceinline float radius(size_t i, size_t itime) const {
return vertices[itime][i].w;
}
/*! gathers the curve starting with i'th vertex */
__forceinline void gather(Vec3ff& p0, Vec3ff& p1, Vec3ff& p2, Vec3ff& p3, size_t i) const
{
p0 = vertex(i+0);
p1 = vertex(i+1);
p2 = vertex(i+2);
p3 = vertex(i+3);
}
/*! gathers the curve starting with i'th vertex of itime'th timestep */
__forceinline void gather(Vec3ff& p0, Vec3ff& p1, Vec3ff& p2, Vec3ff& p3, size_t i, size_t itime) const
{
p0 = vertex(i+0,itime);
p1 = vertex(i+1,itime);
p2 = vertex(i+2,itime);
p3 = vertex(i+3,itime);
}
/*! gathers the curve starting with i'th vertex */
__forceinline void gather(Vec3ff& p0, Vec3ff& p1, Vec3ff& p2, Vec3ff& p3, Vec3fa& n0, Vec3fa& n1, Vec3fa& n2, Vec3fa& n3, size_t i) const
{
p0 = vertex(i+0);
p1 = vertex(i+1);
p2 = vertex(i+2);
p3 = vertex(i+3);
n0 = normal(i+0);
n1 = normal(i+1);
n2 = normal(i+2);
n3 = normal(i+3);
}
/*! gathers the curve starting with i'th vertex of itime'th timestep */
__forceinline void gather(Vec3ff& p0, Vec3ff& p1, Vec3ff& p2, Vec3ff& p3, Vec3fa& n0, Vec3fa& n1, Vec3fa& n2, Vec3fa& n3, size_t i, size_t itime) const
{
p0 = vertex(i+0,itime);
p1 = vertex(i+1,itime);
p2 = vertex(i+2,itime);
p3 = vertex(i+3,itime);
n0 = normal(i+0,itime);
n1 = normal(i+1,itime);
n2 = normal(i+2,itime);
n3 = normal(i+3,itime);
}
/*! prefetches the curve starting with i'th vertex of itime'th timestep */
__forceinline void prefetchL1_vertices(size_t i) const
{
prefetchL1(vertices0.getPtr(i)+0);
prefetchL1(vertices0.getPtr(i)+64);
}
/*! prefetches the curve starting with i'th vertex of itime'th timestep */
__forceinline void prefetchL2_vertices(size_t i) const
{
prefetchL2(vertices0.getPtr(i)+0);
prefetchL2(vertices0.getPtr(i)+64);
}
/*! loads curve vertices for specified time */
__forceinline void gather(Vec3ff& p0, Vec3ff& p1, Vec3ff& p2, Vec3ff& p3, size_t i, float time) const
{
float ftime;
const size_t itime = timeSegment(time, ftime);
const float t0 = 1.0f - ftime;
const float t1 = ftime;
Vec3ff a0,a1,a2,a3;
gather(a0,a1,a2,a3,i,itime);
Vec3ff b0,b1,b2,b3;
gather(b0,b1,b2,b3,i,itime+1);
p0 = madd(Vec3ff(t0),a0,t1*b0);
p1 = madd(Vec3ff(t0),a1,t1*b1);
p2 = madd(Vec3ff(t0),a2,t1*b2);
p3 = madd(Vec3ff(t0),a3,t1*b3);
}
/*! loads curve vertices for specified time */
__forceinline void gather(Vec3ff& p0, Vec3ff& p1, Vec3ff& p2, Vec3ff& p3, Vec3fa& n0, Vec3fa& n1, Vec3fa& n2, Vec3fa& n3, size_t i, float time) const
{
float ftime;
const size_t itime = timeSegment(time, ftime);
const float t0 = 1.0f - ftime;
const float t1 = ftime;
Vec3ff a0,a1,a2,a3; Vec3fa an0,an1,an2,an3;
gather(a0,a1,a2,a3,an0,an1,an2,an3,i,itime);
Vec3ff b0,b1,b2,b3; Vec3fa bn0,bn1,bn2,bn3;
gather(b0,b1,b2,b3,bn0,bn1,bn2,bn3,i,itime+1);
p0 = madd(Vec3ff(t0),a0,t1*b0);
