godot/scene/resources/primitive_meshes.cpp
2017-07-03 23:53:06 +10:00

1467 lines
40 KiB
C++

/*************************************************************************/
/* primitive_meshes.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2017 Godot Engine contributors (cf. AUTHORS.md) */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "primitive_meshes.h"
#include "servers/visual_server.h"
/**
PrimitiveMesh
*/
void PrimitiveMesh::_update() {
if (!cache_is_dirty)
return;
Array arr;
arr.resize(VS::ARRAY_MAX);
_create_mesh_array(arr);
// in with the new
VisualServer::get_singleton()->mesh_clear(mesh);
VisualServer::get_singleton()->mesh_add_surface_from_arrays(mesh, (VisualServer::PrimitiveType)primitive_type, arr);
VisualServer::get_singleton()->mesh_surface_set_material(mesh, 0, material.is_null() ? RID() : material->get_rid());
cache_is_dirty = false;
_clear_triangle_mesh();
emit_changed();
}
void PrimitiveMesh::_queue_update(bool p_first_mesh) {
if (first_mesh && p_first_mesh) {
first_mesh = false;
cache_is_dirty = true;
_update();
return;
}
if (!cache_is_dirty) {
cache_is_dirty = true;
call_deferred("_update");
}
}
void PrimitiveMesh::set_aabb(Rect3 p_aabb) {
aabb = p_aabb;
}
int PrimitiveMesh::get_surface_count() const {
return 1;
}
int PrimitiveMesh::surface_get_array_len(int p_idx) const {
ERR_FAIL_INDEX_V(p_idx, 1, -1);
return VisualServer::get_singleton()->mesh_surface_get_array_len(mesh, 0);
}
int PrimitiveMesh::surface_get_array_index_len(int p_idx) const {
ERR_FAIL_INDEX_V(p_idx, 1, -1);
return VisualServer::get_singleton()->mesh_surface_get_array_index_len(mesh, 0);
}
Array PrimitiveMesh::surface_get_arrays(int p_surface) const {
ERR_FAIL_INDEX_V(p_surface, 1, Array());
return VisualServer::get_singleton()->mesh_surface_get_arrays(mesh, 0);
}
uint32_t PrimitiveMesh::surface_get_format(int p_idx) const {
ERR_FAIL_INDEX_V(p_idx, 1, 0);
return VisualServer::get_singleton()->mesh_surface_get_format(mesh, 0);
}
Mesh::PrimitiveType PrimitiveMesh::surface_get_primitive_type(int p_idx) const {
return primitive_type;
}
Ref<Material> PrimitiveMesh::surface_get_material(int p_idx) const {
return material;
}
int PrimitiveMesh::get_blend_shape_count() const {
return 0;
}
StringName PrimitiveMesh::get_blend_shape_name(int p_index) const {
return StringName();
}
Rect3 PrimitiveMesh::get_aabb() const {
return aabb;
}
RID PrimitiveMesh::get_rid() const {
return mesh;
}
void PrimitiveMesh::_bind_methods() {
ClassDB::bind_method(D_METHOD("_update"), &PrimitiveMesh::_update);
ClassDB::bind_method(D_METHOD("set_material", "material:Material"), &PrimitiveMesh::set_material);
ClassDB::bind_method(D_METHOD("get_material:Material"), &PrimitiveMesh::get_material);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "material", PROPERTY_HINT_RESOURCE_TYPE, "Material"), "set_material", "get_material");
}
void PrimitiveMesh::set_material(const Ref<Material> &p_material) {
material = p_material;
if (!cache_is_dirty) {
// just apply it, else it'll happen when _update is called.
VisualServer::get_singleton()->mesh_surface_set_material(mesh, 0, material.is_null() ? RID() : material->get_rid());
_change_notify();
emit_changed();
};
}
Ref<Material> PrimitiveMesh::get_material() const {
return material;
}
PrimitiveMesh::PrimitiveMesh() {
// defaults
mesh = VisualServer::get_singleton()->mesh_create();
// assume primitive triangles as the type, correct for all but one and it will change this :)
primitive_type = Mesh::PRIMITIVE_TRIANGLES;
// make sure we do an update after we've finished constructing our object
cache_is_dirty = false;
first_mesh = true;
_queue_update();
}
PrimitiveMesh::~PrimitiveMesh() {
VisualServer::get_singleton()->free(mesh);
}
/**
CapsuleMesh
*/
void CapsuleMesh::_create_mesh_array(Array &p_arr) {
int i, j, prevrow, thisrow, point;
float x, y, z, u, v, w;
float onethird = 1.0 / 3.0;
float twothirds = 2.0 / 3.0;
// note, this has been aligned with our collision shape but I've left the descriptions as top/middle/bottom
set_aabb(Rect3(Vector3(-radius, -radius, (mid_height * -0.5) - radius), Vector3(radius * 2.0, radius * 2.0, mid_height + (2.0 * radius))));
PoolVector<Vector3> points;
PoolVector<Vector3> normals;
PoolVector<float> tangents;
PoolVector<Vector2> uvs;
PoolVector<int> indices;
point = 0;
#define ADD_TANGENT(m_x, m_y, m_z, m_d) \
tangents.push_back(m_x); \
tangents.push_back(m_y); \
tangents.push_back(m_z); \
tangents.push_back(m_d);
/* top hemisphere */
thisrow = 0;
prevrow = 0;
for (j = 0; j <= (rings + 1); j++) {
v = j;
w;
v /= (rings + 1);
w = sin(0.5 * Math_PI * v);
z = radius * cos(0.5 * Math_PI * v);
for (i = 0; i <= radial_segments; i++) {
u = i;
u /= radial_segments;
x = sin(u * (Math_PI * 2.0));
y = -cos(u * (Math_PI * 2.0));
Vector3 p = Vector3(x * radius * w, y * radius * w, z);
points.push_back(p + Vector3(0.0, 0.0, 0.5 * mid_height));
normals.push_back(p.normalized());
ADD_TANGENT(y, -x, 0.0, -1.0)
uvs.push_back(Vector2(u, v * onethird));
point++;
if (i > 0 && j > 0) {
