godot/scene/2d/physics_body_2d.cpp

1601 lines
63 KiB
C++

/**************************************************************************/
/* physics_body_2d.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "physics_body_2d.h"
#include "core/core_string_names.h"
#include "core/engine.h"
#include "core/list.h"
#include "core/math/math_funcs.h"
#include "core/method_bind_ext.gen.inc"
#include "core/object.h"
#include "core/rid.h"
#include "scene/scene_string_names.h"
void PhysicsBody2D::_notification(int p_what) {
}
void PhysicsBody2D::_set_layers(uint32_t p_mask) {
set_collision_layer(p_mask);
set_collision_mask(p_mask);
}
uint32_t PhysicsBody2D::_get_layers() const {
return get_collision_layer();
}
void PhysicsBody2D::_bind_methods() {
ClassDB::bind_method(D_METHOD("_set_layers", "mask"), &PhysicsBody2D::_set_layers);
ClassDB::bind_method(D_METHOD("_get_layers"), &PhysicsBody2D::_get_layers);
ClassDB::bind_method(D_METHOD("get_collision_exceptions"), &PhysicsBody2D::get_collision_exceptions);
ClassDB::bind_method(D_METHOD("add_collision_exception_with", "body"), &PhysicsBody2D::add_collision_exception_with);
ClassDB::bind_method(D_METHOD("remove_collision_exception_with", "body"), &PhysicsBody2D::remove_collision_exception_with);
ADD_PROPERTY(PropertyInfo(Variant::INT, "layers", PROPERTY_HINT_LAYERS_2D_PHYSICS, "", 0), "_set_layers", "_get_layers"); //for backwards compat
}
PhysicsBody2D::PhysicsBody2D(Physics2DServer::BodyMode p_mode) :
CollisionObject2D(RID_PRIME(Physics2DServer::get_singleton()->body_create()), false) {
Physics2DServer::get_singleton()->body_set_mode(get_rid(), p_mode);
set_pickable(false);
}
Array PhysicsBody2D::get_collision_exceptions() {
List<RID> exceptions;
Physics2DServer::get_singleton()->body_get_collision_exceptions(get_rid(), &exceptions);
Array ret;
for (List<RID>::Element *E = exceptions.front(); E; E = E->next()) {
RID body = E->get();
ObjectID instance_id = Physics2DServer::get_singleton()->body_get_object_instance_id(body);
Object *obj = ObjectDB::get_instance(instance_id);
PhysicsBody2D *physics_body = Object::cast_to<PhysicsBody2D>(obj);
ret.append(physics_body);
}
return ret;
}
void PhysicsBody2D::add_collision_exception_with(Node *p_node) {
ERR_FAIL_NULL(p_node);
PhysicsBody2D *physics_body = Object::cast_to<PhysicsBody2D>(p_node);
ERR_FAIL_COND_MSG(!physics_body, "Collision exception only works between two objects of PhysicsBody type.");
Physics2DServer::get_singleton()->body_add_collision_exception(get_rid(), physics_body->get_rid());
}
void PhysicsBody2D::remove_collision_exception_with(Node *p_node) {
ERR_FAIL_NULL(p_node);
PhysicsBody2D *physics_body = Object::cast_to<PhysicsBody2D>(p_node);
ERR_FAIL_COND_MSG(!physics_body, "Collision exception only works between two objects of PhysicsBody type.");
Physics2DServer::get_singleton()->body_remove_collision_exception(get_rid(), physics_body->get_rid());
}
void StaticBody2D::set_constant_linear_velocity(const Vector2 &p_vel) {
constant_linear_velocity = p_vel;
Physics2DServer::get_singleton()->body_set_state(get_rid(), Physics2DServer::BODY_STATE_LINEAR_VELOCITY, constant_linear_velocity);
}
void StaticBody2D::set_constant_angular_velocity(real_t p_vel) {
constant_angular_velocity = p_vel;
Physics2DServer::get_singleton()->body_set_state(get_rid(), Physics2DServer::BODY_STATE_ANGULAR_VELOCITY, constant_angular_velocity);
}
Vector2 StaticBody2D::get_constant_linear_velocity() const {
return constant_linear_velocity;
}
real_t StaticBody2D::get_constant_angular_velocity() const {
return constant_angular_velocity;
}
#ifndef DISABLE_DEPRECATED
void StaticBody2D::set_friction(real_t p_friction) {
if (p_friction == 1.0 && physics_material_override.is_null()) { // default value, don't create an override for that
return;
}
WARN_DEPRECATED_MSG("The method set_friction has been deprecated and will be removed in the future, use physics material instead.");
ERR_FAIL_COND_MSG(p_friction < 0 || p_friction > 1, "Friction must be between 0 and 1.");
if (physics_material_override.is_null()) {
physics_material_override.instance();
set_physics_material_override(physics_material_override);
}
physics_material_override->set_friction(p_friction);
}
real_t StaticBody2D::get_friction() const {
WARN_DEPRECATED_MSG("The method get_friction has been deprecated and will be removed in the future, use physics material instead.");
if (physics_material_override.is_null()) {
return 1;
}
return physics_material_override->get_friction();
}
void StaticBody2D::set_bounce(real_t p_bounce) {
if (p_bounce == 0.0 && physics_material_override.is_null()) { // default value, don't create an override for that
return;
}
WARN_DEPRECATED_MSG("The method set_bounce has been deprecated and will be removed in the future, use physics material instead.");
ERR_FAIL_COND_MSG(p_bounce < 0 || p_bounce > 1, "Bounce must be between 0 and 1.");
if (physics_material_override.is_null()) {
physics_material_override.instance();
set_physics_material_override(physics_material_override);
}
physics_material_override->set_bounce(p_bounce);
}
real_t StaticBody2D::get_bounce() const {
WARN_DEPRECATED_MSG("The method get_bounce has been deprecated and will be removed in the future, use physics material instead.");
if (physics_material_override.is_null()) {
return 0;
}
return physics_material_override->get_bounce();
}
#endif // DISABLE_DEPRECATED
void StaticBody2D::set_physics_material_override(const Ref<PhysicsMaterial> &p_physics_material_override) {
if (physics_material_override.is_valid()) {
if (physics_material_override->is_connected(CoreStringNames::get_singleton()->changed, this, "_reload_physics_characteristics")) {
physics_material_override->disconnect(CoreStringNames::get_singleton()->changed, this, "_reload_physics_characteristics");
}
}
physics_material_override = p_physics_material_override;
if (physics_material_override.is_valid()) {
physics_material_override->connect(CoreStringNames::get_singleton()->changed, this, "_reload_physics_characteristics");
}
_reload_physics_characteristics();
}
Ref<PhysicsMaterial> StaticBody2D::get_physics_material_override() const {
return physics_material_override;
}
void StaticBody2D::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_constant_linear_velocity", "vel"), &StaticBody2D::set_constant_linear_velocity);
ClassDB::bind_method(D_METHOD("set_constant_angular_velocity", "vel"), &StaticBody2D::set_constant_angular_velocity);
ClassDB::bind_method(D_METHOD("get_constant_linear_velocity"), &StaticBody2D::get_constant_linear_velocity);
ClassDB::bind_method(D_METHOD("get_constant_angular_velocity"), &StaticBody2D::get_constant_angular_velocity);
#ifndef DISABLE_DEPRECATED
ClassDB::bind_method(D_METHOD("set_friction", "friction"), &StaticBody2D::set_friction);
ClassDB::bind_method(D_METHOD("get_friction"), &StaticBody2D::get_friction);
ClassDB::bind_method(D_METHOD("set_bounce", "bounce"), &StaticBody2D::set_bounce);
ClassDB::bind_method(D_METHOD("get_bounce"), &StaticBody2D::get_bounce);
#endif // DISABLE_DEPRECATED
ClassDB::bind_method(D_METHOD("set_physics_material_override", "physics_material_override"), &StaticBody2D::set_physics_material_override);
ClassDB::bind_method(D_METHOD("get_physics_material_override"), &StaticBody2D::get_physics_material_override);
ClassDB::bind_method(D_METHOD("_reload_physics_characteristics"), &StaticBody2D::_reload_physics_characteristics);
ADD_PROPERTY(PropertyInfo(Variant::VECTOR2, "constant_linear_velocity"), "set_constant_linear_velocity", "get_constant_linear_velocity");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "constant_angular_velocity"), "set_constant_angular_velocity", "get_constant_angular_velocity");