p1 = madd(Vec3ff(t0),a1,t1*b1);
p2 = madd(Vec3ff(t0),a2,t1*b2);
p3 = madd(Vec3ff(t0),a3,t1*b3);
n0 = madd(Vec3ff(t0),an0,t1*bn0);
n1 = madd(Vec3ff(t0),an1,t1*bn1);
n2 = madd(Vec3ff(t0),an2,t1*bn2);
n3 = madd(Vec3ff(t0),an3,t1*bn3);
}
template<typename SourceCurve3ff, typename SourceCurve3fa, typename TensorLinearCubicBezierSurface3fa>
__forceinline TensorLinearCubicBezierSurface3fa getNormalOrientedCurve(IntersectContext* context, const Vec3fa& ray_org, const unsigned int primID, const size_t itime) const
{
Vec3ff v0,v1,v2,v3; Vec3fa n0,n1,n2,n3;
unsigned int vertexID = curve(primID);
gather(v0,v1,v2,v3,n0,n1,n2,n3,vertexID,itime);
SourceCurve3ff ccurve(v0,v1,v2,v3);
SourceCurve3fa ncurve(n0,n1,n2,n3);
ccurve = enlargeRadiusToMinWidth(context,this,ray_org,ccurve);
return TensorLinearCubicBezierSurface3fa::fromCenterAndNormalCurve(ccurve,ncurve);
}
template<typename SourceCurve3ff, typename SourceCurve3fa, typename TensorLinearCubicBezierSurface3fa>
__forceinline TensorLinearCubicBezierSurface3fa getNormalOrientedCurve(IntersectContext* context, const Vec3fa& ray_org, const unsigned int primID, const float time) const
{
float ftime;
const size_t itime = timeSegment(time, ftime);
const TensorLinearCubicBezierSurface3fa curve0 = getNormalOrientedCurve<SourceCurve3ff, SourceCurve3fa, TensorLinearCubicBezierSurface3fa>(context,ray_org,primID,itime+0);
const TensorLinearCubicBezierSurface3fa curve1 = getNormalOrientedCurve<SourceCurve3ff, SourceCurve3fa, TensorLinearCubicBezierSurface3fa>(context,ray_org,primID,itime+1);
return clerp(curve0,curve1,ftime);
}
/*! gathers the hermite curve starting with i'th vertex */
__forceinline void gather_hermite(Vec3ff& p0, Vec3ff& t0, Vec3ff& p1, Vec3ff& t1, size_t i) const
{
p0 = vertex (i+0);
p1 = vertex (i+1);
t0 = tangent(i+0);
t1 = tangent(i+1);
}
/*! gathers the hermite curve starting with i'th vertex of itime'th timestep */
__forceinline void gather_hermite(Vec3ff& p0, Vec3ff& t0, Vec3ff& p1, Vec3ff& t1, size_t i, size_t itime) const
{
p0 = vertex (i+0,itime);
p1 = vertex (i+1,itime);
t0 = tangent(i+0,itime);
t1 = tangent(i+1,itime);
}
/*! loads curve vertices for specified time */
__forceinline void gather_hermite(Vec3ff& p0, Vec3ff& t0, Vec3ff& p1, Vec3ff& t1, size_t i, float time) const
{
float ftime;
const size_t itime = timeSegment(time, ftime);
const float f0 = 1.0f - ftime, f1 = ftime;
Vec3ff ap0,at0,ap1,at1;
gather_hermite(ap0,at0,ap1,at1,i,itime);
Vec3ff bp0,bt0,bp1,bt1;
gather_hermite(bp0,bt0,bp1,bt1,i,itime+1);
p0 = madd(Vec3ff(f0),ap0,f1*bp0);
t0 = madd(Vec3ff(f0),at0,f1*bt0);
p1 = madd(Vec3ff(f0),ap1,f1*bp1);
t1 = madd(Vec3ff(f0),at1,f1*bt1);
}
/*! gathers the hermite curve starting with i'th vertex */
