godot/modules/openxr/scene/openxr_composition_layer_cy...

231 lines
9.2 KiB
C++

/**************************************************************************/
/* openxr_composition_layer_cylinder.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "openxr_composition_layer_cylinder.h"
#include "../extensions/openxr_composition_layer_extension.h"
#include "../openxr_api.h"
#include "../openxr_interface.h"
#include "scene/3d/mesh_instance_3d.h"
#include "scene/main/viewport.h"
#include "scene/resources/mesh.h"
OpenXRCompositionLayerCylinder::OpenXRCompositionLayerCylinder() {
composition_layer = {
XR_TYPE_COMPOSITION_LAYER_CYLINDER_KHR, // type
nullptr, // next
0, // layerFlags
XR_NULL_HANDLE, // space
XR_EYE_VISIBILITY_BOTH, // eyeVisibility
{}, // subImage
{ { 0, 0, 0, 0 }, { 0, 0, 0 } }, // pose
radius, // radius
central_angle, // centralAngle
aspect_ratio, // aspectRatio
};
openxr_layer_provider = memnew(OpenXRViewportCompositionLayerProvider((XrCompositionLayerBaseHeader *)&composition_layer));
XRServer::get_singleton()->connect("reference_frame_changed", callable_mp(this, &OpenXRCompositionLayerCylinder::update_transform));
}
OpenXRCompositionLayerCylinder::~OpenXRCompositionLayerCylinder() {
}
void OpenXRCompositionLayerCylinder::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_radius", "radius"), &OpenXRCompositionLayerCylinder::set_radius);
ClassDB::bind_method(D_METHOD("get_radius"), &OpenXRCompositionLayerCylinder::get_radius);
ClassDB::bind_method(D_METHOD("set_aspect_ratio", "aspect_ratio"), &OpenXRCompositionLayerCylinder::set_aspect_ratio);
ClassDB::bind_method(D_METHOD("get_aspect_ratio"), &OpenXRCompositionLayerCylinder::get_aspect_ratio);
ClassDB::bind_method(D_METHOD("set_central_angle", "angle"), &OpenXRCompositionLayerCylinder::set_central_angle);
ClassDB::bind_method(D_METHOD("get_central_angle"), &OpenXRCompositionLayerCylinder::get_central_angle);
ClassDB::bind_method(D_METHOD("set_fallback_segments", "segments"), &OpenXRCompositionLayerCylinder::set_fallback_segments);
ClassDB::bind_method(D_METHOD("get_fallback_segments"), &OpenXRCompositionLayerCylinder::get_fallback_segments);
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "radius", PROPERTY_HINT_NONE, ""), "set_radius", "get_radius");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "aspect_ratio", PROPERTY_HINT_RANGE, "0,100"), "set_aspect_ratio", "get_aspect_ratio");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "central_angle", PROPERTY_HINT_RANGE, "0,360,0.1,or_less,or_greater,radians_as_degrees"), "set_central_angle", "get_central_angle");
ADD_PROPERTY(PropertyInfo(Variant::INT, "fallback_segments", PROPERTY_HINT_NONE, ""), "set_fallback_segments", "get_fallback_segments");
}
Ref<Mesh> OpenXRCompositionLayerCylinder::_create_fallback_mesh() {
Ref<ArrayMesh> mesh;
mesh.instantiate();
float arc_length = radius * central_angle;
float half_height = ((1.0 / aspect_ratio) * arc_length) / 2.0;
Array arrays;
arrays.resize(ArrayMesh::ARRAY_MAX);
Vector<Vector3> vertices;
Vector<Vector3> normals;
Vector<Vector2> uvs;
Vector<int> indices;
float delta_angle = central_angle / fallback_segments;
float start_angle = (-Math_PI / 2.0) - (central_angle / 2.0);
for (uint32_t i = 0; i < fallback_segments + 1; i++) {
float current_angle = start_angle + (delta_angle * i);
float x = radius * Math::cos(current_angle);
float z = radius * Math::sin(current_angle);
Vector3 normal(Math::cos(current_angle), 0, Math::sin(current_angle));
vertices.push_back(Vector3(x, -half_height, z));
normals.push_back(normal);
uvs.push_back(Vector2((float)i / fallback_segments, 1));
vertices.push_back(Vector3(x, half_height, z));