#ifndef DISABLE_DEPRECATED
ADD_PROPERTY(PropertyInfo(Variant::REAL, "friction", PROPERTY_HINT_RANGE, "0,1,0.01", 0), "set_friction", "get_friction");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "bounce", PROPERTY_HINT_RANGE, "0,1,0.01", 0), "set_bounce", "get_bounce");
#endif // DISABLE_DEPRECATED
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "physics_material_override", PROPERTY_HINT_RESOURCE_TYPE, "PhysicsMaterial"), "set_physics_material_override", "get_physics_material_override");
}
StaticBody2D::StaticBody2D() :
PhysicsBody2D(Physics2DServer::BODY_MODE_STATIC) {
constant_angular_velocity = 0;
}
StaticBody2D::~StaticBody2D() {
}
void StaticBody2D::_reload_physics_characteristics() {
if (physics_material_override.is_null()) {
Physics2DServer::get_singleton()->body_set_param(get_rid(), Physics2DServer::BODY_PARAM_BOUNCE, 0);
Physics2DServer::get_singleton()->body_set_param(get_rid(), Physics2DServer::BODY_PARAM_FRICTION, 1);
} else {
Physics2DServer::get_singleton()->body_set_param(get_rid(), Physics2DServer::BODY_PARAM_BOUNCE, physics_material_override->computed_bounce());
Physics2DServer::get_singleton()->body_set_param(get_rid(), Physics2DServer::BODY_PARAM_FRICTION, physics_material_override->computed_friction());
}
}
void RigidBody2D::_body_enter_tree(ObjectID p_id) {
Object *obj = ObjectDB::get_instance(p_id);
Node *node = Object::cast_to<Node>(obj);
ERR_FAIL_COND(!node);
ERR_FAIL_COND(!contact_monitor);
Map<ObjectID, BodyState>::Element *E = contact_monitor->body_map.find(p_id);
ERR_FAIL_COND(!E);
ERR_FAIL_COND(E->get().in_scene);
contact_monitor->locked = true;
E->get().in_scene = true;
emit_signal(SceneStringNames::get_singleton()->body_entered, node);
for (int i = 0; i < E->get().shapes.size(); i++) {
emit_signal(SceneStringNames::get_singleton()->body_shape_entered, E->get().rid, node, E->get().shapes[i].body_shape, E->get().shapes[i].local_shape);
}
contact_monitor->locked = false;
}
void RigidBody2D::_body_exit_tree(ObjectID p_id) {
Object *obj = ObjectDB::get_instance(p_id);
Node *node = Object::cast_to<Node>(obj);
ERR_FAIL_COND(!node);
ERR_FAIL_COND(!contact_monitor);
Map<ObjectID, BodyState>::Element *E = contact_monitor->body_map.find(p_id);
ERR_FAIL_COND(!E);
ERR_FAIL_COND(!E->get().in_scene);
E->get().in_scene = false;
contact_monitor->locked = true;
emit_signal(SceneStringNames::get_singleton()->body_exited, node);
for (int i = 0; i < E->get().shapes.size(); i++) {
emit_signal(SceneStringNames::get_singleton()->body_shape_exited, E->get().rid, node, E->get().shapes[i].body_shape, E->get().shapes[i].local_shape);
}
contact_monitor->locked = false;
}
void RigidBody2D::_body_inout(int p_status, const RID &p_body, ObjectID p_instance, int p_body_shape, int p_local_shape) {
bool body_in = p_status == 1;
ObjectID objid = p_instance;
Object *obj = ObjectDB::get_instance(objid);
Node *node = Object::cast_to<Node>(obj);
ERR_FAIL_COND(!contact_monitor);
Map<ObjectID, BodyState>::Element *E = contact_monitor->body_map.find(objid);
ERR_FAIL_COND(!body_in && !E);
if (body_in) {
if (!E) {
E = contact_monitor->body_map.insert(objid, BodyState());
E->get().rid = p_body;
//E->get().rc=0;
E->get().in_scene = node && node->is_inside_tree();
if (node) {
node->connect(SceneStringNames::get_singleton()->tree_entered, this, SceneStringNames::get_singleton()->_body_enter_tree, make_binds(objid));
node->connect(SceneStringNames::get_singleton()->tree_exiting, this, SceneStringNames::get_singleton()->_body_exit_tree, make_binds(objid));
if (E->get().in_scene) {
emit_signal(SceneStringNames::get_singleton()->body_entered, node);
}
}
//E->get().rc++;
}
if (node) {
E->get().shapes.insert(ShapePair(p_body_shape, p_local_shape));
}
if (E->get().in_scene) {
emit_signal(SceneStringNames::get_singleton()->body_shape_entered, p_body, node, p_body_shape, p_local_shape);
}
} else {
//E->get().rc--;
if (node) {
E->get().shapes.erase(ShapePair(p_body_shape, p_local_shape));
}
bool in_scene = E->get().in_scene;
if (E->get().shapes.empty()) {
if (node) {
node->disconnect(SceneStringNames::get_singleton()->tree_entered, this, SceneStringNames::get_singleton()->_body_enter_tree);
node->disconnect(SceneStringNames::get_singleton()->tree_exiting, this, SceneStringNames::get_singleton()->_body_exit_tree);
if (in_scene) {
emit_signal(SceneStringNames::get_singleton()->body_exited, node);
}
}
contact_monitor->body_map.erase(E);
}
if (node && in_scene) {
emit_signal(SceneStringNames::get_singleton()->body_shape_exited, p_body, node, p_body_shape, p_local_shape);
}
}
}
struct _RigidBody2DInOut {
RID rid;
ObjectID id;
int shape;
int local_shape;
};
bool RigidBody2D::_test_motion(const Vector2 &p_motion, bool p_infinite_inertia, float p_margin, const Ref<Physics2DTestMotionResult> &p_result) {
Physics2DServer::MotionResult *r = nullptr;
Physics2DServer::MotionResult temp_result;
if (p_result.is_valid()) {
r = p_result->get_result_ptr();
} else {
r = &temp_result;
}
bool colliding = Physics2DServer::get_singleton()->body_test_motion(get_rid(), get_global_transform(), p_motion, p_infinite_inertia, p_margin, r);
if (colliding) {
// Don't report collision when the whole motion is done.
return (r->collision_safe_fraction < 1.0);
} else {
return false;
}
}
void RigidBody2D::_direct_state_changed(Object *p_state) {
state = Object::cast_to<Physics2DDirectBodyState>(p_state);
ERR_FAIL_COND_MSG(!state, "Method '_direct_state_changed' must receive a valid Physics2DDirectBodyState object as argument");
set_block_transform_notify(true); // don't want notify (would feedback loop)
if (mode != MODE_KINEMATIC) {
set_global_transform(state->get_transform());
}
linear_velocity = state->get_linear_velocity();
angular_velocity = state->get_angular_velocity();
if (sleeping != state->is_sleeping()) {
sleeping = state->is_sleeping();
emit_signal(SceneStringNames::get_singleton()->sleeping_state_changed);
}
if (get_script_instance()) {
get_script_instance()->call("_integrate_forces", state);
}
set_block_transform_notify(false); // want it back
if (contact_monitor) {
contact_monitor->locked = true;
//untag all
int rc = 0;
for (Map<ObjectID, BodyState>::Element *E = contact_monitor->body_map.front(); E; E = E->next()) {
for (int i = 0; i < E->get().shapes.size(); i++) {
E->get().shapes[i].tagged = false;
rc++;
}
}
_RigidBody2DInOut *toadd = (_RigidBody2DInOut *)alloca(state->get_contact_count() * sizeof(_RigidBody2DInOut));
int toadd_count = 0; //state->get_contact_count();
RigidBody2D_RemoveAction *toremove = (RigidBody2D_RemoveAction *)alloca(rc * sizeof(RigidBody2D_RemoveAction));
int toremove_count = 0;
//put the ones to add
for (int i = 0; i < state->get_contact_count(); i++) {
RID rid = state->get_contact_collider(i);
ObjectID obj = state->get_contact_collider_id(i);
int local_shape = state->get_contact_local_shape(i);
int shape = state->get_contact_collider_shape(i);
//bool found=false;
Map<ObjectID, BodyState>::Element *E = contact_monitor->body_map.find(obj);
if (!E) {
toadd[toadd_count].rid = rid;
toadd[toadd_count].local_shape = local_shape;
toadd[toadd_count].id = obj;
toadd[toadd_count].shape = shape;
toadd_count++;
continue;
}
ShapePair sp(shape, local_shape);
int idx = E->get().shapes.find(sp);
if (idx == -1) {
toadd[toadd_count].rid = rid;
toadd[toadd_count].local_shape = local_shape;
toadd[toadd_count].id = obj;
toadd[toadd_count].shape = shape;
toadd_count++;
continue;
}
E->get().shapes[idx].tagged = true;
}
//put the ones to remove