__forceinline void gather_hermite(Vec3ff& p0, Vec3ff& t0, Vec3fa& n0, Vec3fa& dn0, Vec3ff& p1, Vec3ff& t1, Vec3fa& n1, Vec3fa& dn1, size_t i) const
{
p0 = vertex (i+0);
p1 = vertex (i+1);
t0 = tangent(i+0);
t1 = tangent(i+1);
n0 = normal(i+0);
n1 = normal(i+1);
dn0 = dnormal(i+0);
dn1 = dnormal(i+1);
}
/*! gathers the hermite curve starting with i'th vertex of itime'th timestep */
__forceinline void gather_hermite(Vec3ff& p0, Vec3ff& t0, Vec3fa& n0, Vec3fa& dn0, Vec3ff& p1, Vec3ff& t1, Vec3fa& n1, Vec3fa& dn1, size_t i, size_t itime) const
{
p0 = vertex (i+0,itime);
p1 = vertex (i+1,itime);
t0 = tangent(i+0,itime);
t1 = tangent(i+1,itime);
n0 = normal(i+0,itime);
n1 = normal(i+1,itime);
dn0 = dnormal(i+0,itime);
dn1 = dnormal(i+1,itime);
}
/*! loads curve vertices for specified time */
__forceinline void gather_hermite(Vec3ff& p0, Vec3fa& t0, Vec3fa& n0, Vec3fa& dn0, Vec3ff& p1, Vec3fa& t1, Vec3fa& n1, Vec3fa& dn1, size_t i, float time) const
{
float ftime;
const size_t itime = timeSegment(time, ftime);
const float f0 = 1.0f - ftime, f1 = ftime;
Vec3ff ap0,at0,ap1,at1; Vec3fa an0,adn0,an1,adn1;
gather_hermite(ap0,at0,an0,adn0,ap1,at1,an1,adn1,i,itime);
Vec3ff bp0,bt0,bp1,bt1; Vec3fa bn0,bdn0,bn1,bdn1;
gather_hermite(bp0,bt0,bn0,bdn0,bp1,bt1,bn1,bdn1,i,itime+1);
p0 = madd(Vec3ff(f0),ap0,f1*bp0);
t0 = madd(Vec3ff(f0),at0,f1*bt0);
n0 = madd(Vec3ff(f0),an0,f1*bn0);
dn0= madd(Vec3ff(f0),adn0,f1*bdn0);
p1 = madd(Vec3ff(f0),ap1,f1*bp1);
t1 = madd(Vec3ff(f0),at1,f1*bt1);
n1 = madd(Vec3ff(f0),an1,f1*bn1);
dn1= madd(Vec3ff(f0),adn1,f1*bdn1);
}
template<typename SourceCurve3ff, typename SourceCurve3fa, typename TensorLinearCubicBezierSurface3fa>
__forceinline TensorLinearCubicBezierSurface3fa getNormalOrientedHermiteCurve(IntersectContext* context, const Vec3fa& ray_org, const unsigned int primID, const size_t itime) const
{
Vec3ff v0,t0,v1,t1; Vec3fa n0,dn0,n1,dn1;
unsigned int vertexID = curve(primID);
gather_hermite(v0,t0,n0,dn0,v1,t1,n1,dn1,vertexID,itime);
SourceCurve3ff ccurve(v0,t0,v1,t1);
SourceCurve3fa ncurve(n0,dn0,n1,dn1);
ccurve = enlargeRadiusToMinWidth(context,this,ray_org,ccurve);
return TensorLinearCubicBezierSurface3fa::fromCenterAndNormalCurve(ccurve,ncurve);
}
template<typename SourceCurve3ff, typename SourceCurve3fa, typename TensorLinearCubicBezierSurface3fa>
__forceinline TensorLinearCubicBezierSurface3fa getNormalOrientedHermiteCurve(IntersectContext* context, const Vec3fa& ray_org, const unsigned int primID, const float time) const
{
float ftime;
const size_t itime = timeSegment(time, ftime);
const TensorLinearCubicBezierSurface3fa curve0 = getNormalOrientedHermiteCurve<SourceCurve3ff, SourceCurve3fa, TensorLinearCubicBezierSurface3fa>(context, ray_org, primID,itime+0);
const TensorLinearCubicBezierSurface3fa curve1 = getNormalOrientedHermiteCurve<SourceCurve3ff, SourceCurve3fa, TensorLinearCubicBezierSurface3fa>(context, ray_org, primID,itime+1);
