godot/drivers/gles3/rasterizer_scene_gles3.cpp

3542 lines
146 KiB
C++

/**************************************************************************/
/* rasterizer_scene_gles3.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "rasterizer_scene_gles3.h"
#include "drivers/gles3/effects/copy_effects.h"
#include "rasterizer_gles3.h"
#include "storage/config.h"
#include "storage/mesh_storage.h"
#include "storage/particles_storage.h"
#include "storage/texture_storage.h"
#include "core/config/project_settings.h"
#include "core/templates/sort_array.h"
#include "servers/rendering/rendering_server_default.h"
#include "servers/rendering/rendering_server_globals.h"
#ifdef GLES3_ENABLED
RasterizerSceneGLES3 *RasterizerSceneGLES3::singleton = nullptr;
RenderGeometryInstance *RasterizerSceneGLES3::geometry_instance_create(RID p_base) {
RS::InstanceType type = RSG::utilities->get_base_type(p_base);
ERR_FAIL_COND_V(!((1 << type) & RS::INSTANCE_GEOMETRY_MASK), nullptr);
GeometryInstanceGLES3 *ginstance = geometry_instance_alloc.alloc();
ginstance->data = memnew(GeometryInstanceGLES3::Data);
ginstance->data->base = p_base;
ginstance->data->base_type = type;
ginstance->data->dependency_tracker.userdata = ginstance;
ginstance->data->dependency_tracker.changed_callback = _geometry_instance_dependency_changed;
ginstance->data->dependency_tracker.deleted_callback = _geometry_instance_dependency_deleted;
ginstance->_mark_dirty();
return ginstance;
}
uint32_t RasterizerSceneGLES3::geometry_instance_get_pair_mask() {
return (1 << RS::INSTANCE_LIGHT);
}
void RasterizerSceneGLES3::GeometryInstanceGLES3::pair_light_instances(const RID *p_light_instances, uint32_t p_light_instance_count) {
GLES3::Config *config = GLES3::Config::get_singleton();
paired_omni_light_count = 0;
paired_spot_light_count = 0;
paired_omni_lights.clear();
paired_spot_lights.clear();
for (uint32_t i = 0; i < p_light_instance_count; i++) {
RS::LightType type = GLES3::LightStorage::get_singleton()->light_instance_get_type(p_light_instances[i]);
switch (type) {
case RS::LIGHT_OMNI: {
if (paired_omni_light_count < (uint32_t)config->max_lights_per_object) {
paired_omni_lights.push_back(p_light_instances[i]);
paired_omni_light_count++;
}
} break;
case RS::LIGHT_SPOT: {
if (paired_spot_light_count < (uint32_t)config->max_lights_per_object) {
paired_spot_lights.push_back(p_light_instances[i]);
paired_spot_light_count++;
}
} break;
default:
break;
}
}
}
void RasterizerSceneGLES3::geometry_instance_free(RenderGeometryInstance *p_geometry_instance) {
GeometryInstanceGLES3 *ginstance = static_cast<GeometryInstanceGLES3 *>(p_geometry_instance);
ERR_FAIL_NULL(ginstance);
GeometryInstanceSurface *surf = ginstance->surface_caches;
while (surf) {
GeometryInstanceSurface *next = surf->next;
geometry_instance_surface_alloc.free(surf);
surf = next;
}
memdelete(ginstance->data);
geometry_instance_alloc.free(ginstance);
}
void RasterizerSceneGLES3::GeometryInstanceGLES3::_mark_dirty() {
if (dirty_list_element.in_list()) {
return;
}
//clear surface caches
GeometryInstanceSurface *surf = surface_caches;
while (surf) {
GeometryInstanceSurface *next = surf->next;
RasterizerSceneGLES3::get_singleton()->geometry_instance_surface_alloc.free(surf);
surf = next;
}
surface_caches = nullptr;
RasterizerSceneGLES3::get_singleton()->geometry_instance_dirty_list.add(&dirty_list_element);
}
void RasterizerSceneGLES3::GeometryInstanceGLES3::set_use_lightmap(RID p_lightmap_instance, const Rect2 &p_lightmap_uv_scale, int p_lightmap_slice_index) {
}
void RasterizerSceneGLES3::GeometryInstanceGLES3::set_lightmap_capture(const Color *p_sh9) {
}
void RasterizerSceneGLES3::_update_dirty_geometry_instances() {
while (geometry_instance_dirty_list.first()) {
_geometry_instance_update(geometry_instance_dirty_list.first()->self());
}
}
void RasterizerSceneGLES3::_geometry_instance_dependency_changed(Dependency::DependencyChangedNotification p_notification, DependencyTracker *p_tracker) {
switch (p_notification) {
case Dependency::DEPENDENCY_CHANGED_MATERIAL:
case Dependency::DEPENDENCY_CHANGED_MESH:
case Dependency::DEPENDENCY_CHANGED_PARTICLES:
case Dependency::DEPENDENCY_CHANGED_MULTIMESH:
case Dependency::DEPENDENCY_CHANGED_SKELETON_DATA: {
static_cast<RenderGeometryInstance *>(p_tracker->userdata)->_mark_dirty();
static_cast<GeometryInstanceGLES3 *>(p_tracker->userdata)->data->dirty_dependencies = true;