for (Map<ObjectID, BodyState>::Element *E = contact_monitor->body_map.front(); E; E = E->next()) {
for (int i = 0; i < E->get().shapes.size(); i++) {
if (!E->get().shapes[i].tagged) {
toremove[toremove_count].rid = E->get().rid;
toremove[toremove_count].body_id = E->key();
toremove[toremove_count].pair = E->get().shapes[i];
toremove_count++;
}
}
}
//process remotions
for (int i = 0; i < toremove_count; i++) {
_body_inout(0, toremove[i].rid, toremove[i].body_id, toremove[i].pair.body_shape, toremove[i].pair.local_shape);
}
//process aditions
for (int i = 0; i < toadd_count; i++) {
_body_inout(1, toadd[i].rid, toadd[i].id, toadd[i].shape, toadd[i].local_shape);
}
contact_monitor->locked = false;
}
state = nullptr;
}
void RigidBody2D::set_mode(Mode p_mode) {
mode = p_mode;
switch (p_mode) {
case MODE_RIGID: {
Physics2DServer::get_singleton()->body_set_mode(get_rid(), Physics2DServer::BODY_MODE_RIGID);
} break;
case MODE_STATIC: {
Physics2DServer::get_singleton()->body_set_mode(get_rid(), Physics2DServer::BODY_MODE_STATIC);
} break;
case MODE_KINEMATIC: {
Physics2DServer::get_singleton()->body_set_mode(get_rid(), Physics2DServer::BODY_MODE_KINEMATIC);
} break;
case MODE_CHARACTER: {
Physics2DServer::get_singleton()->body_set_mode(get_rid(), Physics2DServer::BODY_MODE_CHARACTER);
} break;
}
}
RigidBody2D::Mode RigidBody2D::get_mode() const {
return mode;
}
void RigidBody2D::set_mass(real_t p_mass) {
ERR_FAIL_COND(p_mass <= 0);
mass = p_mass;
_change_notify("mass");
_change_notify("weight");
Physics2DServer::get_singleton()->body_set_param(get_rid(), Physics2DServer::BODY_PARAM_MASS, mass);
}
real_t RigidBody2D::get_mass() const {
return mass;
}
void RigidBody2D::set_inertia(real_t p_inertia) {
ERR_FAIL_COND(p_inertia < 0);
Physics2DServer::get_singleton()->body_set_param(get_rid(), Physics2DServer::BODY_PARAM_INERTIA, p_inertia);
}
real_t RigidBody2D::get_inertia() const {
return Physics2DServer::get_singleton()->body_get_param(get_rid(), Physics2DServer::BODY_PARAM_INERTIA);
}
void RigidBody2D::set_weight(real_t p_weight) {
set_mass(p_weight / (real_t(GLOBAL_DEF("physics/2d/default_gravity", 98)) / 10));
}
real_t RigidBody2D::get_weight() const {
return mass * (real_t(GLOBAL_DEF("physics/2d/default_gravity", 98)) / 10);
}
#ifndef DISABLE_DEPRECATED
void RigidBody2D::set_friction(real_t p_friction) {
if (p_friction == 1.0 && physics_material_override.is_null()) { // default value, don't create an override for that
return;
}
WARN_DEPRECATED_MSG("The method set_friction has been deprecated and will be removed in the future, use physics material instead.");
ERR_FAIL_COND_MSG(p_friction < 0 || p_friction > 1, "Friction must be between 0 and 1.");
if (physics_material_override.is_null()) {
physics_material_override.instance();
set_physics_material_override(physics_material_override);
}
physics_material_override->set_friction(p_friction);
}
real_t RigidBody2D::get_friction() const {
WARN_DEPRECATED_MSG("The method get_friction has been deprecated and will be removed in the future, use physics material instead.");
if (physics_material_override.is_null()) {
return 1;
}
return physics_material_override->get_friction();
}
void RigidBody2D::set_bounce(real_t p_bounce) {
if (p_bounce == 0.0 && physics_material_override.is_null()) { // default value, don't create an override for that
return;
}
WARN_DEPRECATED_MSG("The method set_bounce has been deprecated and will be removed in the future, use physics material instead.");
ERR_FAIL_COND(p_bounce < 0 || p_bounce > 1);
if (physics_material_override.is_null()) {
physics_material_override.instance();
set_physics_material_override(physics_material_override);
}
physics_material_override->set_bounce(p_bounce);
}
real_t RigidBody2D::get_bounce() const {
WARN_DEPRECATED_MSG("The method get_bounce has been deprecated and will be removed in the future, use physics material instead.");
if (physics_material_override.is_null()) {
return 0;
}
return physics_material_override->get_bounce();
}
#endif // DISABLE_DEPRECATED
void RigidBody2D::set_physics_material_override(const Ref<PhysicsMaterial> &p_physics_material_override) {
if (physics_material_override.is_valid()) {
if (physics_material_override->is_connected(CoreStringNames::get_singleton()->changed, this, "_reload_physics_characteristics")) {
physics_material_override->disconnect(CoreStringNames::get_singleton()->changed, this, "_reload_physics_characteristics");
}
}
physics_material_override = p_physics_material_override;
if (physics_material_override.is_valid()) {
physics_material_override->connect(CoreStringNames::get_singleton()->changed, this, "_reload_physics_characteristics");
}
_reload_physics_characteristics();
}
Ref<PhysicsMaterial> RigidBody2D::get_physics_material_override() const {
return physics_material_override;
}
void RigidBody2D::set_gravity_scale(real_t p_gravity_scale) {
gravity_scale = p_gravity_scale;
Physics2DServer::get_singleton()->body_set_param(get_rid(), Physics2DServer::BODY_PARAM_GRAVITY_SCALE, gravity_scale);
}
real_t RigidBody2D::get_gravity_scale() const {
return gravity_scale;
}
void RigidBody2D::set_linear_damp(real_t p_linear_damp) {
ERR_FAIL_COND(p_linear_damp < -1);
linear_damp = p_linear_damp;
Physics2DServer::get_singleton()->body_set_param(get_rid(), Physics2DServer::BODY_PARAM_LINEAR_DAMP, linear_damp);
}
real_t RigidBody2D::get_linear_damp() const {
return linear_damp;
}
void RigidBody2D::set_angular_damp(real_t p_angular_damp) {
ERR_FAIL_COND(p_angular_damp < -1);
angular_damp = p_angular_damp;
Physics2DServer::get_singleton()->body_set_param(get_rid(), Physics2DServer::BODY_PARAM_ANGULAR_DAMP, angular_damp);
}
real_t RigidBody2D::get_angular_damp() const {
return angular_damp;
}
void RigidBody2D::set_axis_velocity(const Vector2 &p_axis) {
Vector2 v = state ? state->get_linear_velocity() : linear_velocity;
Vector2 axis = p_axis.normalized();
v -= axis * axis.dot(v);
v += p_axis;
if (state) {
set_linear_velocity(v);
} else {
Physics2DServer::get_singleton()->body_set_axis_velocity(get_rid(), p_axis);
linear_velocity = v;
}
}
void RigidBody2D::set_linear_velocity(const Vector2 &p_velocity) {
linear_velocity = p_velocity;
if (state) {
state->set_linear_velocity(linear_velocity);
} else {
Physics2DServer::get_singleton()->body_set_state(get_rid(), Physics2DServer::BODY_STATE_LINEAR_VELOCITY, linear_velocity);
}
}
Vector2 RigidBody2D::get_linear_velocity() const {
return linear_velocity;
}
void RigidBody2D::set_angular_velocity(real_t p_velocity) {
angular_velocity = p_velocity;
if (state) {
state->set_angular_velocity(angular_velocity);
} else {
Physics2DServer::get_singleton()->body_set_state(get_rid(), Physics2DServer::BODY_STATE_ANGULAR_VELOCITY, angular_velocity);
}
}
real_t RigidBody2D::get_angular_velocity() const {
return angular_velocity;
}
void RigidBody2D::set_use_custom_integrator(bool p_enable) {
if (custom_integrator == p_enable) {
return;
}
custom_integrator = p_enable;
Physics2DServer::get_singleton()->body_set_omit_force_integration(get_rid(), p_enable);
}
bool RigidBody2D::is_using_custom_integrator() {
return custom_integrator;
}
void RigidBody2D::set_sleeping(bool p_sleeping) {
sleeping = p_sleeping;
Physics2DServer::get_singleton()->body_set_state(get_rid(), Physics2DServer::BODY_STATE_SLEEPING, sleeping);
}
void RigidBody2D::set_can_sleep(bool p_active) {
can_sleep = p_active;
Physics2DServer::get_singleton()->body_set_state(get_rid(), Physics2DServer::BODY_STATE_CAN_SLEEP, p_active);
}
bool RigidBody2D::is_able_to_sleep() const {
return can_sleep;
}
bool RigidBody2D::is_sleeping() const {
return sleeping;
}
void RigidBody2D::set_max_contacts_reported(int p_amount) {