return clerp(curve0,curve1,ftime);
}
private:
void resizeBuffers(unsigned int numSteps);
public:
BufferView<unsigned int> curves; //!< array of curve indices
BufferView<Vec3ff> vertices0; //!< fast access to first vertex buffer
BufferView<Vec3fa> normals0; //!< fast access to first normal buffer
BufferView<Vec3ff> tangents0; //!< fast access to first tangent buffer
BufferView<Vec3fa> dnormals0; //!< fast access to first normal derivative buffer
vector<BufferView<Vec3ff>> vertices; //!< vertex array for each timestep
vector<BufferView<Vec3fa>> normals; //!< normal array for each timestep
vector<BufferView<Vec3ff>> tangents; //!< tangent array for each timestep
vector<BufferView<Vec3fa>> dnormals; //!< normal derivative array for each timestep
BufferView<char> flags; //!< start, end flag per segment
vector<BufferView<char>> vertexAttribs; //!< user buffers
int tessellationRate; //!< tessellation rate for flat curve
float maxRadiusScale = 1.0; //!< maximal min-width scaling of curve radii
};
namespace isa
{
template<template<typename Ty> class Curve>
struct CurveGeometryInterface : public CurveGeometry
{
typedef Curve<Vec3ff> Curve3ff;
typedef Curve<Vec3fa> Curve3fa;
CurveGeometryInterface (Device* device, Geometry::GType gtype)
: CurveGeometry(device,gtype) {}
__forceinline const Curve3ff getCurveScaledRadius(size_t i, size_t itime = 0) const
{
const unsigned int index = curve(i);
Vec3ff v0 = vertex(index+0,itime);
Vec3ff v1 = vertex(index+1,itime);
Vec3ff v2 = vertex(index+2,itime);
Vec3ff v3 = vertex(index+3,itime);
v0.w *= maxRadiusScale;
v1.w *= maxRadiusScale;
v2.w *= maxRadiusScale;
v3.w *= maxRadiusScale;
return Curve3ff (v0,v1,v2,v3);
}
__forceinline const Curve3ff getCurveScaledRadius(const LinearSpace3fa& space, size_t i, size_t itime = 0) const
{
const unsigned int index = curve(i);
const Vec3ff v0 = vertex(index+0,itime);
const Vec3ff v1 = vertex(index+1,itime);
const Vec3ff v2 = vertex(index+2,itime);
const Vec3ff v3 = vertex(index+3,itime);
const Vec3ff w0(xfmPoint(space,(Vec3fa)v0), maxRadiusScale*v0.w);
const Vec3ff w1(xfmPoint(space,(Vec3fa)v1), maxRadiusScale*v1.w);
const Vec3ff w2(xfmPoint(space,(Vec3fa)v2), maxRadiusScale*v2.w);
const Vec3ff w3(xfmPoint(space,(Vec3fa)v3), maxRadiusScale*v3.w);
return Curve3ff(w0,w1,w2,w3);
}
__forceinline const Curve3ff getCurveScaledRadius(const Vec3fa& ofs, const float scale, const float r_scale0, const LinearSpace3fa& space, size_t i, size_t itime = 0) const
{
const float r_scale = r_scale0*scale;
const unsigned int index = curve(i);
const Vec3ff v0 = vertex(index+0,itime);
const Vec3ff v1 = vertex(index+1,itime);
const Vec3ff v2 = vertex(index+2,itime);
const Vec3ff v3 = vertex(index+3,itime);