indices.push_back(prevrow + i - 1);
indices.push_back(prevrow + i);
indices.push_back(thisrow + i - 1);
indices.push_back(prevrow + i);
indices.push_back(thisrow + i);
indices.push_back(thisrow + i - 1);
};
};
prevrow = thisrow;
thisrow = point;
};
/* cylinder */
thisrow = point;
prevrow = 0;
for (j = 0; j <= (rings + 1); j++) {
v = j;
v /= (rings + 1);
z = mid_height * v;
z = (mid_height * 0.5) - z;
for (i = 0; i <= radial_segments; i++) {
u = i;
u /= radial_segments;
x = sin(u * (Math_PI * 2.0));
y = -cos(u * (Math_PI * 2.0));
Vector3 p = Vector3(x * radius, y * radius, z);
points.push_back(p);
normals.push_back(Vector3(x, y, 0.0));
ADD_TANGENT(y, -x, 0.0, -1.0)
uvs.push_back(Vector2(u, onethird + (v * onethird)));
point++;
if (i > 0 && j > 0) {
indices.push_back(prevrow + i - 1);
indices.push_back(prevrow + i);
indices.push_back(thisrow + i - 1);
indices.push_back(prevrow + i);
indices.push_back(thisrow + i);
indices.push_back(thisrow + i - 1);
};
};
prevrow = thisrow;
thisrow = point;
};
/* bottom hemisphere */
thisrow = point;
prevrow = 0;
for (j = 0; j <= (rings + 1); j++) {
v = j;
w;
v /= (rings + 1);
v += 1.0;
w = sin(0.5 * Math_PI * v);
z = radius * cos(0.5 * Math_PI * v);
for (i = 0; i <= radial_segments; i++) {
float u = i;
u /= radial_segments;
x = sin(u * (Math_PI * 2.0));
y = -cos(u * (Math_PI * 2.0));
Vector3 p = Vector3(x * radius * w, y * radius * w, z);
points.push_back(p + Vector3(0.0, 0.0, -0.5 * mid_height));
normals.push_back(p.normalized());
ADD_TANGENT(y, -x, 0.0, -1.0)
uvs.push_back(Vector2(u, twothirds + ((v - 1.0) * onethird)));
point++;
if (i > 0 && j > 0) {
indices.push_back(prevrow + i - 1);
indices.push_back(prevrow + i);
indices.push_back(thisrow + i - 1);
indices.push_back(prevrow + i);
indices.push_back(thisrow + i);
indices.push_back(thisrow + i - 1);
};
};
prevrow = thisrow;
thisrow = point;
};
p_arr[VS::ARRAY_VERTEX] = points;
p_arr[VS::ARRAY_NORMAL] = normals;
p_arr[VS::ARRAY_TANGENT] = tangents;
p_arr[VS::ARRAY_TEX_UV] = uvs;
p_arr[VS::ARRAY_INDEX] = indices;
}
void CapsuleMesh::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_radius", "radius"), &CapsuleMesh::set_radius);
ClassDB::bind_method(D_METHOD("get_radius"), &CapsuleMesh::get_radius);
ClassDB::bind_method(D_METHOD("set_mid_height", "mid_height"), &CapsuleMesh::set_mid_height);
ClassDB::bind_method(D_METHOD("get_mid_height"), &CapsuleMesh::get_mid_height);
ClassDB::bind_method(D_METHOD("set_radial_segments", "segments"), &CapsuleMesh::set_radial_segments);
ClassDB::bind_method(D_METHOD("get_radial_segments"), &CapsuleMesh::get_radial_segments);
ClassDB::bind_method(D_METHOD("set_rings", "rings"), &CapsuleMesh::set_rings);
ClassDB::bind_method(D_METHOD("get_rings"), &CapsuleMesh::get_rings);
ADD_PROPERTY(PropertyInfo(Variant::REAL, "radius", PROPERTY_HINT_RANGE, "0.1,100.0,0.1"), "set_radius", "get_radius");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "mid_height", PROPERTY_HINT_RANGE, "0.1,100.0,0.1"), "set_mid_height", "get_mid_height");
ADD_PROPERTY(PropertyInfo(Variant::INT, "radial_segments", PROPERTY_HINT_RANGE, "1,100,1"), "set_radial_segments", "get_radial_segments");
ADD_PROPERTY(PropertyInfo(Variant::INT, "rings", PROPERTY_HINT_RANGE, "1,100,1"), "set_rings", "get_rings");
}
void CapsuleMesh::set_radius(const float p_radius) {
radius = p_radius;
_queue_update();
}
float CapsuleMesh::get_radius() const {
return radius;
}
void CapsuleMesh::set_mid_height(const float p_mid_height) {
mid_height = p_mid_height;
_queue_update();
}
float CapsuleMesh::get_mid_height() const {
return mid_height;
}
void CapsuleMesh::set_radial_segments(const int p_segments) {
radial_segments = p_segments > 4 ? p_segments : 4;
_queue_update();
}
int CapsuleMesh::get_radial_segments() const {
return radial_segments;
}
void CapsuleMesh::set_rings(const int p_rings) {
rings = p_rings > 1 ? p_rings : 1;
_queue_update(true); //last property set, force update mesh
}
int CapsuleMesh::get_rings() const {
return rings;
}
CapsuleMesh::CapsuleMesh() {
// defaults
radius = 1.0;
mid_height = 1.0;
radial_segments = 64;
rings = 8;
}
/**
CubeMesh
*/
void CubeMesh::_create_mesh_array(Array &p_arr) {
int i, j, prevrow, thisrow, point;
float x, y, z;
float onethird = 1.0 / 3.0;
float twothirds = 2.0 / 3.0;
Vector3 start_pos = size * -0.5;
// set our bounding box
set_aabb(Rect3(start_pos, size));
PoolVector<Vector3> points;
PoolVector<Vector3> normals;
PoolVector<float> tangents;
PoolVector<Vector2> uvs;
PoolVector<int> indices;
point = 0;
#define ADD_TANGENT(m_x, m_y, m_z, m_d) \
tangents.push_back(m_x); \
tangents.push_back(m_y); \
tangents.push_back(m_z); \
tangents.push_back(m_d);
// front + back
y = start_pos.y;
thisrow = point;
prevrow = 0;
for (j = 0; j <= subdivide_h + 1; j++) {
x = start_pos.x;
for (i = 0; i <= subdivide_w + 1; i++) {
float u = i;
float v = j;
u /= (3.0 * (subdivide_w + 1.0));
v /= (2.0 * (subdivide_h + 1.0));
// front
points.push_back(Vector3(x, -y, -start_pos.z)); // double negative on the Z!