max_contacts_reported = p_amount;
Physics2DServer::get_singleton()->body_set_max_contacts_reported(get_rid(), p_amount);
}
int RigidBody2D::get_max_contacts_reported() const {
return max_contacts_reported;
}
void RigidBody2D::apply_central_impulse(const Vector2 &p_impulse) {
Physics2DServer::get_singleton()->body_apply_central_impulse(get_rid(), p_impulse);
}
void RigidBody2D::apply_impulse(const Vector2 &p_offset, const Vector2 &p_impulse) {
Physics2DServer::get_singleton()->body_apply_impulse(get_rid(), p_offset, p_impulse);
}
void RigidBody2D::apply_torque_impulse(float p_torque) {
Physics2DServer::get_singleton()->body_apply_torque_impulse(get_rid(), p_torque);
}
void RigidBody2D::set_applied_force(const Vector2 &p_force) {
Physics2DServer::get_singleton()->body_set_applied_force(get_rid(), p_force);
};
Vector2 RigidBody2D::get_applied_force() const {
return Physics2DServer::get_singleton()->body_get_applied_force(get_rid());
};
void RigidBody2D::set_applied_torque(const float p_torque) {
Physics2DServer::get_singleton()->body_set_applied_torque(get_rid(), p_torque);
};
float RigidBody2D::get_applied_torque() const {
return Physics2DServer::get_singleton()->body_get_applied_torque(get_rid());
};
void RigidBody2D::add_central_force(const Vector2 &p_force) {
Physics2DServer::get_singleton()->body_add_central_force(get_rid(), p_force);
}
void RigidBody2D::add_force(const Vector2 &p_offset, const Vector2 &p_force) {
Physics2DServer::get_singleton()->body_add_force(get_rid(), p_offset, p_force);
}
void RigidBody2D::add_torque(const float p_torque) {
Physics2DServer::get_singleton()->body_add_torque(get_rid(), p_torque);
}
void RigidBody2D::set_continuous_collision_detection_mode(CCDMode p_mode) {
ccd_mode = p_mode;
Physics2DServer::get_singleton()->body_set_continuous_collision_detection_mode(get_rid(), Physics2DServer::CCDMode(p_mode));
}
RigidBody2D::CCDMode RigidBody2D::get_continuous_collision_detection_mode() const {
return ccd_mode;
}
Array RigidBody2D::get_colliding_bodies() const {
ERR_FAIL_COND_V(!contact_monitor, Array());
Array ret;
ret.resize(contact_monitor->body_map.size());
int idx = 0;
for (const Map<ObjectID, BodyState>::Element *E = contact_monitor->body_map.front(); E; E = E->next()) {
Object *obj = ObjectDB::get_instance(E->key());
if (!obj) {
ret.resize(ret.size() - 1); //ops
} else {
ret[idx++] = obj;
}
}
return ret;
}
void RigidBody2D::set_contact_monitor(bool p_enabled) {
if (p_enabled == is_contact_monitor_enabled()) {
return;
}
if (!p_enabled) {
ERR_FAIL_COND_MSG(contact_monitor->locked, "Can't disable contact monitoring during in/out callback. Use call_deferred(\"set_contact_monitor\", false) instead.");
for (Map<ObjectID, BodyState>::Element *E = contact_monitor->body_map.front(); E; E = E->next()) {
//clean up mess
Object *obj = ObjectDB::get_instance(E->key());
Node *node = Object::cast_to<Node>(obj);
if (node) {
node->disconnect(SceneStringNames::get_singleton()->tree_entered, this, SceneStringNames::get_singleton()->_body_enter_tree);
node->disconnect(SceneStringNames::get_singleton()->tree_exiting, this, SceneStringNames::get_singleton()->_body_exit_tree);
}
}
memdelete(contact_monitor);
contact_monitor = nullptr;
} else {
contact_monitor = memnew(ContactMonitor);
contact_monitor->locked = false;
}
}
bool RigidBody2D::is_contact_monitor_enabled() const {
return contact_monitor != nullptr;
}
void RigidBody2D::_notification(int p_what) {
#ifdef TOOLS_ENABLED
if (p_what == NOTIFICATION_ENTER_TREE) {
if (Engine::get_singleton()->is_editor_hint()) {
set_notify_local_transform(true); //used for warnings and only in editor
}
}
if (p_what == NOTIFICATION_LOCAL_TRANSFORM_CHANGED) {
if (Engine::get_singleton()->is_editor_hint()) {
update_configuration_warning();
}
}
#endif
}
String RigidBody2D::get_configuration_warning() const {
Transform2D t = get_transform();
String warning = CollisionObject2D::get_configuration_warning();
if ((get_mode() == MODE_RIGID || get_mode() == MODE_CHARACTER) && (ABS(t.elements[0].length() - 1.0) > 0.05 || ABS(t.elements[1].length() - 1.0) > 0.05)) {
if (warning != String()) {
warning += "\n\n";
}
warning += TTR("Size changes to RigidBody2D (in character or rigid modes) will be overridden by the physics engine when running.\nChange the size in children collision shapes instead.");
}
return warning;
}
void RigidBody2D::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_mode", "mode"), &RigidBody2D::set_mode);
ClassDB::bind_method(D_METHOD("get_mode"), &RigidBody2D::get_mode);
ClassDB::bind_method(D_METHOD("set_mass", "mass"), &RigidBody2D::set_mass);
ClassDB::bind_method(D_METHOD("get_mass"), &RigidBody2D::get_mass);
ClassDB::bind_method(D_METHOD("get_inertia"), &RigidBody2D::get_inertia);
ClassDB::bind_method(D_METHOD("set_inertia", "inertia"), &RigidBody2D::set_inertia);
ClassDB::bind_method(D_METHOD("set_weight", "weight"), &RigidBody2D::set_weight);
ClassDB::bind_method(D_METHOD("get_weight"), &RigidBody2D::get_weight);
#ifndef DISABLE_DEPRECATED
ClassDB::bind_method(D_METHOD("set_friction", "friction"), &RigidBody2D::set_friction);
ClassDB::bind_method(D_METHOD("get_friction"), &RigidBody2D::get_friction);
ClassDB::bind_method(D_METHOD("set_bounce", "bounce"), &RigidBody2D::set_bounce);
ClassDB::bind_method(D_METHOD("get_bounce"), &RigidBody2D::get_bounce);
#endif // DISABLE_DEPRECATED
ClassDB::bind_method(D_METHOD("set_physics_material_override", "physics_material_override"), &RigidBody2D::set_physics_material_override);
ClassDB::bind_method(D_METHOD("get_physics_material_override"), &RigidBody2D::get_physics_material_override);
ClassDB::bind_method(D_METHOD("_reload_physics_characteristics"), &RigidBody2D::_reload_physics_characteristics);
ClassDB::bind_method(D_METHOD("set_gravity_scale", "gravity_scale"), &RigidBody2D::set_gravity_scale);
ClassDB::bind_method(D_METHOD("get_gravity_scale"), &RigidBody2D::get_gravity_scale);
ClassDB::bind_method(D_METHOD("set_linear_damp", "linear_damp"), &RigidBody2D::set_linear_damp);
ClassDB::bind_method(D_METHOD("get_linear_damp"), &RigidBody2D::get_linear_damp);
ClassDB::bind_method(D_METHOD("set_angular_damp", "angular_damp"), &RigidBody2D::set_angular_damp);
ClassDB::bind_method(D_METHOD("get_angular_damp"), &RigidBody2D::get_angular_damp);
ClassDB::bind_method(D_METHOD("set_linear_velocity", "linear_velocity"), &RigidBody2D::set_linear_velocity);
ClassDB::bind_method(D_METHOD("get_linear_velocity"), &RigidBody2D::get_linear_velocity);
ClassDB::bind_method(D_METHOD("set_angular_velocity", "angular_velocity"), &RigidBody2D::set_angular_velocity);
ClassDB::bind_method(D_METHOD("get_angular_velocity"), &RigidBody2D::get_angular_velocity);
ClassDB::bind_method(D_METHOD("set_max_contacts_reported", "amount"), &RigidBody2D::set_max_contacts_reported);
ClassDB::bind_method(D_METHOD("get_max_contacts_reported"), &RigidBody2D::get_max_contacts_reported);
ClassDB::bind_method(D_METHOD("set_use_custom_integrator", "enable"), &RigidBody2D::set_use_custom_integrator);
ClassDB::bind_method(D_METHOD("is_using_custom_integrator"), &RigidBody2D::is_using_custom_integrator);
ClassDB::bind_method(D_METHOD("set_contact_monitor", "enabled"), &RigidBody2D::set_contact_monitor);
ClassDB::bind_method(D_METHOD("is_contact_monitor_enabled"), &RigidBody2D::is_contact_monitor_enabled);
ClassDB::bind_method(D_METHOD("set_continuous_collision_detection_mode", "mode"), &RigidBody2D::set_continuous_collision_detection_mode);
ClassDB::bind_method(D_METHOD("get_continuous_collision_detection_mode"), &RigidBody2D::get_continuous_collision_detection_mode);