const Vec3ff w0(xfmPoint(space,((Vec3fa)v0-ofs)*Vec3fa(scale)), maxRadiusScale*v0.w*r_scale);
const Vec3ff w1(xfmPoint(space,((Vec3fa)v1-ofs)*Vec3fa(scale)), maxRadiusScale*v1.w*r_scale);
const Vec3ff w2(xfmPoint(space,((Vec3fa)v2-ofs)*Vec3fa(scale)), maxRadiusScale*v2.w*r_scale);
const Vec3ff w3(xfmPoint(space,((Vec3fa)v3-ofs)*Vec3fa(scale)), maxRadiusScale*v3.w*r_scale);
return Curve3ff(w0,w1,w2,w3);
}
__forceinline const Curve3fa getNormalCurve(size_t i, size_t itime = 0) const
{
const unsigned int index = curve(i);
const Vec3fa n0 = normal(index+0,itime);
const Vec3fa n1 = normal(index+1,itime);
const Vec3fa n2 = normal(index+2,itime);
const Vec3fa n3 = normal(index+3,itime);
return Curve3fa (n0,n1,n2,n3);
}
__forceinline const TensorLinearCubicBezierSurface3fa getOrientedCurveScaledRadius(size_t i, size_t itime = 0) const
{
const Curve3ff center = getCurveScaledRadius(i,itime);
const Curve3fa normal = getNormalCurve(i,itime);
const TensorLinearCubicBezierSurface3fa ocurve = TensorLinearCubicBezierSurface3fa::fromCenterAndNormalCurve(center,normal);
return ocurve;
}
__forceinline const TensorLinearCubicBezierSurface3fa getOrientedCurveScaledRadius(const LinearSpace3fa& space, size_t i, size_t itime = 0) const {
return getOrientedCurveScaledRadius(i,itime).xfm(space);
}
__forceinline const TensorLinearCubicBezierSurface3fa getOrientedCurveScaledRadius(const Vec3fa& ofs, const float scale, const LinearSpace3fa& space, size_t i, size_t itime = 0) const {
return getOrientedCurveScaledRadius(i,itime).xfm(space,ofs,scale);
}
/*! check if the i'th primitive is valid at the itime'th time step */
__forceinline bool valid(Geometry::GType ctype, size_t i, const range<size_t>& itime_range) const
{
const unsigned int index = curve(i);
if (index+3 >= numVertices()) return false;
for (size_t itime = itime_range.begin(); itime <= itime_range.end(); itime++)
{
const float r0 = radius(index+0,itime);
const float r1 = radius(index+1,itime);
const float r2 = radius(index+2,itime);
const float r3 = radius(index+3,itime);
if (!isvalid(r0) || !isvalid(r1) || !isvalid(r2) || !isvalid(r3))
return false;
const Vec3fa v0 = vertex(index+0,itime);
const Vec3fa v1 = vertex(index+1,itime);
const Vec3fa v2 = vertex(index+2,itime);
const Vec3fa v3 = vertex(index+3,itime);
if (!isvalid(v0) || !isvalid(v1) || !isvalid(v2) || !isvalid(v3))
return false;
if (ctype == Geometry::GTY_SUBTYPE_ORIENTED_CURVE)
{
const Vec3fa n0 = normal(index+0,itime);
const Vec3fa n1 = normal(index+1,itime);
if (!isvalid(n0) || !isvalid(n1))
return false;
}
}
return true;
}
template<int N>
void interpolate_impl(const RTCInterpolateArguments* const args)
{
unsigned int primID = args->primID;
float u = args->u;
RTCBufferType bufferType = args->bufferType;