} break;
case Dependency::DEPENDENCY_CHANGED_MULTIMESH_VISIBLE_INSTANCES: {
GeometryInstanceGLES3 *ginstance = static_cast<GeometryInstanceGLES3 *>(p_tracker->userdata);
if (ginstance->data->base_type == RS::INSTANCE_MULTIMESH) {
ginstance->instance_count = GLES3::MeshStorage::get_singleton()->multimesh_get_instances_to_draw(ginstance->data->base);
}
} break;
default: {
//rest of notifications of no interest
} break;
}
}
void RasterizerSceneGLES3::_geometry_instance_dependency_deleted(const RID &p_dependency, DependencyTracker *p_tracker) {
static_cast<RenderGeometryInstance *>(p_tracker->userdata)->_mark_dirty();
static_cast<GeometryInstanceGLES3 *>(p_tracker->userdata)->data->dirty_dependencies = true;
}
void RasterizerSceneGLES3::_geometry_instance_add_surface_with_material(GeometryInstanceGLES3 *ginstance, uint32_t p_surface, GLES3::SceneMaterialData *p_material, uint32_t p_material_id, uint32_t p_shader_id, RID p_mesh) {
GLES3::MeshStorage *mesh_storage = GLES3::MeshStorage::get_singleton();
bool has_read_screen_alpha = p_material->shader_data->uses_screen_texture || p_material->shader_data->uses_depth_texture || p_material->shader_data->uses_normal_texture;
bool has_base_alpha = ((p_material->shader_data->uses_alpha && !p_material->shader_data->uses_alpha_clip) || has_read_screen_alpha);
bool has_blend_alpha = p_material->shader_data->uses_blend_alpha;
bool has_alpha = has_base_alpha || has_blend_alpha;
uint32_t flags = 0;
if (p_material->shader_data->uses_screen_texture) {
flags |= GeometryInstanceSurface::FLAG_USES_SCREEN_TEXTURE;
}
if (p_material->shader_data->uses_depth_texture) {
flags |= GeometryInstanceSurface::FLAG_USES_DEPTH_TEXTURE;
}
if (p_material->shader_data->uses_normal_texture) {
flags |= GeometryInstanceSurface::FLAG_USES_NORMAL_TEXTURE;
}
if (ginstance->data->cast_double_sided_shadows) {
flags |= GeometryInstanceSurface::FLAG_USES_DOUBLE_SIDED_SHADOWS;
}
if (has_alpha || has_read_screen_alpha || p_material->shader_data->depth_draw == GLES3::SceneShaderData::DEPTH_DRAW_DISABLED || p_material->shader_data->depth_test == GLES3::SceneShaderData::DEPTH_TEST_DISABLED) {
//material is only meant for alpha pass
flags |= GeometryInstanceSurface::FLAG_PASS_ALPHA;
if (p_material->shader_data->uses_depth_prepass_alpha && !(p_material->shader_data->depth_draw == GLES3::SceneShaderData::DEPTH_DRAW_DISABLED || p_material->shader_data->depth_test == GLES3::SceneShaderData::DEPTH_TEST_DISABLED)) {
flags |= GeometryInstanceSurface::FLAG_PASS_DEPTH;
flags |= GeometryInstanceSurface::FLAG_PASS_SHADOW;
}
} else {
flags |= GeometryInstanceSurface::FLAG_PASS_OPAQUE;
flags |= GeometryInstanceSurface::FLAG_PASS_DEPTH;
flags |= GeometryInstanceSurface::FLAG_PASS_SHADOW;
}
GLES3::SceneMaterialData *material_shadow = nullptr;
void *surface_shadow = nullptr;
if (!p_material->shader_data->uses_particle_trails && !p_material->shader_data->writes_modelview_or_projection && !p_material->shader_data->uses_vertex && !p_material->shader_data->uses_discard && !p_material->shader_data->uses_depth_prepass_alpha && !p_material->shader_data->uses_alpha_clip && !p_material->shader_data->uses_world_coordinates) {
flags |= GeometryInstanceSurface::FLAG_USES_SHARED_SHADOW_MATERIAL;
material_shadow = static_cast<GLES3::SceneMaterialData *>(GLES3::MaterialStorage::get_singleton()->material_get_data(scene_globals.default_material, RS::SHADER_SPATIAL));
RID shadow_mesh = mesh_storage->mesh_get_shadow_mesh(p_mesh);
if (shadow_mesh.is_valid()) {
surface_shadow = mesh_storage->mesh_get_surface(shadow_mesh, p_surface);
}
} else {
material_shadow = p_material;
}
GeometryInstanceSurface *sdcache = geometry_instance_surface_alloc.alloc();
sdcache->flags = flags;
sdcache->shader = p_material->shader_data;
sdcache->material = p_material;
sdcache->surface = mesh_storage->mesh_get_surface(p_mesh, p_surface);
sdcache->primitive = mesh_storage->mesh_surface_get_primitive(sdcache->surface);
sdcache->surface_index = p_surface;
if (ginstance->data->dirty_dependencies) {
RSG::utilities->base_update_dependency(p_mesh, &ginstance->data->dependency_tracker);
}
//shadow
sdcache->shader_shadow = material_shadow->shader_data;
sdcache->material_shadow = material_shadow;
sdcache->surface_shadow = surface_shadow ? surface_shadow : sdcache->surface;
sdcache->owner = ginstance;
sdcache->next = ginstance->surface_caches;