normals.push_back(Vector3(0.0, 0.0, 1.0));
ADD_TANGENT(-1.0, 0.0, 0.0, -1.0);
uvs.push_back(Vector2(u, v));
point++;
// back
points.push_back(Vector3(-x, -y, start_pos.z));
normals.push_back(Vector3(0.0, 0.0, -1.0));
ADD_TANGENT(1.0, 0.0, 0.0, -1.0);
uvs.push_back(Vector2(twothirds + u, v));
point++;
if (i > 0 && j > 0) {
int i2 = i * 2;
// front
indices.push_back(prevrow + i2 - 2);
indices.push_back(prevrow + i2);
indices.push_back(thisrow + i2 - 2);
indices.push_back(prevrow + i2);
indices.push_back(thisrow + i2);
indices.push_back(thisrow + i2 - 2);
// back
indices.push_back(prevrow + i2 - 1);
indices.push_back(prevrow + i2 + 1);
indices.push_back(thisrow + i2 - 1);
indices.push_back(prevrow + i2 + 1);
indices.push_back(thisrow + i2 + 1);
indices.push_back(thisrow + i2 - 1);
};
x += size.x / (subdivide_w + 1.0);
};
y += size.y / (subdivide_h + 1.0);
prevrow = thisrow;
thisrow = point;
};
// left + right
y = start_pos.y;
thisrow = point;
prevrow = 0;
for (j = 0; j <= (subdivide_h + 1); j++) {
z = start_pos.z;
for (i = 0; i <= (subdivide_d + 1); i++) {
float u = i;
float v = j;
u /= (3.0 * (subdivide_d + 1.0));
v /= (2.0 * (subdivide_h + 1.0));
// right
points.push_back(Vector3(-start_pos.x, -y, -z));
normals.push_back(Vector3(1.0, 0.0, 0.0));
ADD_TANGENT(0.0, 0.0, 1.0, -1.0);
uvs.push_back(Vector2(onethird + u, v));
point++;
// left
points.push_back(Vector3(start_pos.x, -y, z));
normals.push_back(Vector3(-1.0, 0.0, 0.0));
ADD_TANGENT(0.0, 0.0, -1.0, -1.0);
uvs.push_back(Vector2(u, 0.5 + v));
point++;
if (i > 0 && j > 0) {
int i2 = i * 2;
// right
indices.push_back(prevrow + i2 - 2);
indices.push_back(prevrow + i2);
indices.push_back(thisrow + i2 - 2);
indices.push_back(prevrow + i2);
indices.push_back(thisrow + i2);
indices.push_back(thisrow + i2 - 2);
// left
indices.push_back(prevrow + i2 - 1);
indices.push_back(prevrow + i2 + 1);
indices.push_back(thisrow + i2 - 1);
indices.push_back(prevrow + i2 + 1);
indices.push_back(thisrow + i2 + 1);
indices.push_back(thisrow + i2 - 1);
};
z += size.z / (subdivide_d + 1.0);
};
y += size.y / (subdivide_h + 1.0);
prevrow = thisrow;
thisrow = point;
};
// top + bottom
z = start_pos.z;
thisrow = point;
prevrow = 0;
for (j = 0; j <= (subdivide_d + 1); j++) {
x = start_pos.x;
for (i = 0; i <= (subdivide_w + 1); i++) {
float u = i;
float v = j;
u /= (3.0 * (subdivide_w + 1.0));
v /= (2.0 * (subdivide_d + 1.0));
// top
points.push_back(Vector3(-x, -start_pos.y, -z));
normals.push_back(Vector3(0.0, 1.0, 0.0));
ADD_TANGENT(1.0, 0.0, 0.0, -1.0);
uvs.push_back(Vector2(onethird + u, 0.5 + v));
point++;
// bottom
points.push_back(Vector3(x, start_pos.y, -z));
normals.push_back(Vector3(0.0, -1.0, 0.0));
ADD_TANGENT(-1.0, 0.0, 0.0, -1.0);
uvs.push_back(Vector2(twothirds + u, 0.5 + v));
point++;
if (i > 0 && j > 0) {
int i2 = i * 2;
// top
indices.push_back(prevrow + i2 - 2);
indices.push_back(prevrow + i2);
indices.push_back(thisrow + i2 - 2);
indices.push_back(prevrow + i2);
indices.push_back(thisrow + i2);
indices.push_back(thisrow + i2 - 2);
// bottom
indices.push_back(prevrow + i2 - 1);
indices.push_back(prevrow + i2 + 1);
indices.push_back(thisrow + i2 - 1);
indices.push_back(prevrow + i2 + 1);
indices.push_back(thisrow + i2 + 1);
indices.push_back(thisrow + i2 - 1);
};
x += size.x / (subdivide_w + 1.0);
};
z += size.z / (subdivide_d + 1.0);
prevrow = thisrow;
thisrow = point;
};
p_arr[VS::ARRAY_VERTEX] = points;
p_arr[VS::ARRAY_NORMAL] = normals;
p_arr[VS::ARRAY_TANGENT] = tangents;
p_arr[VS::ARRAY_TEX_UV] = uvs;
p_arr[VS::ARRAY_INDEX] = indices;
}
void CubeMesh::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_size", "size"), &CubeMesh::set_size);
ClassDB::bind_method(D_METHOD("get_size"), &CubeMesh::get_size);
ClassDB::bind_method(D_METHOD("set_subdivide_width", "subdivide"), &CubeMesh::set_subdivide_width);
ClassDB::bind_method(D_METHOD("get_subdivide_width"), &CubeMesh::get_subdivide_width);
ClassDB::bind_method(D_METHOD("set_subdivide_height", "divisions"), &CubeMesh::set_subdivide_height);
ClassDB::bind_method(D_METHOD("get_subdivide_height"), &CubeMesh::get_subdivide_height);
ClassDB::bind_method(D_METHOD("set_subdivide_depth", "divisions"), &CubeMesh::set_subdivide_depth);
ClassDB::bind_method(D_METHOD("get_subdivide_depth"), &CubeMesh::get_subdivide_depth);
ADD_PROPERTY(PropertyInfo(Variant::VECTOR2, "size"), "set_size", "get_size");
ADD_PROPERTY(PropertyInfo(Variant::INT, "subdivide_width", PROPERTY_HINT_RANGE, "0,100,1"), "set_subdivide_width", "get_subdivide_width");
ADD_PROPERTY(PropertyInfo(Variant::INT, "subdivide_height", PROPERTY_HINT_RANGE, "0,100,1"), "set_subdivide_height", "get_subdivide_height");