unsigned int bufferSlot = args->bufferSlot;
float* P = args->P;
float* dPdu = args->dPdu;
float* ddPdudu = args->ddPdudu;
unsigned int valueCount = args->valueCount;
/* calculate base pointer and stride */
assert((bufferType == RTC_BUFFER_TYPE_VERTEX && bufferSlot < numTimeSteps) ||
(bufferType == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE && bufferSlot <= vertexAttribs.size()));
const char* src = nullptr;
size_t stride = 0;
if (bufferType == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE) {
src = vertexAttribs[bufferSlot].getPtr();
stride = vertexAttribs[bufferSlot].getStride();
} else {
src = vertices[bufferSlot].getPtr();
stride = vertices[bufferSlot].getStride();
}
for (unsigned int i=0; i<valueCount; i+=N)
{
size_t ofs = i*sizeof(float);
const size_t index = curves[primID];
const vbool<N> valid = vint<N>((int)i)+vint<N>(step) < vint<N>((int)valueCount);
const vfloat<N> p0 = mem<vfloat<N>>::loadu(valid,(float*)&src[(index+0)*stride+ofs]);
const vfloat<N> p1 = mem<vfloat<N>>::loadu(valid,(float*)&src[(index+1)*stride+ofs]);
const vfloat<N> p2 = mem<vfloat<N>>::loadu(valid,(float*)&src[(index+2)*stride+ofs]);
const vfloat<N> p3 = mem<vfloat<N>>::loadu(valid,(float*)&src[(index+3)*stride+ofs]);
const Curve<vfloat<N>> curve(p0,p1,p2,p3);
if (P ) mem<vfloat<N>>::storeu(valid,P+i, curve.eval(u));
if (dPdu ) mem<vfloat<N>>::storeu(valid,dPdu+i, curve.eval_du(u));
if (ddPdudu) mem<vfloat<N>>::storeu(valid,ddPdudu+i,curve.eval_dudu(u));
}
}
void interpolate(const RTCInterpolateArguments* const args) {
interpolate_impl<4>(args);
}
};
template<template<typename Ty> class Curve>
struct HermiteCurveGeometryInterface : public CurveGeometry
{
typedef Curve<Vec3ff> HermiteCurve3ff;
typedef Curve<Vec3fa> HermiteCurve3fa;
HermiteCurveGeometryInterface (Device* device, Geometry::GType gtype)
: CurveGeometry(device,gtype) {}
__forceinline const HermiteCurve3ff getCurveScaledRadius(size_t i, size_t itime = 0) const
{
const unsigned int index = curve(i);
Vec3ff v0 = vertex(index+0,itime);
Vec3ff v1 = vertex(index+1,itime);
Vec3ff t0 = tangent(index+0,itime);
Vec3ff t1 = tangent(index+1,itime);
v0.w *= maxRadiusScale;
v1.w *= maxRadiusScale;
t0.w *= maxRadiusScale;
t1.w *= maxRadiusScale;
return HermiteCurve3ff (v0,t0,v1,t1);
}
__forceinline const HermiteCurve3ff getCurveScaledRadius(const LinearSpace3fa& space, size_t i, size_t itime = 0) const
{
const unsigned int index = curve(i);
const Vec3ff v0 = vertex(index+0,itime);
const Vec3ff v1 = vertex(index+1,itime);
const Vec3ff t0 = tangent(index+0,itime);
const Vec3ff t1 = tangent(index+1,itime);
const Vec3ff V0(xfmPoint(space,(Vec3fa)v0),maxRadiusScale*v0.w);
const Vec3ff V1(xfmPoint(space,(Vec3fa)v1),maxRadiusScale*v1.w);
const Vec3ff T0(xfmVector(space,(Vec3fa)t0),maxRadiusScale*t0.w);