ginstance->surface_caches = sdcache;
//sortkey
sdcache->sort.sort_key1 = 0;
sdcache->sort.sort_key2 = 0;
sdcache->sort.surface_index = p_surface;
sdcache->sort.material_id_low = p_material_id & 0x0000FFFF;
sdcache->sort.material_id_hi = p_material_id >> 16;
sdcache->sort.shader_id = p_shader_id;
sdcache->sort.geometry_id = p_mesh.get_local_index();
sdcache->sort.priority = p_material->priority;
GLES3::Mesh::Surface *s = reinterpret_cast<GLES3::Mesh::Surface *>(sdcache->surface);
if (p_material->shader_data->uses_tangent && !(s->format & RS::ARRAY_FORMAT_TANGENT)) {
WARN_PRINT_ED("Attempting to use a shader that requires tangents with a mesh that doesn't contain tangents. Ensure that meshes are imported with the 'ensure_tangents' option. If creating your own meshes, add an `ARRAY_TANGENT` array (when using ArrayMesh) or call `generate_tangents()` (when using SurfaceTool).");
}
}
void RasterizerSceneGLES3::_geometry_instance_add_surface_with_material_chain(GeometryInstanceGLES3 *ginstance, uint32_t p_surface, GLES3::SceneMaterialData *p_material_data, RID p_mat_src, RID p_mesh) {
GLES3::SceneMaterialData *material_data = p_material_data;
GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton();
_geometry_instance_add_surface_with_material(ginstance, p_surface, material_data, p_mat_src.get_local_index(), material_storage->material_get_shader_id(p_mat_src), p_mesh);
while (material_data->next_pass.is_valid()) {
RID next_pass = material_data->next_pass;
material_data = static_cast<GLES3::SceneMaterialData *>(material_storage->material_get_data(next_pass, RS::SHADER_SPATIAL));
if (!material_data || !material_data->shader_data->valid) {
break;
}
if (ginstance->data->dirty_dependencies) {
material_storage->material_update_dependency(next_pass, &ginstance->data->dependency_tracker);
}
_geometry_instance_add_surface_with_material(ginstance, p_surface, material_data, next_pass.get_local_index(), material_storage->material_get_shader_id(next_pass), p_mesh);
}
}
void RasterizerSceneGLES3::_geometry_instance_add_surface(GeometryInstanceGLES3 *ginstance, uint32_t p_surface, RID p_material, RID p_mesh) {
GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton();
RID m_src;
m_src = ginstance->data->material_override.is_valid() ? ginstance->data->material_override : p_material;
GLES3::SceneMaterialData *material_data = nullptr;
if (m_src.is_valid()) {
material_data = static_cast<GLES3::SceneMaterialData *>(material_storage->material_get_data(m_src, RS::SHADER_SPATIAL));
if (!material_data || !material_data->shader_data->valid) {
material_data = nullptr;
}
}
if (material_data) {
if (ginstance->data->dirty_dependencies) {
material_storage->material_update_dependency(m_src, &ginstance->data->dependency_tracker);
}
} else {
material_data = static_cast<GLES3::SceneMaterialData *>(material_storage->material_get_data(scene_globals.default_material, RS::SHADER_SPATIAL));
m_src = scene_globals.default_material;
}
ERR_FAIL_NULL(material_data);
_geometry_instance_add_surface_with_material_chain(ginstance, p_surface, material_data, m_src, p_mesh);
if (ginstance->data->material_overlay.is_valid()) {
m_src = ginstance->data->material_overlay;
material_data = static_cast<GLES3::SceneMaterialData *>(material_storage->material_get_data(m_src, RS::SHADER_SPATIAL));
if (material_data && material_data->shader_data->valid) {
if (ginstance->data->dirty_dependencies) {
material_storage->material_update_dependency(m_src, &ginstance->data->dependency_tracker);
}
_geometry_instance_add_surface_with_material_chain(ginstance, p_surface, material_data, m_src, p_mesh);
}
}
}
void RasterizerSceneGLES3::_geometry_instance_update(RenderGeometryInstance *p_geometry_instance) {
GLES3::MeshStorage *mesh_storage = GLES3::MeshStorage::get_singleton();
GLES3::ParticlesStorage *particles_storage = GLES3::ParticlesStorage::get_singleton();
GeometryInstanceGLES3 *ginstance = static_cast<GeometryInstanceGLES3 *>(p_geometry_instance);
if (ginstance->data->dirty_dependencies) {
ginstance->data->dependency_tracker.update_begin();
}
//add geometry for drawing
switch (ginstance->data->base_type) {
case RS::INSTANCE_MESH: {
const RID *materials = nullptr;
uint32_t surface_count;
RID mesh = ginstance->data->base;
materials = mesh_storage->mesh_get_surface_count_and_materials(mesh, surface_count);
if (materials) {
//if no materials, no surfaces.