ClassDB::bind_method(D_METHOD("set_axis_velocity", "axis_velocity"), &RigidBody2D::set_axis_velocity);
ClassDB::bind_method(D_METHOD("apply_central_impulse", "impulse"), &RigidBody2D::apply_central_impulse);
ClassDB::bind_method(D_METHOD("apply_impulse", "offset", "impulse"), &RigidBody2D::apply_impulse);
ClassDB::bind_method(D_METHOD("apply_torque_impulse", "torque"), &RigidBody2D::apply_torque_impulse);
ClassDB::bind_method(D_METHOD("set_applied_force", "force"), &RigidBody2D::set_applied_force);
ClassDB::bind_method(D_METHOD("get_applied_force"), &RigidBody2D::get_applied_force);
ClassDB::bind_method(D_METHOD("set_applied_torque", "torque"), &RigidBody2D::set_applied_torque);
ClassDB::bind_method(D_METHOD("get_applied_torque"), &RigidBody2D::get_applied_torque);
ClassDB::bind_method(D_METHOD("add_central_force", "force"), &RigidBody2D::add_central_force);
ClassDB::bind_method(D_METHOD("add_force", "offset", "force"), &RigidBody2D::add_force);
ClassDB::bind_method(D_METHOD("add_torque", "torque"), &RigidBody2D::add_torque);
ClassDB::bind_method(D_METHOD("set_sleeping", "sleeping"), &RigidBody2D::set_sleeping);
ClassDB::bind_method(D_METHOD("is_sleeping"), &RigidBody2D::is_sleeping);
ClassDB::bind_method(D_METHOD("set_can_sleep", "able_to_sleep"), &RigidBody2D::set_can_sleep);
ClassDB::bind_method(D_METHOD("is_able_to_sleep"), &RigidBody2D::is_able_to_sleep);
ClassDB::bind_method(D_METHOD("test_motion", "motion", "infinite_inertia", "margin", "result"), &RigidBody2D::_test_motion, DEFVAL(true), DEFVAL(0.08), DEFVAL(Variant()));
ClassDB::bind_method(D_METHOD("_direct_state_changed"), &RigidBody2D::_direct_state_changed);
ClassDB::bind_method(D_METHOD("_body_enter_tree"), &RigidBody2D::_body_enter_tree);
ClassDB::bind_method(D_METHOD("_body_exit_tree"), &RigidBody2D::_body_exit_tree);
ClassDB::bind_method(D_METHOD("get_colliding_bodies"), &RigidBody2D::get_colliding_bodies);
BIND_VMETHOD(MethodInfo("_integrate_forces", PropertyInfo(Variant::OBJECT, "state", PROPERTY_HINT_RESOURCE_TYPE, "Physics2DDirectBodyState")));
ADD_PROPERTY(PropertyInfo(Variant::INT, "mode", PROPERTY_HINT_ENUM, "Rigid,Static,Character,Kinematic"), "set_mode", "get_mode");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "mass", PROPERTY_HINT_EXP_RANGE, "0.01,65535,0.01,or_greater"), "set_mass", "get_mass");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "inertia", PROPERTY_HINT_EXP_RANGE, "0.01,65535,0.01,or_greater", 0), "set_inertia", "get_inertia");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "weight", PROPERTY_HINT_EXP_RANGE, "0.01,65535,0.01,or_greater", PROPERTY_USAGE_EDITOR), "set_weight", "get_weight");
#ifndef DISABLE_DEPRECATED
ADD_PROPERTY(PropertyInfo(Variant::REAL, "friction", PROPERTY_HINT_RANGE, "0,1,0.01", 0), "set_friction", "get_friction");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "bounce", PROPERTY_HINT_RANGE, "0,1,0.01", 0), "set_bounce", "get_bounce");
#endif // DISABLE_DEPRECATED
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "physics_material_override", PROPERTY_HINT_RESOURCE_TYPE, "PhysicsMaterial"), "set_physics_material_override", "get_physics_material_override");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "gravity_scale", PROPERTY_HINT_RANGE, "-128,128,0.01"), "set_gravity_scale", "get_gravity_scale");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "custom_integrator"), "set_use_custom_integrator", "is_using_custom_integrator");
ADD_PROPERTY(PropertyInfo(Variant::INT, "continuous_cd", PROPERTY_HINT_ENUM, "Disabled,Cast Ray,Cast Shape"), "set_continuous_collision_detection_mode", "get_continuous_collision_detection_mode");
ADD_PROPERTY(PropertyInfo(Variant::INT, "contacts_reported", PROPERTY_HINT_RANGE, "0,64,1,or_greater"), "set_max_contacts_reported", "get_max_contacts_reported");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "contact_monitor"), "set_contact_monitor", "is_contact_monitor_enabled");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "sleeping"), "set_sleeping", "is_sleeping");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "can_sleep"), "set_can_sleep", "is_able_to_sleep");
ADD_GROUP("Linear", "linear_");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR2, "linear_velocity"), "set_linear_velocity", "get_linear_velocity");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "linear_damp", PROPERTY_HINT_RANGE, "-1,100,0.001,or_greater"), "set_linear_damp", "get_linear_damp");
ADD_GROUP("Angular", "angular_");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "angular_velocity"), "set_angular_velocity", "get_angular_velocity");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "angular_damp", PROPERTY_HINT_RANGE, "-1,100,0.001,or_greater"), "set_angular_damp", "get_angular_damp");
ADD_GROUP("Applied Forces", "applied_");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR2, "applied_force"), "set_applied_force", "get_applied_force");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "applied_torque"), "set_applied_torque", "get_applied_torque");
ADD_SIGNAL(MethodInfo("body_shape_entered", PropertyInfo(Variant::_RID, "body_rid"), PropertyInfo(Variant::OBJECT, "body", PROPERTY_HINT_RESOURCE_TYPE, "Node"), PropertyInfo(Variant::INT, "body_shape_index"), PropertyInfo(Variant::INT, "local_shape_index")));
ADD_SIGNAL(MethodInfo("body_shape_exited", PropertyInfo(Variant::_RID, "body_rid"), PropertyInfo(Variant::OBJECT, "body", PROPERTY_HINT_RESOURCE_TYPE, "Node"), PropertyInfo(Variant::INT, "body_shape_index"), PropertyInfo(Variant::INT, "local_shape_index")));
ADD_SIGNAL(MethodInfo("body_entered", PropertyInfo(Variant::OBJECT, "body", PROPERTY_HINT_RESOURCE_TYPE, "Node")));
ADD_SIGNAL(MethodInfo("body_exited", PropertyInfo(Variant::OBJECT, "body", PROPERTY_HINT_RESOURCE_TYPE, "Node")));
ADD_SIGNAL(MethodInfo("sleeping_state_changed"));
BIND_ENUM_CONSTANT(MODE_RIGID);
BIND_ENUM_CONSTANT(MODE_STATIC);
BIND_ENUM_CONSTANT(MODE_CHARACTER);
BIND_ENUM_CONSTANT(MODE_KINEMATIC);
BIND_ENUM_CONSTANT(CCD_MODE_DISABLED);
BIND_ENUM_CONSTANT(CCD_MODE_CAST_RAY);
BIND_ENUM_CONSTANT(CCD_MODE_CAST_SHAPE);
}
RigidBody2D::RigidBody2D() :
PhysicsBody2D(Physics2DServer::BODY_MODE_RIGID) {
mode = MODE_RIGID;
mass = 1;
gravity_scale = 1;
linear_damp = -1;
angular_damp = -1;
max_contacts_reported = 0;
state = nullptr;
angular_velocity = 0;
sleeping = false;
ccd_mode = CCD_MODE_DISABLED;
custom_integrator = false;
contact_monitor = nullptr;
can_sleep = true;
Physics2DServer::get_singleton()->body_set_force_integration_callback(get_rid(), this, "_direct_state_changed");
}
RigidBody2D::~RigidBody2D() {
if (contact_monitor) {
memdelete(contact_monitor);
}
}
void RigidBody2D::_reload_physics_characteristics() {
if (physics_material_override.is_null()) {
Physics2DServer::get_singleton()->body_set_param(get_rid(), Physics2DServer::BODY_PARAM_BOUNCE, 0);
Physics2DServer::get_singleton()->body_set_param(get_rid(), Physics2DServer::BODY_PARAM_FRICTION, 1);
} else {
Physics2DServer::get_singleton()->body_set_param(get_rid(), Physics2DServer::BODY_PARAM_BOUNCE, physics_material_override->computed_bounce());
Physics2DServer::get_singleton()->body_set_param(get_rid(), Physics2DServer::BODY_PARAM_FRICTION, physics_material_override->computed_friction());
}
}
//////////////////////////
Ref<KinematicCollision2D> KinematicBody2D::_move(const Vector2 &p_motion, bool p_infinite_inertia, bool p_exclude_raycast_shapes, bool p_test_only) {
Collision col;
bool collided = move_and_collide(p_motion, p_infinite_inertia, col, p_exclude_raycast_shapes, p_test_only);
// Don't report collision when the whole motion is done.