const Vec3ff T1(xfmVector(space,(Vec3fa)t1),maxRadiusScale*t1.w);
return HermiteCurve3ff(V0,T0,V1,T1);
}
__forceinline const HermiteCurve3ff getCurveScaledRadius(const Vec3fa& ofs, const float scale, const float r_scale0, const LinearSpace3fa& space, size_t i, size_t itime = 0) const
{
const float r_scale = r_scale0*scale;
const unsigned int index = curve(i);
const Vec3ff v0 = vertex(index+0,itime);
const Vec3ff v1 = vertex(index+1,itime);
const Vec3ff t0 = tangent(index+0,itime);
const Vec3ff t1 = tangent(index+1,itime);
const Vec3ff V0(xfmPoint(space,(v0-ofs)*Vec3fa(scale)), maxRadiusScale*v0.w*r_scale);
const Vec3ff V1(xfmPoint(space,(v1-ofs)*Vec3fa(scale)), maxRadiusScale*v1.w*r_scale);
const Vec3ff T0(xfmVector(space,t0*Vec3fa(scale)), maxRadiusScale*t0.w*r_scale);
const Vec3ff T1(xfmVector(space,t1*Vec3fa(scale)), maxRadiusScale*t1.w*r_scale);
return HermiteCurve3ff(V0,T0,V1,T1);
}
__forceinline const HermiteCurve3fa getNormalCurve(size_t i, size_t itime = 0) const
{
const unsigned int index = curve(i);
const Vec3fa n0 = normal(index+0,itime);
const Vec3fa n1 = normal(index+1,itime);
const Vec3fa dn0 = dnormal(index+0,itime);
const Vec3fa dn1 = dnormal(index+1,itime);
return HermiteCurve3fa (n0,dn0,n1,dn1);
}
__forceinline const TensorLinearCubicBezierSurface3fa getOrientedCurveScaledRadius(size_t i, size_t itime = 0) const
{
const HermiteCurve3ff center = getCurveScaledRadius(i,itime);
const HermiteCurve3fa normal = getNormalCurve(i,itime);
const TensorLinearCubicBezierSurface3fa ocurve = TensorLinearCubicBezierSurface3fa::fromCenterAndNormalCurve(center,normal);
return ocurve;
}
__forceinline const TensorLinearCubicBezierSurface3fa getOrientedCurveScaledRadius(const LinearSpace3fa& space, size_t i, size_t itime = 0) const {
return getOrientedCurveScaledRadius(i,itime).xfm(space);
}
__forceinline const TensorLinearCubicBezierSurface3fa getOrientedCurveScaledRadius(const Vec3fa& ofs, const float scale, const LinearSpace3fa& space, size_t i, size_t itime = 0) const {
return getOrientedCurveScaledRadius(i,itime).xfm(space,ofs,scale);
}
/*! check if the i'th primitive is valid at the itime'th time step */
__forceinline bool valid(Geometry::GType ctype, size_t i, const range<size_t>& itime_range) const
{
const unsigned int index = curve(i);
if (index+1 >= numVertices()) return false;
for (size_t itime = itime_range.begin(); itime <= itime_range.end(); itime++)
{
const Vec3ff v0 = vertex(index+0,itime);
const Vec3ff v1 = vertex(index+1,itime);
if (!isvalid4(v0) || !isvalid4(v1))
return false;
const Vec3ff t0 = tangent(index+0,itime);
const Vec3ff t1 = tangent(index+1,itime);
if (!isvalid4(t0) || !isvalid4(t1))
return false;
if (ctype == Geometry::GTY_SUBTYPE_ORIENTED_CURVE)
{
const Vec3fa n0 = normal(index+0,itime);