const RID *inst_materials = ginstance->data->surface_materials.ptr();
uint32_t surf_mat_count = ginstance->data->surface_materials.size();
for (uint32_t j = 0; j < surface_count; j++) {
RID material = (j < surf_mat_count && inst_materials[j].is_valid()) ? inst_materials[j] : materials[j];
_geometry_instance_add_surface(ginstance, j, material, mesh);
}
}
ginstance->instance_count = -1;
} break;
case RS::INSTANCE_MULTIMESH: {
RID mesh = mesh_storage->multimesh_get_mesh(ginstance->data->base);
if (mesh.is_valid()) {
const RID *materials = nullptr;
uint32_t surface_count;
materials = mesh_storage->mesh_get_surface_count_and_materials(mesh, surface_count);
if (materials) {
for (uint32_t j = 0; j < surface_count; j++) {
_geometry_instance_add_surface(ginstance, j, materials[j], mesh);
}
}
ginstance->instance_count = mesh_storage->multimesh_get_instances_to_draw(ginstance->data->base);
}
} break;
case RS::INSTANCE_PARTICLES: {
int draw_passes = particles_storage->particles_get_draw_passes(ginstance->data->base);
for (int j = 0; j < draw_passes; j++) {
RID mesh = particles_storage->particles_get_draw_pass_mesh(ginstance->data->base, j);
if (!mesh.is_valid()) {
continue;
}
const RID *materials = nullptr;
uint32_t surface_count;
materials = mesh_storage->mesh_get_surface_count_and_materials(mesh, surface_count);
if (materials) {
for (uint32_t k = 0; k < surface_count; k++) {
_geometry_instance_add_surface(ginstance, k, materials[k], mesh);
}
}
}
ginstance->instance_count = particles_storage->particles_get_amount(ginstance->data->base);
} break;
default: {
}
}
bool store_transform = true;
ginstance->base_flags = 0;
if (ginstance->data->base_type == RS::INSTANCE_MULTIMESH) {
ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH;
if (mesh_storage->multimesh_get_transform_format(ginstance->data->base) == RS::MULTIMESH_TRANSFORM_2D) {
ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH_FORMAT_2D;
}
if (mesh_storage->multimesh_uses_colors(ginstance->data->base)) {
ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH_HAS_COLOR;
}
if (mesh_storage->multimesh_uses_custom_data(ginstance->data->base)) {
ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH_HAS_CUSTOM_DATA;
}
} else if (ginstance->data->base_type == RS::INSTANCE_PARTICLES) {
ginstance->base_flags |= INSTANCE_DATA_FLAG_PARTICLES;
ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH;
ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH_HAS_COLOR;
ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH_HAS_CUSTOM_DATA;
if (!particles_storage->particles_is_using_local_coords(ginstance->data->base)) {
store_transform = false;
}
} else if (ginstance->data->base_type == RS::INSTANCE_MESH) {
if (mesh_storage->skeleton_is_valid(ginstance->data->skeleton)) {
if (ginstance->data->dirty_dependencies) {
mesh_storage->skeleton_update_dependency(ginstance->data->skeleton, &ginstance->data->dependency_tracker);
}
}
}
ginstance->store_transform_cache = store_transform;
if (ginstance->data->dirty_dependencies) {
ginstance->data->dependency_tracker.update_end();
ginstance->data->dirty_dependencies = false;
}
ginstance->dirty_list_element.remove_from_list();
}
/* SKY API */
void RasterizerSceneGLES3::_free_sky_data(Sky *p_sky) {
if (p_sky->radiance != 0) {
GLES3::Utilities::get_singleton()->texture_free_data(p_sky->radiance);
p_sky->radiance = 0;
GLES3::Utilities::get_singleton()->texture_free_data(p_sky->raw_radiance);
p_sky->raw_radiance = 0;
glDeleteFramebuffers(1, &p_sky->radiance_framebuffer);
p_sky->radiance_framebuffer = 0;
}
}
RID RasterizerSceneGLES3::sky_allocate() {
return sky_owner.allocate_rid();
}
void RasterizerSceneGLES3::sky_initialize(RID p_rid) {
sky_owner.initialize_rid(p_rid);
}
void RasterizerSceneGLES3::sky_set_radiance_size(RID p_sky, int p_radiance_size) {
Sky *sky = sky_owner.get_or_null(p_sky);
ERR_FAIL_NULL(sky);
ERR_FAIL_COND_MSG(p_radiance_size < 32 || p_radiance_size > 2048, "Sky radiance size must be between 32 and 2048");
if (sky->radiance_size == p_radiance_size) {
return; // No need to update
}
sky->radiance_size = p_radiance_size;
_free_sky_data(sky);
_invalidate_sky(sky);
}
void RasterizerSceneGLES3::sky_set_mode(RID p_sky, RS::SkyMode p_mode) {
Sky *sky = sky_owner.get_or_null(p_sky);
ERR_FAIL_NULL(sky);
if (sky->mode == p_mode) {
return;
}
sky->mode = p_mode;
_invalidate_sky(sky);
}
void RasterizerSceneGLES3::sky_set_material(RID p_sky, RID p_material) {
Sky *sky = sky_owner.get_or_null(p_sky);
ERR_FAIL_NULL(sky);
if (sky->material == p_material) {
return;
}
sky->material = p_material;
_invalidate_sky(sky);
}
float RasterizerSceneGLES3::sky_get_baked_exposure(RID p_sky) const {
Sky *sky = sky_owner.get_or_null(p_sky);
ERR_FAIL_NULL_V(sky, 1.0);
return sky->baked_exposure;
}
void RasterizerSceneGLES3::_invalidate_sky(Sky *p_sky) {
if (!p_sky->dirty) {
p_sky->dirty = true;
p_sky->dirty_list = dirty_sky_list;
dirty_sky_list = p_sky;
}
}
void RasterizerSceneGLES3::_update_dirty_skys() {
Sky *sky = dirty_sky_list;
while (sky) {
if (sky->radiance == 0) {
sky->mipmap_count = Image::get_image_required_mipmaps(sky->radiance_size, sky->radiance_size, Image::FORMAT_RGBA8) - 1;