if (collided && col.collision_safe_fraction < 1) {
// Create a new instance when the cached reference is invalid or still in use in script.
if (motion_cache.is_null() || motion_cache->reference_get_count() > 1) {
motion_cache.instance();
motion_cache->owner = this;
}
motion_cache->collision = col;
return motion_cache;
}
return Ref<KinematicCollision2D>();
}
bool KinematicBody2D::separate_raycast_shapes(bool p_infinite_inertia, Collision &r_collision) {
Physics2DServer::SeparationResult sep_res[8]; //max 8 rays
Transform2D gt = get_global_transform();
Vector2 recover;
int hits = Physics2DServer::get_singleton()->body_test_ray_separation(get_rid(), gt, p_infinite_inertia, recover, sep_res, 8, margin);
int deepest = -1;
float deepest_depth;
for (int i = 0; i < hits; i++) {
if (deepest == -1 || sep_res[i].collision_depth > deepest_depth) {
deepest = i;
deepest_depth = sep_res[i].collision_depth;
}
}
gt.elements[2] += recover;
set_global_transform(gt);
if (deepest != -1) {
r_collision.collider = sep_res[deepest].collider_id;
r_collision.collider_rid = sep_res[deepest].collider;
r_collision.collider_metadata = sep_res[deepest].collider_metadata;
r_collision.collider_shape = sep_res[deepest].collider_shape;
r_collision.collider_vel = sep_res[deepest].collider_velocity;
r_collision.collision = sep_res[deepest].collision_point;
r_collision.normal = sep_res[deepest].collision_normal;
r_collision.local_shape = sep_res[deepest].collision_local_shape;
r_collision.travel = recover;
r_collision.remainder = Vector2();
return true;
} else {
return false;
}
}
bool KinematicBody2D::move_and_collide(const Vector2 &p_motion, bool p_infinite_inertia, Collision &r_collision, bool p_exclude_raycast_shapes, bool p_test_only, bool p_cancel_sliding, const Set<RID> &p_exclude) {
if (sync_to_physics) {
ERR_PRINT("Functions move_and_slide and move_and_collide do not work together with 'sync to physics' option. Please read the documentation.");
}
Transform2D gt = get_global_transform();
Physics2DServer::MotionResult result;
bool colliding = Physics2DServer::get_singleton()->body_test_motion(get_rid(), gt, p_motion, p_infinite_inertia, margin, &result, p_exclude_raycast_shapes, p_exclude);
// Restore direction of motion to be along original motion,
// in order to avoid sliding due to recovery,
// but only if collision depth is low enough to avoid tunneling.
if (p_cancel_sliding) {
real_t motion_length = p_motion.length();
real_t precision = 0.001;
if (colliding) {
// Can't just use margin as a threshold because collision depth is calculated on unsafe motion,
// so even in normal resting cases the depth can be a bit more than the margin.
precision += motion_length * (result.collision_unsafe_fraction - result.collision_safe_fraction);
if (result.collision_depth > (real_t)margin + precision) {
p_cancel_sliding = false;
}
}
if (p_cancel_sliding) {
// When motion is null, recovery is the resulting motion.
Vector2 motion_normal;
if (motion_length > CMP_EPSILON) {
motion_normal = p_motion / motion_length;
}
// Check depth of recovery.
real_t projected_length = result.motion.dot(motion_normal);
Vector2 recovery = result.motion - motion_normal * projected_length;
real_t recovery_length = recovery.length();
// Fixes cases where canceling slide causes the motion to go too deep into the ground,
// because we're only taking rest information into account and not general recovery.
if (recovery_length < (real_t)margin + precision) {
// Apply adjustment to motion.
result.motion = motion_normal * projected_length;
result.remainder = p_motion - result.motion;
}
}
}
if (colliding) {
r_collision.collider_metadata = result.collider_metadata;
r_collision.collider_shape = result.collider_shape;
r_collision.collider_vel = result.collider_velocity;
r_collision.collision = result.collision_point;
r_collision.normal = result.collision_normal;
r_collision.collider = result.collider_id;
r_collision.collider_rid = result.collider;
r_collision.travel = result.motion;
r_collision.remainder = result.remainder;
r_collision.local_shape = result.collision_local_shape;
r_collision.collision_safe_fraction = result.collision_safe_fraction;
}
if (!p_test_only) {
gt.elements[2] += result.motion;
set_global_transform(gt);
}
return colliding;
}
//so, if you pass 45 as limit, avoid numerical precision errors when angle is 45.
#define FLOOR_ANGLE_THRESHOLD 0.01
Vector2 KinematicBody2D::_move_and_slide_internal(const Vector2 &p_linear_velocity, const Vector2 &p_snap, const Vector2 &p_up_direction, bool p_stop_on_slope, int p_max_slides, float p_floor_max_angle, bool p_infinite_inertia) {
Vector2 body_velocity = p_linear_velocity;
Vector2 body_velocity_normal = body_velocity.normalized();
Vector2 up_direction = p_up_direction.normalized();
bool was_on_floor = on_floor;
// Hack in order to work with calling from _process as well as from _physics_process; calling from thread is risky
float delta = Engine::get_singleton()->is_in_physics_frame() ? get_physics_process_delta_time() : get_process_delta_time();
Vector2 current_floor_velocity = floor_velocity;
if (on_floor && on_floor_body.is_valid()) {
//this approach makes sure there is less delay between the actual body velocity and the one we saved
Physics2DDirectBodyState *bs = Physics2DServer::get_singleton()->body_get_direct_state(on_floor_body);
if (bs) {
Transform2D gt = get_global_transform();
Vector2 local_position = gt.elements[2] - bs->get_transform().elements[2];
current_floor_velocity = bs->get_velocity_at_local_position(local_position);
} else {
// Body is removed or destroyed, invalidate floor.
current_floor_velocity = Vector2();
on_floor_body = RID();
}
}
colliders.clear();
on_floor = false;
on_ceiling = false;
on_wall = false;
floor_normal = Vector2();
floor_velocity = Vector2();
if (current_floor_velocity != Vector2() && on_floor_body.is_valid()) {
Collision floor_collision;
Set<RID> exclude;
exclude.insert(on_floor_body);
if (move_and_collide(current_floor_velocity * delta, p_infinite_inertia, floor_collision, true, false, false, exclude)) {
colliders.push_back(floor_collision);
_set_collision_direction(floor_collision, up_direction, p_floor_max_angle);
}
}
on_floor_body = RID();
Vector2 motion = body_velocity * delta;
// No sliding on first attempt to keep floor motion stable when possible,
// when stop on slope is enabled.
bool sliding_enabled = !p_stop_on_slope;
for (int iteration = 0; iteration < p_max_slides; ++iteration) {
Collision collision;
bool found_collision = false;
for (int i = 0; i < 2; ++i) {
bool collided;
if (i == 0) { //collide
collided = move_and_collide(motion, p_infinite_inertia, collision, true, false, !sliding_enabled);
if (!collided) {
motion = Vector2(); //clear because no collision happened and motion completed
}
} else { //separate raycasts (if any)
collided = separate_raycast_shapes(p_infinite_inertia, collision);
if (collided) {
collision.remainder = motion; //keep
collision.travel = Vector2();
}
}
if (collided) {
found_collision = true;
colliders.push_back(collision);
_set_collision_direction(collision, up_direction, p_floor_max_angle);
if (on_floor && p_stop_on_slope) {
if ((body_velocity_normal + up_direction).length() < 0.01) {
Transform2D gt = get_global_transform();
if (collision.travel.length() > margin) {
gt.elements[2] -= collision.travel.slide(up_direction);
} else {
gt.elements[2] -= collision.travel;
}
set_global_transform(gt);
return Vector2();
}
}
if (sliding_enabled || !on_floor) {
motion = collision.remainder.slide(collision.normal);
body_velocity = body_velocity.slide(collision.normal);
} else {
motion = collision.remainder;
}
}
sliding_enabled = true;
}
if (!found_collision || motion == Vector2()) {
break;
}
}
if (was_on_floor && p_snap != Vector2() && !on_floor) {
// Apply snap.