normals.push_back(normal);
uvs.push_back(Vector2((float)i / fallback_segments, 0));
}
for (uint32_t i = 0; i < fallback_segments; i++) {
uint32_t index = i * 2;
indices.push_back(index);
indices.push_back(index + 1);
indices.push_back(index + 3);
indices.push_back(index);
indices.push_back(index + 3);
indices.push_back(index + 2);
}
arrays[ArrayMesh::ARRAY_VERTEX] = vertices;
arrays[ArrayMesh::ARRAY_NORMAL] = normals;
arrays[ArrayMesh::ARRAY_TEX_UV] = uvs;
arrays[ArrayMesh::ARRAY_INDEX] = indices;
mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES, arrays);
return mesh;
}
void OpenXRCompositionLayerCylinder::_notification(int p_what) {
switch (p_what) {
case NOTIFICATION_LOCAL_TRANSFORM_CHANGED: {
update_transform();
} break;
}
}
void OpenXRCompositionLayerCylinder::update_transform() {
composition_layer.pose = get_openxr_pose();
}
void OpenXRCompositionLayerCylinder::set_radius(float p_radius) {
ERR_FAIL_COND(p_radius <= 0);
radius = p_radius;
composition_layer.radius = radius;
update_fallback_mesh();
}
float OpenXRCompositionLayerCylinder::get_radius() const {
return radius;
}
void OpenXRCompositionLayerCylinder::set_aspect_ratio(float p_aspect_ratio) {
ERR_FAIL_COND(p_aspect_ratio <= 0);
aspect_ratio = p_aspect_ratio;
composition_layer.aspectRatio = aspect_ratio;
update_fallback_mesh();
}
float OpenXRCompositionLayerCylinder::get_aspect_ratio() const {
return aspect_ratio;
}
void OpenXRCompositionLayerCylinder::set_central_angle(float p_central_angle) {
ERR_FAIL_COND(p_central_angle <= 0);
central_angle = p_central_angle;
composition_layer.centralAngle = central_angle;
update_fallback_mesh();
}
float OpenXRCompositionLayerCylinder::get_central_angle() const {
return central_angle;
}
void OpenXRCompositionLayerCylinder::set_fallback_segments(uint32_t p_fallback_segments) {
ERR_FAIL_COND(p_fallback_segments == 0);
fallback_segments = p_fallback_segments;
update_fallback_mesh();
}
uint32_t OpenXRCompositionLayerCylinder::get_fallback_segments() const {
return fallback_segments;
}
Vector2 OpenXRCompositionLayerCylinder::intersects_ray(const Vector3 &p_origin, const Vector3 &p_direction) const {
Transform3D cylinder_transform = get_global_transform();
Vector3 cylinder_axis = cylinder_transform.basis.get_column(1);
Vector3 offset = p_origin - cylinder_transform.origin;
float a = p_direction.dot(p_direction - cylinder_axis * p_direction.dot(cylinder_axis));
float b = 2.0 * (p_direction.dot(offset - cylinder_axis * offset.dot(cylinder_axis)));
float c = offset.dot(offset - cylinder_axis * offset.dot(cylinder_axis)) - (radius * radius);
float discriminant = b * b - 4.0 * a * c;
if (discriminant < 0.0) {
return Vector2(-1.0, -1.0);
}
float t0 = (-b - Math::sqrt(discriminant)) / (2.0 * a);
float t1 = (-b + Math::sqrt(discriminant)) / (2.0 * a);
float t = MAX(t0, t1);
if (t < 0.0) {
return Vector2(-1.0, -1.0);
}
Vector3 intersection = p_origin + p_direction * t;
Basis correction = cylinder_transform.basis.inverse();
correction.rotate(Vector3(0.0, 1.0, 0.0), -Math_PI / 2.0);
Vector3 relative_point = correction.xform(intersection - cylinder_transform.origin);
Vector2 projected_point = Vector2(relative_point.x, relative_point.z);
float intersection_angle = Math::atan2(projected_point.y, projected_point.x);
if (Math::abs(intersection_angle) > central_angle / 2.0) {
return Vector2(-1.0, -1.0);
}
float arc_length = radius * central_angle;
float height = aspect_ratio * arc_length;
if (Math::abs(relative_point.y) > height / 2.0) {
return Vector2(-1.0, -1.0);
}
float u = 0.5 + (intersection_angle / central_angle);
float v = 1.0 - (0.5 + (relative_point.y / height));
return Vector2(u, v);
}