// Left uninitialized, will attach a texture at render time
glGenFramebuffers(1, &sky->radiance_framebuffer);
GLenum internal_format = GL_RGB10_A2;
glGenTextures(1, &sky->radiance);
glBindTexture(GL_TEXTURE_CUBE_MAP, sky->radiance);
#ifdef GL_API_ENABLED
if (RasterizerGLES3::is_gles_over_gl()) {
GLenum format = GL_RGBA;
GLenum type = GL_UNSIGNED_INT_2_10_10_10_REV;
//TODO, on low-end compare this to allocating each face of each mip individually
// see: https://www.khronos.org/registry/OpenGL-Refpages/es3.0/html/glTexStorage2D.xhtml
for (int i = 0; i < 6; i++) {
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, internal_format, sky->radiance_size, sky->radiance_size, 0, format, type, nullptr);
}
glGenerateMipmap(GL_TEXTURE_CUBE_MAP);
}
#endif // GL_API_ENABLED
#ifdef GLES_API_ENABLED
if (!RasterizerGLES3::is_gles_over_gl()) {
glTexStorage2D(GL_TEXTURE_CUBE_MAP, sky->mipmap_count, internal_format, sky->radiance_size, sky->radiance_size);
}
#endif // GLES_API_ENABLED
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_BASE_LEVEL, 0);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAX_LEVEL, sky->mipmap_count - 1);
GLES3::Utilities::get_singleton()->texture_allocated_data(sky->radiance, Image::get_image_data_size(sky->radiance_size, sky->radiance_size, Image::FORMAT_RGBA8, true), "Sky radiance map");
glGenTextures(1, &sky->raw_radiance);
glBindTexture(GL_TEXTURE_CUBE_MAP, sky->raw_radiance);
#ifdef GL_API_ENABLED
if (RasterizerGLES3::is_gles_over_gl()) {
GLenum format = GL_RGBA;
GLenum type = GL_UNSIGNED_INT_2_10_10_10_REV;
//TODO, on low-end compare this to allocating each face of each mip individually
// see: https://www.khronos.org/registry/OpenGL-Refpages/es3.0/html/glTexStorage2D.xhtml
for (int i = 0; i < 6; i++) {
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, internal_format, sky->radiance_size, sky->radiance_size, 0, format, type, nullptr);
}
glGenerateMipmap(GL_TEXTURE_CUBE_MAP);
}
#endif // GL_API_ENABLED
#ifdef GLES_API_ENABLED
if (!RasterizerGLES3::is_gles_over_gl()) {
glTexStorage2D(GL_TEXTURE_CUBE_MAP, sky->mipmap_count, internal_format, sky->radiance_size, sky->radiance_size);
}
#endif // GLES_API_ENABLED
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_BASE_LEVEL, 0);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAX_LEVEL, sky->mipmap_count - 1);
glBindTexture(GL_TEXTURE_CUBE_MAP, 0);
GLES3::Utilities::get_singleton()->texture_allocated_data(sky->raw_radiance, Image::get_image_data_size(sky->radiance_size, sky->radiance_size, Image::FORMAT_RGBA8, true), "Sky raw radiance map");
}
sky->reflection_dirty = true;
sky->processing_layer = 0;
Sky *next = sky->dirty_list;
sky->dirty_list = nullptr;
sky->dirty = false;
sky = next;
}
dirty_sky_list = nullptr;
}
void RasterizerSceneGLES3::_setup_sky(const RenderDataGLES3 *p_render_data, const PagedArray<RID> &p_lights, const Projection &p_projection, const Transform3D &p_transform, const Size2i p_screen_size) {
GLES3::LightStorage *light_storage = GLES3::LightStorage::get_singleton();
GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton();
ERR_FAIL_COND(p_render_data->environment.is_null());
GLES3::SkyMaterialData *material = nullptr;
Sky *sky = sky_owner.get_or_null(environment_get_sky(p_render_data->environment));
RID sky_material;
GLES3::SkyShaderData *shader_data = nullptr;
if (sky) {
sky_material = sky->material;
if (sky_material.is_valid()) {
material = static_cast<GLES3::SkyMaterialData *>(material_storage->material_get_data(sky_material, RS::SHADER_SKY));
if (!material || !material->shader_data->valid) {
material = nullptr;
}
}
}
if (!material) {
sky_material = sky_globals.default_material;
material = static_cast<GLES3::SkyMaterialData *>(material_storage->material_get_data(sky_material, RS::SHADER_SKY));
}
ERR_FAIL_NULL(material);
shader_data = material->shader_data;
ERR_FAIL_NULL(shader_data);
if (sky) {
if (shader_data->uses_time && time - sky->prev_time > 0.00001) {
sky->prev_time = time;
sky->reflection_dirty = true;
RenderingServerDefault::redraw_request();
}
if (material != sky->prev_material) {
sky->prev_material = material;
sky->reflection_dirty = true;
}
if (material->uniform_set_updated) {
material->uniform_set_updated = false;
sky->reflection_dirty = true;
}
if (!p_transform.origin.is_equal_approx(sky->prev_position) && shader_data->uses_position) {
sky->prev_position = p_transform.origin;
sky->reflection_dirty = true;
}
}
glBindBufferBase(GL_UNIFORM_BUFFER, SKY_DIRECTIONAL_LIGHT_UNIFORM_LOCATION, sky_globals.directional_light_buffer);
if (shader_data->uses_light) {
sky_globals.directional_light_count = 0;
for (int i = 0; i < (int)p_lights.size(); i++) {
GLES3::LightInstance *li = GLES3::LightStorage::get_singleton()->get_light_instance(p_lights[i]);
if (!li) {
continue;
}
RID base = li->light;
ERR_CONTINUE(base.is_null());
RS::LightType type = light_storage->light_get_type(base);
if (type == RS::LIGHT_DIRECTIONAL && light_storage->light_directional_get_sky_mode(base) != RS::LIGHT_DIRECTIONAL_SKY_MODE_LIGHT_ONLY) {
DirectionalLightData &sky_light_data = sky_globals.directional_lights[sky_globals.directional_light_count];