ADD_PROPERTY(PropertyInfo(Variant::INT, "subdivide_depth", PROPERTY_HINT_RANGE, "0,100,1"), "set_subdivide_depth", "get_subdivide_depth");
}
void CubeMesh::set_size(const Vector3 &p_size) {
size = p_size;
_queue_update();
}
Vector3 CubeMesh::get_size() const {
return size;
}
void CubeMesh::set_subdivide_width(const int p_subdivide) {
subdivide_w = p_subdivide > 0 ? p_subdivide : 0;
_queue_update();
}
int CubeMesh::get_subdivide_width() const {
return subdivide_w;
}
void CubeMesh::set_subdivide_height(const int p_subdivide) {
subdivide_h = p_subdivide > 0 ? p_subdivide : 0;
_queue_update();
}
int CubeMesh::get_subdivide_height() const {
return subdivide_h;
}
void CubeMesh::set_subdivide_depth(const int p_subdivide) {
subdivide_d = p_subdivide > 0 ? p_subdivide : 0;
_queue_update(true); //last property set, force update mesh
}
int CubeMesh::get_subdivide_depth() const {
return subdivide_d;
}
CubeMesh::CubeMesh() {
// defaults
size = Vector3(2.0, 2.0, 2.0);
subdivide_w = 0;
subdivide_h = 0;
subdivide_d = 0;
}
/**
CylinderMesh
*/
void CylinderMesh::_create_mesh_array(Array &p_arr) {
int i, j, prevrow, thisrow, point;
float x, y, z, u, v, radius;
radius = bottom_radius > top_radius ? bottom_radius : top_radius;
set_aabb(Rect3(Vector3(-radius, height * -0.5, -radius), Vector3(radius * 2.0, height, radius * 2.0)));
PoolVector<Vector3> points;
PoolVector<Vector3> normals;
PoolVector<float> tangents;
PoolVector<Vector2> uvs;
PoolVector<int> indices;
point = 0;
#define ADD_TANGENT(m_x, m_y, m_z, m_d) \
tangents.push_back(m_x); \
tangents.push_back(m_y); \
tangents.push_back(m_z); \
tangents.push_back(m_d);
thisrow = 0;
prevrow = 0;
for (j = 0; j <= (rings + 1); j++) {
v = j;
v /= (rings + 1);
radius = top_radius + ((bottom_radius - top_radius) * v);
y = height * v;
y = (height * 0.5) - y;
for (i = 0; i <= radial_segments; i++) {
u = i;
u /= radial_segments;
x = sin(u * (Math_PI * 2.0));
z = cos(u * (Math_PI * 2.0));
Vector3 p = Vector3(x * radius, y, z * radius);
points.push_back(p);
normals.push_back(Vector3(x, 0.0, z));
ADD_TANGENT(-z, 0.0, x, -1.0)
uvs.push_back(Vector2(u, v * 0.5));
point++;
if (i > 0 && j > 0) {
indices.push_back(prevrow + i - 1);
indices.push_back(prevrow + i);
indices.push_back(thisrow + i - 1);
indices.push_back(prevrow + i);
indices.push_back(thisrow + i);
indices.push_back(thisrow + i - 1);
};
};
prevrow = thisrow;
thisrow = point;
};
// add top
if (top_radius > 0.0) {
y = height * 0.5;
thisrow = point;
points.push_back(Vector3(0.0, y, 0.0));
normals.push_back(Vector3(0.0, 1.0, 0.0));
ADD_TANGENT(1.0, 0.0, 0.0, 1.0)
uvs.push_back(Vector2(0.25, 0.75));
point++;
for (i = 0; i <= radial_segments; i++) {
float r = i;
r /= radial_segments;
x = sin(r * (Math_PI * 2.0));
z = cos(r * (Math_PI * 2.0));
u = ((x + 1.0) * 0.25);
v = 0.5 + ((z + 1.0) * 0.25);
Vector3 p = Vector3(x * top_radius, y, z * top_radius);
points.push_back(p);
normals.push_back(Vector3(0.0, 1.0, 0.0));
ADD_TANGENT(1.0, 0.0, 0.0, 1.0)
uvs.push_back(Vector2(u, v));
point++;
if (i > 0) {
indices.push_back(thisrow);
indices.push_back(point - 1);
indices.push_back(point - 2);
};
};
};
// add bottom
if (bottom_radius > 0.0) {
y = height * -0.5;
thisrow = point;
points.push_back(Vector3(0.0, y, 0.0));
normals.push_back(Vector3(0.0, -1.0, 0.0));
ADD_TANGENT(-1.0, 0.0, 0.0, -1.0)
uvs.push_back(Vector2(0.75, 0.75));
point++;
for (i = 0; i <= radial_segments; i++) {
float r = i;
r /= radial_segments;
x = sin(r * (Math_PI * 2.0));
z = cos(r * (Math_PI * 2.0));
u = 0.5 + ((x + 1.0) * 0.25);
v = 1.0 - ((z + 1.0) * 0.25);
Vector3 p = Vector3(x * bottom_radius, y, z * bottom_radius);
points.push_back(p);
normals.push_back(Vector3(0.0, -1.0, 0.0));
ADD_TANGENT(-1.0, 0.0, 0.0, -1.0)
uvs.push_back(Vector2(u, v));
point++;
if (i > 0) {
indices.push_back(thisrow);
indices.push_back(point - 2);
indices.push_back(point - 1);
};
};
};
p_arr[VS::ARRAY_VERTEX] = points;
p_arr[VS::ARRAY_NORMAL] = normals;
p_arr[VS::ARRAY_TANGENT] = tangents;
p_arr[VS::ARRAY_TEX_UV] = uvs;
p_arr[VS::ARRAY_INDEX] = indices;
}
void CylinderMesh::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_top_radius", "radius"), &CylinderMesh::set_top_radius);
ClassDB::bind_method(D_METHOD("get_top_radius"), &CylinderMesh::get_top_radius);
ClassDB::bind_method(D_METHOD("set_bottom_radius", "radius"), &CylinderMesh::set_bottom_radius);
ClassDB::bind_method(D_METHOD("get_bottom_radius"), &CylinderMesh::get_bottom_radius);
ClassDB::bind_method(D_METHOD("set_height", "height"), &CylinderMesh::set_height);