Collision col;
Transform2D gt = get_global_transform();
if (move_and_collide(p_snap, p_infinite_inertia, col, false, true, false)) {
bool apply = true;
if (up_direction != Vector2()) {
if (Math::acos(col.normal.dot(up_direction)) <= p_floor_max_angle + FLOOR_ANGLE_THRESHOLD) {
on_floor = true;
floor_normal = col.normal;
on_floor_body = col.collider_rid;
floor_velocity = col.collider_vel;
if (p_stop_on_slope) {
// move and collide may stray the object a bit because of pre un-stucking,
// so only ensure that motion happens on floor direction in this case.
if (col.travel.length() > margin) {
col.travel = up_direction * up_direction.dot(col.travel);
} else {
col.travel = Vector2();
}
}
} else {
apply = false;
}
}
if (apply) {
gt.elements[2] += col.travel;
set_global_transform(gt);
}
}
}
if (moving_platform_apply_velocity_on_leave != PLATFORM_VEL_ON_LEAVE_NEVER) {
// Add last platform velocity when just left a moving platform.
if (!on_floor) {
if (moving_platform_apply_velocity_on_leave == PLATFORM_VEL_ON_LEAVE_UPWARD_ONLY && current_floor_velocity.dot(up_direction) < 0) {
current_floor_velocity = current_floor_velocity.slide(up_direction);
}
return body_velocity + current_floor_velocity;
}
}
return body_velocity;
}
Vector2 KinematicBody2D::move_and_slide(const Vector2 &p_linear_velocity, const Vector2 &p_up_direction, bool p_stop_on_slope, int p_max_slides, float p_floor_max_angle, bool p_infinite_inertia) {
return _move_and_slide_internal(p_linear_velocity, Vector2(), p_up_direction, p_stop_on_slope, p_max_slides, p_floor_max_angle, p_infinite_inertia);
}
Vector2 KinematicBody2D::move_and_slide_with_snap(const Vector2 &p_linear_velocity, const Vector2 &p_snap, const Vector2 &p_up_direction, bool p_stop_on_slope, int p_max_slides, float p_floor_max_angle, bool p_infinite_inertia) {
return _move_and_slide_internal(p_linear_velocity, p_snap, p_up_direction, p_stop_on_slope, p_max_slides, p_floor_max_angle, p_infinite_inertia);
}
void KinematicBody2D::_set_collision_direction(const Collision &p_collision, const Vector2 &p_up_direction, float p_floor_max_angle) {
if (p_up_direction == Vector2()) {
//all is a wall
on_wall = true;
} else {
if (Math::acos(p_collision.normal.dot(p_up_direction)) <= p_floor_max_angle + FLOOR_ANGLE_THRESHOLD) { //floor
on_floor = true;
floor_normal = p_collision.normal;
on_floor_body = p_collision.collider_rid;
floor_velocity = p_collision.collider_vel;
} else if (Math::acos(p_collision.normal.dot(-p_up_direction)) <= p_floor_max_angle + FLOOR_ANGLE_THRESHOLD) { //ceiling
on_ceiling = true;
} else {
on_wall = true;
}
}
}
bool KinematicBody2D::is_on_floor() const {
return on_floor;
}
bool KinematicBody2D::is_on_wall() const {
return on_wall;
}
bool KinematicBody2D::is_on_ceiling() const {
return on_ceiling;
}
Vector2 KinematicBody2D::get_floor_normal() const {
return floor_normal;
}
real_t KinematicBody2D::get_floor_angle(const Vector2 &p_up_direction) const {
ERR_FAIL_COND_V(p_up_direction == Vector2(), 0);
return Math::acos(floor_normal.dot(p_up_direction));
}
Vector2 KinematicBody2D::get_floor_velocity() const {
return floor_velocity;
}
void KinematicBody2D::set_moving_platform_apply_velocity_on_leave(MovingPlatformApplyVelocityOnLeave p_on_leave_apply_velocity) {
moving_platform_apply_velocity_on_leave = p_on_leave_apply_velocity;
}
KinematicBody2D::MovingPlatformApplyVelocityOnLeave KinematicBody2D::get_moving_platform_apply_velocity_on_leave() const {
return moving_platform_apply_velocity_on_leave;
}
bool KinematicBody2D::test_move(const Transform2D &p_from, const Vector2 &p_motion, bool p_infinite_inertia) {
ERR_FAIL_COND_V(!is_inside_tree(), false);
Physics2DServer::MotionResult result;
bool colliding = Physics2DServer::get_singleton()->body_test_motion(get_rid(), p_from, p_motion, p_infinite_inertia, margin, &result);
if (colliding) {
// Don't report collision when the whole motion is done.
return (result.collision_safe_fraction < 1.0);
} else {
return false;
}
}
void KinematicBody2D::set_safe_margin(float p_margin) {
margin = p_margin;
}
float KinematicBody2D::get_safe_margin() const {
return margin;
}
int KinematicBody2D::get_slide_count() const {
return colliders.size();
}
KinematicBody2D::Collision KinematicBody2D::get_slide_collision(int p_bounce) const {
ERR_FAIL_INDEX_V(p_bounce, colliders.size(), Collision());
return colliders[p_bounce];
}
Ref<KinematicCollision2D> KinematicBody2D::_get_slide_collision(int p_bounce) {
ERR_FAIL_INDEX_V(p_bounce, colliders.size(), Ref<KinematicCollision2D>());
if (p_bounce >= slide_colliders.size()) {
slide_colliders.resize(p_bounce + 1);
}
// Create a new instance when the cached reference is invalid or still in use in script.
if (slide_colliders[p_bounce].is_null() || slide_colliders[p_bounce]->reference_get_count() > 1) {
slide_colliders.write[p_bounce].instance();
slide_colliders.write[p_bounce]->owner = this;
}
slide_colliders.write[p_bounce]->collision = colliders[p_bounce];
return slide_colliders[p_bounce];
}
Ref<KinematicCollision2D> KinematicBody2D::_get_last_slide_collision() {
if (colliders.size() == 0) {
return Ref<KinematicCollision2D>();
}
return _get_slide_collision(colliders.size() - 1);
}
void KinematicBody2D::set_sync_to_physics(bool p_enable) {
if (sync_to_physics == p_enable) {
return;
}
sync_to_physics = p_enable;
if (Engine::get_singleton()->is_editor_hint()) {
return;
}
if (p_enable) {
Physics2DServer::get_singleton()->body_set_force_integration_callback(get_rid(), this, "_direct_state_changed");
set_only_update_transform_changes(true);
set_notify_local_transform(true);
} else {
Physics2DServer::get_singleton()->body_set_force_integration_callback(get_rid(), nullptr, "");
set_only_update_transform_changes(false);
set_notify_local_transform(false);
}
}
bool KinematicBody2D::is_sync_to_physics_enabled() const {
return sync_to_physics;
}
void KinematicBody2D::_direct_state_changed(Object *p_state) {
if (!sync_to_physics) {
return;
}
Physics2DDirectBodyState *state = Object::cast_to<Physics2DDirectBodyState>(p_state);
ERR_FAIL_COND_MSG(!state, "Method '_direct_state_changed' must receive a valid Physics2DDirectBodyState object as argument");
last_valid_transform = state->get_transform();
set_notify_local_transform(false);
set_global_transform(last_valid_transform);
set_notify_local_transform(true);
}
void KinematicBody2D::_notification(int p_what) {
if (p_what == NOTIFICATION_ENTER_TREE) {
last_valid_transform = get_global_transform();
// Reset move_and_slide() data.