Transform3D light_transform = li->transform;
Vector3 world_direction = light_transform.basis.xform(Vector3(0, 0, 1)).normalized();
sky_light_data.direction[0] = world_direction.x;
sky_light_data.direction[1] = world_direction.y;
sky_light_data.direction[2] = world_direction.z;
float sign = light_storage->light_is_negative(base) ? -1 : 1;
sky_light_data.energy = sign * light_storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY);
if (is_using_physical_light_units()) {
sky_light_data.energy *= light_storage->light_get_param(base, RS::LIGHT_PARAM_INTENSITY);
}
if (p_render_data->camera_attributes.is_valid()) {
sky_light_data.energy *= RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes);
}
Color linear_col = light_storage->light_get_color(base);
sky_light_data.color[0] = linear_col.r;
sky_light_data.color[1] = linear_col.g;
sky_light_data.color[2] = linear_col.b;
sky_light_data.enabled = true;
float angular_diameter = light_storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
if (angular_diameter > 0.0) {
angular_diameter = Math::tan(Math::deg_to_rad(angular_diameter));
} else {
angular_diameter = 0.0;
}
sky_light_data.size = angular_diameter;
sky_globals.directional_light_count++;
if (sky_globals.directional_light_count >= sky_globals.max_directional_lights) {
break;
}
}
}
// Check whether the directional_light_buffer changes
bool light_data_dirty = false;
// Light buffer is dirty if we have fewer or more lights
// If we have fewer lights, make sure that old lights are disabled
if (sky_globals.directional_light_count != sky_globals.last_frame_directional_light_count) {
light_data_dirty = true;
for (uint32_t i = sky_globals.directional_light_count; i < sky_globals.max_directional_lights; i++) {
sky_globals.directional_lights[i].enabled = false;
sky_globals.last_frame_directional_lights[i].enabled = false;
}
}
if (!light_data_dirty) {
for (uint32_t i = 0; i < sky_globals.directional_light_count; i++) {
if (sky_globals.directional_lights[i].direction[0] != sky_globals.last_frame_directional_lights[i].direction[0] ||
sky_globals.directional_lights[i].direction[1] != sky_globals.last_frame_directional_lights[i].direction[1] ||
sky_globals.directional_lights[i].direction[2] != sky_globals.last_frame_directional_lights[i].direction[2] ||
sky_globals.directional_lights[i].energy != sky_globals.last_frame_directional_lights[i].energy ||
sky_globals.directional_lights[i].color[0] != sky_globals.last_frame_directional_lights[i].color[0] ||
sky_globals.directional_lights[i].color[1] != sky_globals.last_frame_directional_lights[i].color[1] ||
sky_globals.directional_lights[i].color[2] != sky_globals.last_frame_directional_lights[i].color[2] ||
sky_globals.directional_lights[i].enabled != sky_globals.last_frame_directional_lights[i].enabled ||
sky_globals.directional_lights[i].size != sky_globals.last_frame_directional_lights[i].size) {
light_data_dirty = true;
break;
}
}
}
if (light_data_dirty) {
glBufferData(GL_UNIFORM_BUFFER, sizeof(DirectionalLightData) * sky_globals.max_directional_lights, sky_globals.directional_lights, GL_STREAM_DRAW);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
DirectionalLightData *temp = sky_globals.last_frame_directional_lights;
sky_globals.last_frame_directional_lights = sky_globals.directional_lights;
sky_globals.directional_lights = temp;
sky_globals.last_frame_directional_light_count = sky_globals.directional_light_count;
if (sky) {
sky->reflection_dirty = true;
}
}
}
if (p_render_data->view_count > 1) {
glBindBufferBase(GL_UNIFORM_BUFFER, SKY_MULTIVIEW_UNIFORM_LOCATION, scene_state.multiview_buffer);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
}
if (sky && !sky->radiance) {
_invalidate_sky(sky);
_update_dirty_skys();
}
}
void RasterizerSceneGLES3::_draw_sky(RID p_env, const Projection &p_projection, const Transform3D &p_transform, float p_luminance_multiplier, bool p_use_multiview, bool p_flip_y) {
GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton();
ERR_FAIL_COND(p_env.is_null());
Sky *sky = sky_owner.get_or_null(environment_get_sky(p_env));
ERR_FAIL_NULL(sky);
GLES3::SkyMaterialData *material_data = nullptr;
RID sky_material;
uint64_t spec_constants = p_use_multiview ? SkyShaderGLES3::USE_MULTIVIEW : 0;
if (p_flip_y) {
spec_constants |= SkyShaderGLES3::USE_INVERTED_Y;
}
RS::EnvironmentBG background = environment_get_background(p_env);
if (sky) {
sky_material = sky->material;
if (sky_material.is_valid()) {
material_data = static_cast<GLES3::SkyMaterialData *>(material_storage->material_get_data(sky_material, RS::SHADER_SKY));
if (!material_data || !material_data->shader_data->valid) {
material_data = nullptr;
}
}
if (!material_data) {
sky_material = sky_globals.default_material;
material_data = static_cast<GLES3::SkyMaterialData *>(material_storage->material_get_data(sky_material, RS::SHADER_SKY));
}
} else if (background == RS::ENV_BG_CLEAR_COLOR || background == RS::ENV_BG_COLOR) {
sky_material = sky_globals.fog_material;
material_data = static_cast<GLES3::SkyMaterialData *>(material_storage->material_get_data(sky_material, RS::SHADER_SKY));