ClassDB::bind_method(D_METHOD("get_height"), &CylinderMesh::get_height);
ClassDB::bind_method(D_METHOD("set_radial_segments", "segments"), &CylinderMesh::set_radial_segments);
ClassDB::bind_method(D_METHOD("get_radial_segments"), &CylinderMesh::get_radial_segments);
ClassDB::bind_method(D_METHOD("set_rings", "rings"), &CylinderMesh::set_rings);
ClassDB::bind_method(D_METHOD("get_rings"), &CylinderMesh::get_rings);
ADD_PROPERTY(PropertyInfo(Variant::REAL, "top_radius", PROPERTY_HINT_RANGE, "0.1,100.0,0.1"), "set_top_radius", "get_top_radius");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "bottom_radius", PROPERTY_HINT_RANGE, "0.1,100.0,0.1"), "set_bottom_radius", "get_bottom_radius");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "height", PROPERTY_HINT_RANGE, "0.1,100.0,0.1"), "set_height", "get_height");
ADD_PROPERTY(PropertyInfo(Variant::INT, "radial_segments", PROPERTY_HINT_RANGE, "1,100,1"), "set_radial_segments", "get_radial_segments");
ADD_PROPERTY(PropertyInfo(Variant::INT, "rings", PROPERTY_HINT_RANGE, "1,100,1"), "set_rings", "get_rings");
}
void CylinderMesh::set_top_radius(const float p_radius) {
top_radius = p_radius;
_queue_update();
}
float CylinderMesh::get_top_radius() const {
return top_radius;
}
void CylinderMesh::set_bottom_radius(const float p_radius) {
bottom_radius = p_radius;
_queue_update();
}
float CylinderMesh::get_bottom_radius() const {
return bottom_radius;
}
void CylinderMesh::set_height(const float p_height) {
height = p_height;
_queue_update();
}
float CylinderMesh::get_height() const {
return height;
}
void CylinderMesh::set_radial_segments(const int p_segments) {
radial_segments = p_segments > 4 ? p_segments : 4;
_queue_update();
}
int CylinderMesh::get_radial_segments() const {
return radial_segments;
}
void CylinderMesh::set_rings(const int p_rings) {
rings = p_rings > 0 ? p_rings : 0;
_queue_update(true); //last property set, force update mesh
}
int CylinderMesh::get_rings() const {
return rings;
}
CylinderMesh::CylinderMesh() {
// defaults
top_radius = 1.0;
bottom_radius = 1.0;
height = 2.0;
radial_segments = 64;
rings = 4;
}
/**
PlaneMesh
*/
void PlaneMesh::_create_mesh_array(Array &p_arr) {
int i, j, prevrow, thisrow, point;
float x, z;
Size2 start_pos = size * -0.5;
set_aabb(Rect3(Vector3(start_pos.x, 0.0, start_pos.y), Vector3(size.x, 0.0, size.y)));
PoolVector<Vector3> points;
PoolVector<Vector3> normals;
PoolVector<float> tangents;
PoolVector<Vector2> uvs;
PoolVector<int> indices;
point = 0;
#define ADD_TANGENT(m_x, m_y, m_z, m_d) \
tangents.push_back(m_x); \
tangents.push_back(m_y); \
tangents.push_back(m_z); \
tangents.push_back(m_d);
/* top + bottom */
z = start_pos.y;
thisrow = point;
prevrow = 0;
for (j = 0; j <= (subdivide_d + 1); j++) {
x = start_pos.x;
for (i = 0; i <= (subdivide_w + 1); i++) {
float u = i;
float v = j;
u /= (subdivide_w + 1.0);
v /= (subdivide_d + 1.0);
points.push_back(Vector3(-x, 0.0, -z));
normals.push_back(Vector3(0.0, 1.0, 0.0));
ADD_TANGENT(1.0, 0.0, 0.0, -1.0);
uvs.push_back(Vector2(u, v));
point++;
if (i > 0 && j > 0) {
indices.push_back(prevrow + i - 1);
indices.push_back(prevrow + i);
indices.push_back(thisrow + i - 1);
indices.push_back(prevrow + i);
indices.push_back(thisrow + i);
indices.push_back(thisrow + i - 1);
};
x += size.x / (subdivide_w + 1.0);
};
z += size.y / (subdivide_d + 1.0);
prevrow = thisrow;
thisrow = point;
};
p_arr[VS::ARRAY_VERTEX] = points;
p_arr[VS::ARRAY_NORMAL] = normals;
p_arr[VS::ARRAY_TANGENT] = tangents;
p_arr[VS::ARRAY_TEX_UV] = uvs;
p_arr[VS::ARRAY_INDEX] = indices;
}
void PlaneMesh::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_size", "size"), &PlaneMesh::set_size);
ClassDB::bind_method(D_METHOD("get_size"), &PlaneMesh::get_size);
ClassDB::bind_method(D_METHOD("set_subdivide_width", "subdivide"), &PlaneMesh::set_subdivide_width);
ClassDB::bind_method(D_METHOD("get_subdivide_width"), &PlaneMesh::get_subdivide_width);
ClassDB::bind_method(D_METHOD("set_subdivide_depth", "subdivide"), &PlaneMesh::set_subdivide_depth);
ClassDB::bind_method(D_METHOD("get_subdivide_depth"), &PlaneMesh::get_subdivide_depth);
ADD_PROPERTY(PropertyInfo(Variant::VECTOR2, "size"), "set_size", "get_size");
ADD_PROPERTY(PropertyInfo(Variant::INT, "subdivide_width", PROPERTY_HINT_RANGE, "0,100,1"), "set_subdivide_width", "get_subdivide_width");
ADD_PROPERTY(PropertyInfo(Variant::INT, "subdivide_depth", PROPERTY_HINT_RANGE, "0,100,1"), "set_subdivide_depth", "get_subdivide_depth");
}
void PlaneMesh::set_size(const Size2 &p_size) {
size = p_size;
_queue_update();
}
Size2 PlaneMesh::get_size() const {
return size;
}