on_floor = false;
on_floor_body = RID();
on_ceiling = false;
on_wall = false;
colliders.clear();
floor_velocity = Vector2();
}
if (p_what == NOTIFICATION_LOCAL_TRANSFORM_CHANGED) {
//used by sync to physics, send the new transform to the physics
Transform2D new_transform = get_global_transform();
Physics2DServer::get_singleton()->body_set_state(get_rid(), Physics2DServer::BODY_STATE_TRANSFORM, new_transform);
//but then revert changes
set_notify_local_transform(false);
set_global_transform(last_valid_transform);
set_notify_local_transform(true);
}
}
void KinematicBody2D::_bind_methods() {
ClassDB::bind_method(D_METHOD("move_and_collide", "rel_vec", "infinite_inertia", "exclude_raycast_shapes", "test_only"), &KinematicBody2D::_move, DEFVAL(true), DEFVAL(true), DEFVAL(false));
ClassDB::bind_method(D_METHOD("move_and_slide", "linear_velocity", "up_direction", "stop_on_slope", "max_slides", "floor_max_angle", "infinite_inertia"), &KinematicBody2D::move_and_slide, DEFVAL(Vector2(0, 0)), DEFVAL(false), DEFVAL(4), DEFVAL(Math::deg2rad((float)45)), DEFVAL(true));
ClassDB::bind_method(D_METHOD("move_and_slide_with_snap", "linear_velocity", "snap", "up_direction", "stop_on_slope", "max_slides", "floor_max_angle", "infinite_inertia"), &KinematicBody2D::move_and_slide_with_snap, DEFVAL(Vector2(0, 0)), DEFVAL(false), DEFVAL(4), DEFVAL(Math::deg2rad((float)45)), DEFVAL(true));
ClassDB::bind_method(D_METHOD("test_move", "from", "rel_vec", "infinite_inertia"), &KinematicBody2D::test_move, DEFVAL(true));
ClassDB::bind_method(D_METHOD("is_on_floor"), &KinematicBody2D::is_on_floor);
ClassDB::bind_method(D_METHOD("is_on_ceiling"), &KinematicBody2D::is_on_ceiling);
ClassDB::bind_method(D_METHOD("is_on_wall"), &KinematicBody2D::is_on_wall);
ClassDB::bind_method(D_METHOD("get_floor_normal"), &KinematicBody2D::get_floor_normal);
ClassDB::bind_method(D_METHOD("get_floor_angle", "up_direction"), &KinematicBody2D::get_floor_angle, DEFVAL(Vector2(0.0, -1.0)));
ClassDB::bind_method(D_METHOD("get_floor_velocity"), &KinematicBody2D::get_floor_velocity);
ClassDB::bind_method(D_METHOD("set_safe_margin", "pixels"), &KinematicBody2D::set_safe_margin);
ClassDB::bind_method(D_METHOD("get_safe_margin"), &KinematicBody2D::get_safe_margin);
ClassDB::bind_method(D_METHOD("set_moving_platform_apply_velocity_on_leave", "on_leave_apply_velocity"), &KinematicBody2D::set_moving_platform_apply_velocity_on_leave);
ClassDB::bind_method(D_METHOD("get_moving_platform_apply_velocity_on_leave"), &KinematicBody2D::get_moving_platform_apply_velocity_on_leave);
ClassDB::bind_method(D_METHOD("get_slide_count"), &KinematicBody2D::get_slide_count);
ClassDB::bind_method(D_METHOD("get_slide_collision", "slide_idx"), &KinematicBody2D::_get_slide_collision);
ClassDB::bind_method(D_METHOD("get_last_slide_collision"), &KinematicBody2D::_get_last_slide_collision);
ClassDB::bind_method(D_METHOD("set_sync_to_physics", "enable"), &KinematicBody2D::set_sync_to_physics);
ClassDB::bind_method(D_METHOD("is_sync_to_physics_enabled"), &KinematicBody2D::is_sync_to_physics_enabled);
ClassDB::bind_method(D_METHOD("_direct_state_changed"), &KinematicBody2D::_direct_state_changed);
ADD_PROPERTY(PropertyInfo(Variant::REAL, "collision/safe_margin", PROPERTY_HINT_RANGE, "0.001,256,0.001"), "set_safe_margin", "get_safe_margin");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "motion/sync_to_physics"), "set_sync_to_physics", "is_sync_to_physics_enabled");
ADD_GROUP("Moving Platform", "moving_platform");
ADD_PROPERTY(PropertyInfo(Variant::INT, "moving_platform_apply_velocity_on_leave", PROPERTY_HINT_ENUM, "Always,Upward Only,Never", PROPERTY_USAGE_DEFAULT), "set_moving_platform_apply_velocity_on_leave", "get_moving_platform_apply_velocity_on_leave");
BIND_ENUM_CONSTANT(PLATFORM_VEL_ON_LEAVE_ALWAYS);
BIND_ENUM_CONSTANT(PLATFORM_VEL_ON_LEAVE_UPWARD_ONLY);
BIND_ENUM_CONSTANT(PLATFORM_VEL_ON_LEAVE_NEVER);
}
KinematicBody2D::KinematicBody2D() :
PhysicsBody2D(Physics2DServer::BODY_MODE_KINEMATIC) {
margin = 0.08;
on_floor = false;
on_ceiling = false;
on_wall = false;
sync_to_physics = false;
}
KinematicBody2D::~KinematicBody2D() {
if (motion_cache.is_valid()) {
motion_cache->owner = nullptr;
}
for (int i = 0; i < slide_colliders.size(); i++) {
if (slide_colliders[i].is_valid()) {
slide_colliders.write[i]->owner = nullptr;
}
}
}
////////////////////////
Vector2 KinematicCollision2D::get_position() const {
return collision.collision;
}
Vector2 KinematicCollision2D::get_normal() const {
return collision.normal;
}
Vector2 KinematicCollision2D::get_travel() const {
return collision.travel;
}
Vector2 KinematicCollision2D::get_remainder() const {
return collision.remainder;
}
real_t KinematicCollision2D::get_angle(const Vector2 &p_up_direction) const {
ERR_FAIL_COND_V(p_up_direction == Vector2(), 0);
return collision.get_angle(p_up_direction);
}
Object *KinematicCollision2D::get_local_shape() const {
if (!owner) {
return nullptr;
}
uint32_t ownerid = owner->shape_find_owner(collision.local_shape);
return owner->shape_owner_get_owner(ownerid);
}
Object *KinematicCollision2D::get_collider() const {
if (collision.collider) {
return ObjectDB::get_instance(collision.collider);
}
return nullptr;
}
ObjectID KinematicCollision2D::get_collider_id() const {
return collision.collider;
}
RID KinematicCollision2D::get_collider_rid() const {
return collision.collider_rid;
}
Object *KinematicCollision2D::get_collider_shape() const {
Object *collider = get_collider();
if (collider) {
CollisionObject2D *obj2d = Object::cast_to<CollisionObject2D>(collider);
if (obj2d) {
uint32_t ownerid = obj2d->shape_find_owner(collision.collider_shape);
return obj2d->shape_owner_get_owner(ownerid);
}
}
return nullptr;
}
int KinematicCollision2D::get_collider_shape_index() const {
return collision.collider_shape;
}
Vector2 KinematicCollision2D::get_collider_velocity() const {
return collision.collider_vel;
}
Variant KinematicCollision2D::get_collider_metadata() const {
return Variant();
}
void KinematicCollision2D::_bind_methods() {
ClassDB::bind_method(D_METHOD("get_position"), &KinematicCollision2D::get_position);
ClassDB::bind_method(D_METHOD("get_normal"), &KinematicCollision2D::get_normal);
ClassDB::bind_method(D_METHOD("get_travel"), &KinematicCollision2D::get_travel);
ClassDB::bind_method(D_METHOD("get_remainder"), &KinematicCollision2D::get_remainder);
ClassDB::bind_method(D_METHOD("get_angle", "up_direction"), &KinematicCollision2D::get_angle, DEFVAL(Vector2(0.0, -1.0)));
ClassDB::bind_method(D_METHOD("get_local_shape"), &KinematicCollision2D::get_local_shape);
ClassDB::bind_method(D_METHOD("get_collider"), &KinematicCollision2D::get_collider);
ClassDB::bind_method(D_METHOD("get_collider_id"), &KinematicCollision2D::get_collider_id);
ClassDB::bind_method(D_METHOD("get_collider_rid"), &KinematicCollision2D::get_collider_rid);
ClassDB::bind_method(D_METHOD("get_collider_shape"), &KinematicCollision2D::get_collider_shape);
ClassDB::bind_method(D_METHOD("get_collider_shape_index"), &KinematicCollision2D::get_collider_shape_index);
ClassDB::bind_method(D_METHOD("get_collider_velocity"), &KinematicCollision2D::get_collider_velocity);
ClassDB::bind_method(D_METHOD("get_collider_metadata"), &KinematicCollision2D::get_collider_metadata);
ADD_PROPERTY(PropertyInfo(Variant::VECTOR2, "position"), "", "get_position");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR2, "normal"), "", "get_normal");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR2, "travel"), "", "get_travel");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR2, "remainder"), "", "get_remainder");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "local_shape"), "", "get_local_shape");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "collider"), "", "get_collider");
ADD_PROPERTY(PropertyInfo(Variant::INT, "collider_id"), "", "get_collider_id");
ADD_PROPERTY(PropertyInfo(Variant::_RID, "collider_rid"), "", "get_collider_rid");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "collider_shape"), "", "get_collider_shape");
ADD_PROPERTY(PropertyInfo(Variant::INT, "collider_shape_index"), "", "get_collider_shape_index");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR2, "collider_velocity"), "", "get_collider_velocity");
ADD_PROPERTY(PropertyInfo(Variant::NIL, "collider_metadata", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NIL_IS_VARIANT), "", "get_collider_metadata");
}
KinematicCollision2D::KinematicCollision2D() {
collision.collider = 0;
collision.collider_shape = 0;
collision.local_shape = 0;
owner = nullptr;
}