const Vec3fa n1 = normal(index+1,itime);
if (!isvalid(n0) || !isvalid(n1))
return false;
const Vec3fa dn0 = dnormal(index+0,itime);
const Vec3fa dn1 = dnormal(index+1,itime);
if (!isvalid(dn0) || !isvalid(dn1))
return false;
}
}
return true;
}
template<int N>
void interpolate_impl(const RTCInterpolateArguments* const args)
{
unsigned int primID = args->primID;
float u = args->u;
RTCBufferType bufferType = args->bufferType;
unsigned int bufferSlot = args->bufferSlot;
float* P = args->P;
float* dPdu = args->dPdu;
float* ddPdudu = args->ddPdudu;
unsigned int valueCount = args->valueCount;
/* we interpolate vertex attributes linearly for hermite basis */
if (bufferType == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE)
{
assert(bufferSlot <= vertexAttribs.size());
const char* vsrc = vertexAttribs[bufferSlot].getPtr();
const size_t vstride = vertexAttribs[bufferSlot].getStride();
for (unsigned int i=0; i<valueCount; i+=N)
{
const size_t ofs = i*sizeof(float);
const size_t index = curves[primID];
const vbool<N> valid = vint<N>((int)i)+vint<N>(step) < vint<N>((int)valueCount);
const vfloat<N> p0 = mem<vfloat<N>>::loadu(valid,(float*)&vsrc[(index+0)*vstride+ofs]);
const vfloat<N> p1 = mem<vfloat<N>>::loadu(valid,(float*)&vsrc[(index+1)*vstride+ofs]);
if (P ) mem<vfloat<N>>::storeu(valid,P+i, madd(1.0f-u,p0,u*p1));
if (dPdu ) mem<vfloat<N>>::storeu(valid,dPdu+i, p1-p0);
if (ddPdudu) mem<vfloat<N>>::storeu(valid,ddPdudu+i,vfloat<N>(zero));
}
}
/* interpolation for vertex buffers */
else
{
assert(bufferSlot < numTimeSteps);
const char* vsrc = vertices[bufferSlot].getPtr();
const char* tsrc = tangents[bufferSlot].getPtr();
const size_t vstride = vertices[bufferSlot].getStride();
const size_t tstride = vertices[bufferSlot].getStride();
for (unsigned int i=0; i<valueCount; i+=N)
{
const size_t ofs = i*sizeof(float);
const size_t index = curves[primID];
const vbool<N> valid = vint<N>((int)i)+vint<N>(step) < vint<N>((int)valueCount);
const vfloat<N> p0 = mem<vfloat<N>>::loadu(valid,(float*)&vsrc[(index+0)*vstride+ofs]);
const vfloat<N> p1 = mem<vfloat<N>>::loadu(valid,(float*)&vsrc[(index+1)*vstride+ofs]);
const vfloat<N> t0 = mem<vfloat<N>>::loadu(valid,(float*)&tsrc[(index+0)*tstride+ofs]);
const vfloat<N> t1 = mem<vfloat<N>>::loadu(valid,(float*)&tsrc[(index+1)*tstride+ofs]);
const HermiteCurveT<vfloat<N>> curve(p0,t0,p1,t1);
if (P ) mem<vfloat<N>>::storeu(valid,P+i, curve.eval(u));
if (dPdu ) mem<vfloat<N>>::storeu(valid,dPdu+i, curve.eval_du(u));
if (ddPdudu) mem<vfloat<N>>::storeu(valid,ddPdudu+i,curve.eval_dudu(u));
}
}
}
void interpolate(const RTCInterpolateArguments* const args) {
interpolate_impl<4>(args);
}
};
}
DECLARE_ISA_FUNCTION(CurveGeometry*, createCurves, Device* COMMA Geometry::GType);
}