void PlaneMesh::set_subdivide_width(const int p_subdivide) {
subdivide_w = p_subdivide > 0 ? p_subdivide : 0;
_queue_update();
}
int PlaneMesh::get_subdivide_width() const {
return subdivide_w;
}
void PlaneMesh::set_subdivide_depth(const int p_subdivide) {
subdivide_d = p_subdivide > 0 ? p_subdivide : 0;
_queue_update(true); //last property set, force update mesh
}
int PlaneMesh::get_subdivide_depth() const {
return subdivide_d;
}
PlaneMesh::PlaneMesh() {
// defaults
size = Size2(2.0, 2.0);
subdivide_w = 0;
subdivide_d = 0;
}
/**
PrismMesh
*/
void PrismMesh::_create_mesh_array(Array &p_arr) {
int i, j, prevrow, thisrow, point;
float x, y, z;
float onethird = 1.0 / 3.0;
float twothirds = 2.0 / 3.0;
Vector3 start_pos = size * -0.5;
// set our bounding box
set_aabb(Rect3(start_pos, size));
PoolVector<Vector3> points;
PoolVector<Vector3> normals;
PoolVector<float> tangents;
PoolVector<Vector2> uvs;
PoolVector<int> indices;
point = 0;
#define ADD_TANGENT(m_x, m_y, m_z, m_d) \
tangents.push_back(m_x); \
tangents.push_back(m_y); \
tangents.push_back(m_z); \
tangents.push_back(m_d);
/* front + back */
y = start_pos.y;
thisrow = point;
prevrow = 0;
for (j = 0; j <= (subdivide_h + 1); j++) {
float scale = (y - start_pos.y) / size.y;
float scaled_size_x = size.x * scale;
float start_x = start_pos.x;
float offset_front = 0.0;
float offset_back = 0.0;
start_x += (1.0 - scale) * size.x * left_to_right;
offset_front += (1.0 - scale) * onethird * left_to_right;
offset_back = (1.0 - scale) * onethird * (1.0 - left_to_right);
x = 0.0;
for (i = 0; i <= (subdivide_w + 1); i++) {
float u = i;
float v = j;
u /= (3.0 * (subdivide_w + 1.0));
v /= (2.0 * (subdivide_h + 1.0));
u *= scale;
/* front */
points.push_back(Vector3(start_x + x, -y, -start_pos.z)); // double negative on the Z!
normals.push_back(Vector3(0.0, 0.0, 1.0));
ADD_TANGENT(-1.0, 0.0, 0.0, -1.0);
uvs.push_back(Vector2(offset_front + u, v));
point++;
/* back */
points.push_back(Vector3(start_x + scaled_size_x - x, -y, start_pos.z));
normals.push_back(Vector3(0.0, 0.0, -1.0));
ADD_TANGENT(1.0, 0.0, 0.0, -1.0);
uvs.push_back(Vector2(twothirds + offset_back + u, v));
point++;
if (i > 0 && j == 1) {
int i2 = i * 2;
/* front */
indices.push_back(prevrow + i2);
indices.push_back(thisrow + i2);
indices.push_back(thisrow + i2 - 2);
/* back */
indices.push_back(prevrow + i2 + 1);
indices.push_back(thisrow + i2 + 1);
indices.push_back(thisrow + i2 - 1);
} else if (i > 0 && j > 0) {
int i2 = i * 2;
/* front */
indices.push_back(prevrow + i2 - 2);
indices.push_back(prevrow + i2);
indices.push_back(thisrow + i2 - 2);
indices.push_back(prevrow + i2);
indices.push_back(thisrow + i2);
indices.push_back(thisrow + i2 - 2);
/* back */
indices.push_back(prevrow + i2 - 1);
indices.push_back(prevrow + i2 + 1);
indices.push_back(thisrow + i2 - 1);
indices.push_back(prevrow + i2 + 1);
indices.push_back(thisrow + i2 + 1);
indices.push_back(thisrow + i2 - 1);
};
x += scale * size.x / (subdivide_w + 1.0);
};
y += size.y / (subdivide_h + 1.0);
prevrow = thisrow;
thisrow = point;
};
/* left + right */
Vector3 normal_left, normal_right;
normal_left = Vector3(-size.y, size.x * left_to_right, 0.0);
normal_right = Vector3(size.y, size.x * left_to_right, 0.0);
normal_left.normalize();
normal_right.normalize();
y = start_pos.y;
thisrow = point;
prevrow = 0;
for (j = 0; j <= (subdivide_h + 1); j++) {
float left, right;
float scale = (y - start_pos.y) / size.y;
left = start_pos.x + (size.x * (1.0 - scale) * left_to_right);
right = left + (size.x * scale);
z = start_pos.z;
for (i = 0; i <= (subdivide_d + 1); i++) {
float u = i;
float v = j;
u /= (3.0 * (subdivide_d + 1.0));
v /= (2.0 * (subdivide_h + 1.0));
/* right */
points.push_back(Vector3(right, -y, -z));
normals.push_back(normal_right);
ADD_TANGENT(0.0, 0.0, 1.0, -1.0);
uvs.push_back(Vector2(onethird + u, v));
point++;
/* left */
points.push_back(Vector3(left, -y, z));
normals.push_back(normal_left);
ADD_TANGENT(0.0, 0.0, -1.0, -1.0);
uvs.push_back(Vector2(u, 0.5 + v));
point++;
if (i > 0 && j > 0) {
int i2 = i * 2;
/* right */
indices.push_back(prevrow + i2 - 2);
indices.push_back(prevrow + i2);
indices.push_back(thisrow + i2 - 2);
indices.push_back(prevrow + i2);
indices.push_back(thisrow + i2);
indices.push_back(thisrow + i2 - 2);
/* left */
indices.push_back(prevrow + i2 - 1);
indices.push_back(prevrow + i2 + 1);
indices.push_back(thisrow + i2 - 1);
indices.push_back(prevrow + i2 + 1);
indices.push_back(thisrow + i2 + 1);
indices.push_back(thisrow + i2 - 1);
};
z += size.z / (subdivide_d + 1.0);
};
y += size.y / (subdivide_h + 1.0);
prevrow = thisrow;
thisrow = point;