}
ERR_FAIL_NULL(material_data);
material_data->bind_uniforms();
GLES3::SkyShaderData *shader_data = material_data->shader_data;
ERR_FAIL_NULL(shader_data);
// Camera
Projection camera;
if (environment_get_sky_custom_fov(p_env)) {
float near_plane = p_projection.get_z_near();
float far_plane = p_projection.get_z_far();
float aspect = p_projection.get_aspect();
camera.set_perspective(environment_get_sky_custom_fov(p_env), aspect, near_plane, far_plane);
} else {
camera = p_projection;
}
Basis sky_transform = environment_get_sky_orientation(p_env);
sky_transform.invert();
sky_transform = sky_transform * p_transform.basis;
bool success = material_storage->shaders.sky_shader.version_bind_shader(shader_data->version, SkyShaderGLES3::MODE_BACKGROUND, spec_constants);
if (!success) {
return;
}
material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::ORIENTATION, sky_transform, shader_data->version, SkyShaderGLES3::MODE_BACKGROUND, spec_constants);
material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::PROJECTION, camera.columns[2][0], camera.columns[0][0], camera.columns[2][1], camera.columns[1][1], shader_data->version, SkyShaderGLES3::MODE_BACKGROUND, spec_constants);
material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::POSITION, p_transform.origin, shader_data->version, SkyShaderGLES3::MODE_BACKGROUND, spec_constants);
material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::TIME, time, shader_data->version, SkyShaderGLES3::MODE_BACKGROUND, spec_constants);
material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::LUMINANCE_MULTIPLIER, p_luminance_multiplier, shader_data->version, SkyShaderGLES3::MODE_BACKGROUND, spec_constants);
if (p_use_multiview) {
glBindBufferBase(GL_UNIFORM_BUFFER, SKY_MULTIVIEW_UNIFORM_LOCATION, scene_state.multiview_buffer);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
}
glBindVertexArray(sky_globals.screen_triangle_array);
glDrawArrays(GL_TRIANGLES, 0, 3);
}
void RasterizerSceneGLES3::_update_sky_radiance(RID p_env, const Projection &p_projection, const Transform3D &p_transform, float p_luminance_multiplier) {
GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton();
ERR_FAIL_COND(p_env.is_null());
Sky *sky = sky_owner.get_or_null(environment_get_sky(p_env));
ERR_FAIL_NULL(sky);
GLES3::SkyMaterialData *material_data = nullptr;
RID sky_material;
RS::EnvironmentBG background = environment_get_background(p_env);
if (sky) {
ERR_FAIL_NULL(sky);
sky_material = sky->material;
if (sky_material.is_valid()) {
material_data = static_cast<GLES3::SkyMaterialData *>(material_storage->material_get_data(sky_material, RS::SHADER_SKY));
if (!material_data || !material_data->shader_data->valid) {
material_data = nullptr;
}
}
if (!material_data) {
sky_material = sky_globals.default_material;
material_data = static_cast<GLES3::SkyMaterialData *>(material_storage->material_get_data(sky_material, RS::SHADER_SKY));
}
} else if (background == RS::ENV_BG_CLEAR_COLOR || background == RS::ENV_BG_COLOR) {
sky_material = sky_globals.fog_material;
material_data = static_cast<GLES3::SkyMaterialData *>(material_storage->material_get_data(sky_material, RS::SHADER_SKY));
}
ERR_FAIL_NULL(material_data);
material_data->bind_uniforms();
GLES3::SkyShaderData *shader_data = material_data->shader_data;
ERR_FAIL_NULL(shader_data);
bool update_single_frame = sky->mode == RS::SKY_MODE_REALTIME || sky->mode == RS::SKY_MODE_QUALITY;
RS::SkyMode sky_mode = sky->mode;
if (sky_mode == RS::SKY_MODE_AUTOMATIC) {
if (shader_data->uses_time || shader_data->uses_position) {
update_single_frame = true;
sky_mode = RS::SKY_MODE_REALTIME;
} else if (shader_data->uses_light || shader_data->ubo_size > 0) {
update_single_frame = false;
sky_mode = RS::SKY_MODE_INCREMENTAL;
} else {
update_single_frame = true;
sky_mode = RS::SKY_MODE_QUALITY;
}
}
if (sky->processing_layer == 0 && sky_mode == RS::SKY_MODE_INCREMENTAL) {
// On the first frame after creating sky, rebuild in single frame
update_single_frame = true;
sky_mode = RS::SKY_MODE_QUALITY;
}
int max_processing_layer = sky->mipmap_count;
// Update radiance cubemap
if (sky->reflection_dirty && (sky->processing_layer > max_processing_layer || update_single_frame)) {
static const Vector3 view_normals[6] = {
Vector3(+1, 0, 0),
Vector3(-1, 0, 0),
Vector3(0, +1, 0),
Vector3(0, -1, 0),
Vector3(0, 0, +1),
Vector3(0, 0, -1)
};
static const Vector3 view_up[6] = {
Vector3(0, -1, 0),
Vector3(0, -1, 0),
Vector3(0, 0, +1),
Vector3(0, 0, -1),
Vector3(0, -1, 0),
Vector3(0, -1, 0)
};
Projection cm;
cm.set_perspective(90, 1, 0.01, 10.0);
Projection correction;
correction.columns[1][1] = -1.0;
cm = correction * cm;
bool success = material_storage->shaders.sky_shader.version_bind_shader(shader_data->version, SkyShaderGLES3::MODE_CUBEMAP);
if (!success) {
return;
}
material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::POSITION, p_transform.origin, shader_data->version, SkyShaderGLES3::MODE_CUBEMAP);
material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::TIME, time, shader_data->version, SkyShaderGLES3::MODE_CUBEMAP);