};
/* bottom */
z = start_pos.z;
thisrow = point;
prevrow = 0;
for (j = 0; j <= (subdivide_d + 1); j++) {
x = start_pos.x;
for (i = 0; i <= (subdivide_w + 1); i++) {
float u = i;
float v = j;
u /= (3.0 * (subdivide_w + 1.0));
v /= (2.0 * (subdivide_d + 1.0));
/* bottom */
points.push_back(Vector3(x, start_pos.y, -z));
normals.push_back(Vector3(0.0, -1.0, 0.0));
ADD_TANGENT(-1.0, 0.0, 0.0, -1.0);
uvs.push_back(Vector2(twothirds + u, 0.5 + v));
point++;
if (i > 0 && j > 0) {
/* bottom */
indices.push_back(prevrow + i - 1);
indices.push_back(prevrow + i);
indices.push_back(thisrow + i - 1);
indices.push_back(prevrow + i);
indices.push_back(thisrow + i);
indices.push_back(thisrow + i - 1);
};
x += size.x / (subdivide_w + 1.0);
};
z += size.z / (subdivide_d + 1.0);
prevrow = thisrow;
thisrow = point;
};
p_arr[VS::ARRAY_VERTEX] = points;
p_arr[VS::ARRAY_NORMAL] = normals;
p_arr[VS::ARRAY_TANGENT] = tangents;
p_arr[VS::ARRAY_TEX_UV] = uvs;
p_arr[VS::ARRAY_INDEX] = indices;
}
void PrismMesh::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_left_to_right", "left_to_right"), &PrismMesh::set_left_to_right);
ClassDB::bind_method(D_METHOD("get_left_to_right"), &PrismMesh::get_left_to_right);
ClassDB::bind_method(D_METHOD("set_size", "size"), &PrismMesh::set_size);
ClassDB::bind_method(D_METHOD("get_size"), &PrismMesh::get_size);
ClassDB::bind_method(D_METHOD("set_subdivide_width", "segments"), &PrismMesh::set_subdivide_width);
ClassDB::bind_method(D_METHOD("get_subdivide_width"), &PrismMesh::get_subdivide_width);
ClassDB::bind_method(D_METHOD("set_subdivide_height", "segments"), &PrismMesh::set_subdivide_height);
ClassDB::bind_method(D_METHOD("get_subdivide_height"), &PrismMesh::get_subdivide_height);
ClassDB::bind_method(D_METHOD("set_subdivide_depth", "segments"), &PrismMesh::set_subdivide_depth);
ClassDB::bind_method(D_METHOD("get_subdivide_depth"), &PrismMesh::get_subdivide_depth);
ADD_PROPERTY(PropertyInfo(Variant::REAL, "left_to_right", PROPERTY_HINT_RANGE, "-2.0,2.0,0.1"), "set_left_to_right", "get_left_to_right");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR2, "size", PROPERTY_HINT_RANGE, "0.1,100.0,0.1"), "set_size", "get_size");
ADD_PROPERTY(PropertyInfo(Variant::INT, "subdivide_width", PROPERTY_HINT_RANGE, "0,100,1"), "set_subdivide_width", "get_subdivide_width");
ADD_PROPERTY(PropertyInfo(Variant::INT, "subdivide_height", PROPERTY_HINT_RANGE, "0,100,1"), "set_subdivide_height", "get_subdivide_height");
ADD_PROPERTY(PropertyInfo(Variant::INT, "subdivide_depth", PROPERTY_HINT_RANGE, "0,100,1"), "set_subdivide_depth", "get_subdivide_depth");
}
void PrismMesh::set_left_to_right(const float p_left_to_right) {
left_to_right = p_left_to_right;
_queue_update();
}
float PrismMesh::get_left_to_right() const {
return left_to_right;
}
void PrismMesh::set_size(const Vector3 &p_size) {
size = p_size;
_queue_update();
}
Vector3 PrismMesh::get_size() const {
return size;
}
void PrismMesh::set_subdivide_width(const int p_divisions) {
subdivide_w = p_divisions > 0 ? p_divisions : 0;
_queue_update();
}
int PrismMesh::get_subdivide_width() const {
return subdivide_w;
}
void PrismMesh::set_subdivide_height(const int p_divisions) {
subdivide_h = p_divisions > 0 ? p_divisions : 0;
_queue_update();
}
int PrismMesh::get_subdivide_height() const {
return subdivide_h;
}
void PrismMesh::set_subdivide_depth(const int p_divisions) {
subdivide_d = p_divisions > 0 ? p_divisions : 0;
_queue_update(true); //last property set, force update mesh
}
int PrismMesh::get_subdivide_depth() const {
return subdivide_d;
}
PrismMesh::PrismMesh() {
// defaults
left_to_right = 0.5;
size = Vector3(2.0, 2.0, 2.0);
subdivide_w = 0;
subdivide_h = 0;
subdivide_d = 0;
}
/**
QuadMesh
*/
void QuadMesh::_create_mesh_array(Array &p_arr) {
PoolVector<Vector3> faces;
PoolVector<Vector3> normals;
PoolVector<float> tangents;
PoolVector<Vector2> uvs;
faces.resize(4);
normals.resize(4);
tangents.resize(4 * 4);
uvs.resize(4);
for (int i = 0; i < 4; i++) {
static const Vector3 quad_faces[4] = {
Vector3(-1, -1, 0),
Vector3(-1, 1, 0),
Vector3(1, 1, 0),
Vector3(1, -1, 0),
};
faces.set(i, quad_faces[i]);
normals.set(i, Vector3(0, 0, 1));
tangents.set(i * 4 + 0, 1.0);
tangents.set(i * 4 + 1, 0.0);
tangents.set(i * 4 + 2, 0.0);
tangents.set(i * 4 + 3, 1.0);
static const Vector2 quad_uv[4] = {
Vector2(0, 1),
Vector2(0, 0),
Vector2(1, 0),
Vector2(1, 1),
};
uvs.set(i, quad_uv[i]);
}
p_arr[ARRAY_VERTEX] = faces;
p_arr[ARRAY_NORMAL] = normals;
p_arr[ARRAY_TANGENT] = tangents;
p_arr[ARRAY_TEX_UV] = uvs;
};
void QuadMesh::_bind_methods() {
// nothing here yet...
}
QuadMesh::QuadMesh() {
primitive_type = PRIMITIVE_TRIANGLE_FAN;
_queue_update(true);
}
/**
SphereMesh
*/
void SphereMesh::_create_mesh_array(Array &p_arr) {
int i, j, prevrow, thisrow, point;
float x, y, z;
// set our bounding box
set_aabb(Rect3(Vector3(-radius, height * -0.5, -radius), Vector3(radius * 2.0, height, radius * 2.0)));
PoolVector<Vector3> points;
PoolVector<Vector3> normals;
PoolVector<float> tangents;
PoolVector<Vector2> uvs;
PoolVector<int> indices;
point = 0;
#define ADD_TANGENT(m_x, m_y, m_z, m_d) \
tangents.push_back(m_x); \
tangents.push_back(m_y); \
tangents.push_back(m_z); \
tangents.push_back(m_d);
thisrow = 0;
prevrow = 0;
for (j = 0; j <= (rings + 1); j++) {
float v = j;
float w;
v /= (rings + 1);
w = sin(Math_PI * v);
y = height * (is_hemisphere ? 1.0 : 0.5) * cos(Math_PI * v);
for (i = 0; i <= radial_segments; i++) {
float u = i;
u /= radial_segments;
x = sin(u * (Math_PI * 2.0));
z = cos(u * (Math_PI * 2.0));
if (is_hemisphere && y < 0.0) {
points.push_back(Vector3(x * radius * w, 0.0, z * radius * w));
normals.push_back(Vector3(0.0, -1.0, 0.0));
} else {
Vector3 p = Vector3(x * radius * w, y, z * radius * w);
points.push_back(p);
normals.push_back(p.normalized());
};
ADD_TANGENT(-z, 0.0, x, -1.0)
uvs.push_back(Vector2(u, v));
point++;
if (i > 0 && j > 0) {
indices.push_back(prevrow + i - 1);
indices.push_back(prevrow + i);
indices.push_back(thisrow + i - 1);
indices.push_back(prevrow + i);
indices.push_back(thisrow + i);
indices.push_back(thisrow + i - 1);
};
};
prevrow = thisrow;
thisrow = point;
};
p_arr[VS::ARRAY_VERTEX] = points;
p_arr[VS::ARRAY_NORMAL] = normals;
p_arr[VS::ARRAY_TANGENT] = tangents;
p_arr[VS::ARRAY_TEX_UV] = uvs;
p_arr[VS::ARRAY_INDEX] = indices;
}
void SphereMesh::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_radius", "radius"), &SphereMesh::set_radius);
ClassDB::bind_method(D_METHOD("get_radius"), &SphereMesh::get_radius);
ClassDB::bind_method(D_METHOD("set_height", "height"), &SphereMesh::set_height);
ClassDB::bind_method(D_METHOD("get_height"), &SphereMesh::get_height);
ClassDB::bind_method(D_METHOD("set_radial_segments", "radial_segments"), &SphereMesh::set_radial_segments);
ClassDB::bind_method(D_METHOD("get_radial_segments"), &SphereMesh::get_radial_segments);
ClassDB::bind_method(D_METHOD("set_rings", "rings"), &SphereMesh::set_rings);
ClassDB::bind_method(D_METHOD("get_rings"), &SphereMesh::get_rings);
ClassDB::bind_method(D_METHOD("set_is_hemisphere", "is_hemisphere"), &SphereMesh::set_is_hemisphere);
ClassDB::bind_method(D_METHOD("get_is_hemisphere"), &SphereMesh::get_is_hemisphere);
ADD_PROPERTY(PropertyInfo(Variant::REAL, "radius", PROPERTY_HINT_RANGE, "0.1,100.0,0.1"), "set_radius", "get_radius");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "height", PROPERTY_HINT_RANGE, "0.1,100.0,0.1"), "set_height", "get_height");
ADD_PROPERTY(PropertyInfo(Variant::INT, "radial_segments", PROPERTY_HINT_RANGE, "1,100,1"), "set_radial_segments", "get_radial_segments");
ADD_PROPERTY(PropertyInfo(Variant::INT, "rings", PROPERTY_HINT_RANGE, "1,100,1"), "set_rings", "get_rings");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "is_hemisphere"), "set_is_hemisphere", "get_is_hemisphere");
}
void SphereMesh::set_radius(const float p_radius) {
radius = p_radius;
_queue_update();
}
float SphereMesh::get_radius() const {
return radius;
}
void SphereMesh::set_height(const float p_height) {
height = p_height;
_queue_update();
}
float SphereMesh::get_height() const {
return height;
}
void SphereMesh::set_radial_segments(const int p_radial_segments) {
radial_segments = p_radial_segments > 4 ? p_radial_segments : 4;
_queue_update();
}
int SphereMesh::get_radial_segments() const {
return radial_segments;
}
void SphereMesh::set_rings(const int p_rings) {
rings = p_rings > 1 ? p_rings : 1;
_queue_update();
}
int SphereMesh::get_rings() const {
return rings;
}
void SphereMesh::set_is_hemisphere(const bool p_is_hemisphere) {
is_hemisphere = p_is_hemisphere;
_queue_update(true); //last property set, force update mesh
}
bool SphereMesh::get_is_hemisphere() const {
return is_hemisphere;
}
SphereMesh::SphereMesh() {
// defaults
radius = 1.0;
height = 2.0;
radial_segments = 64;
rings = 32;
is_hemisphere = false;
}