material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::PROJECTION, cm.columns[2][0], cm.columns[0][0], cm.columns[2][1], cm.columns[1][1], shader_data->version, SkyShaderGLES3::MODE_CUBEMAP);
material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::LUMINANCE_MULTIPLIER, p_luminance_multiplier, shader_data->version, SkyShaderGLES3::MODE_CUBEMAP);
glBindVertexArray(sky_globals.screen_triangle_array);
glViewport(0, 0, sky->radiance_size, sky->radiance_size);
glBindFramebuffer(GL_FRAMEBUFFER, sky->radiance_framebuffer);
glDisable(GL_BLEND);
glDepthMask(GL_FALSE);
glDisable(GL_DEPTH_TEST);
scene_state.current_depth_test = GLES3::SceneShaderData::DEPTH_TEST_DISABLED;
glDisable(GL_SCISSOR_TEST);
glDisable(GL_CULL_FACE);
scene_state.cull_mode = GLES3::SceneShaderData::CULL_DISABLED;
for (int i = 0; i < 6; i++) {
Basis local_view = Basis::looking_at(view_normals[i], view_up[i]);
material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::ORIENTATION, local_view, shader_data->version, SkyShaderGLES3::MODE_CUBEMAP);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, sky->raw_radiance, 0);
glDrawArrays(GL_TRIANGLES, 0, 3);
}
if (update_single_frame) {
for (int i = 0; i < max_processing_layer; i++) {
_filter_sky_radiance(sky, i);
}
} else {
_filter_sky_radiance(sky, 0); //Just copy over the first mipmap
}
sky->processing_layer = 1;
sky->baked_exposure = p_luminance_multiplier;
sky->reflection_dirty = false;
} else {
if (sky_mode == RS::SKY_MODE_INCREMENTAL && sky->processing_layer < max_processing_layer) {
glDisable(GL_BLEND);
glDepthMask(GL_FALSE);
glDisable(GL_DEPTH_TEST);
scene_state.current_depth_test = GLES3::SceneShaderData::DEPTH_TEST_DISABLED;
glDisable(GL_SCISSOR_TEST);
glDisable(GL_CULL_FACE);
scene_state.cull_mode = GLES3::SceneShaderData::CULL_DISABLED;
_filter_sky_radiance(sky, sky->processing_layer);
sky->processing_layer++;
}
}
}
// Helper functions for IBL filtering
Vector3 importance_sample_GGX(Vector2 xi, float roughness4) {
// Compute distribution direction
float phi = 2.0 * Math_PI * xi.x;
float cos_theta = sqrt((1.0 - xi.y) / (1.0 + (roughness4 - 1.0) * xi.y));
float sin_theta = sqrt(1.0 - cos_theta * cos_theta);
// Convert to spherical direction
Vector3 half_vector;
half_vector.x = sin_theta * cos(phi);
half_vector.y = sin_theta * sin(phi);
half_vector.z = cos_theta;
return half_vector;
}
float distribution_GGX(float NdotH, float roughness4) {
float NdotH2 = NdotH * NdotH;
float denom = (NdotH2 * (roughness4 - 1.0) + 1.0);
denom = Math_PI * denom * denom;
return roughness4 / denom;
}
float radical_inverse_vdC(uint32_t bits) {
bits = (bits << 16) | (bits >> 16);
bits = ((bits & 0x55555555) << 1) | ((bits & 0xAAAAAAAA) >> 1);
bits = ((bits & 0x33333333) << 2) | ((bits & 0xCCCCCCCC) >> 2);
bits = ((bits & 0x0F0F0F0F) << 4) | ((bits & 0xF0F0F0F0) >> 4);
bits = ((bits & 0x00FF00FF) << 8) | ((bits & 0xFF00FF00) >> 8);
return float(bits) * 2.3283064365386963e-10;
}
Vector2 hammersley(uint32_t i, uint32_t N) {
return Vector2(float(i) / float(N), radical_inverse_vdC(i));
}
void RasterizerSceneGLES3::_filter_sky_radiance(Sky *p_sky, int p_base_layer) {
GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton();
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_CUBE_MAP, p_sky->raw_radiance);
glBindFramebuffer(GL_FRAMEBUFFER, p_sky->radiance_framebuffer);
CubemapFilterShaderGLES3::ShaderVariant mode = CubemapFilterShaderGLES3::MODE_DEFAULT;
if (p_base_layer == 0) {
glGenerateMipmap(GL_TEXTURE_CUBE_MAP);
// Copy over base layer without filtering.
mode = CubemapFilterShaderGLES3::MODE_COPY;
}
int size = p_sky->radiance_size >> p_base_layer;
glViewport(0, 0, size, size);
glBindVertexArray(sky_globals.screen_triangle_array);
bool success = material_storage->shaders.cubemap_filter_shader.version_bind_shader(scene_globals.cubemap_filter_shader_version, mode);
if (!success) {
return;
}
if (p_base_layer > 0) {
const uint32_t sample_counts[4] = { 1, sky_globals.ggx_samples / 4, sky_globals.ggx_samples / 2, sky_globals.ggx_samples };
uint32_t sample_count = sample_counts[MIN(3, p_base_layer)];
float roughness = float(p_base_layer) / (p_sky->mipmap_count);
float roughness4 = roughness * roughness;
roughness4 *= roughness4;
float solid_angle_texel = 4.0 * Math_PI / float(6 * size * size);
LocalVector<float> sample_directions;
sample_directions.resize(4 * sample_count);
uint32_t index = 0;
float weight = 0.0;
for (uint32_t i = 0; i < sample_count; i++) {
Vector2 xi = hammersley(i, sample_count);
Vector3 dir = importance_sample_GGX(xi, roughness4);
Vector3 light_vec = (2.0 * dir.z * dir - Vector3(0.0, 0.0, 1.0));
if (light_vec.z < 0.0) {
continue;
}
sample_directions[index * 4] = light_vec.x;
sample_directions[index * 4 + 1] = light_vec.y;
sample_directions[index * 4 + 2] = light_vec.z;
float D = distribution_GGX(dir.z, roughness4);
float pdf = D * dir.z / (4.0 * dir.z) + 0.0001;
float solid_angle_sample = 1.0 / (float(sample_count) * pdf + 0.0001);
float mip_level = MAX(0.5 * log2(solid_angle_sample / solid_angle_texel) + float(MAX(1, p_base_layer - 3)), 1.0);
sample_directions[index * 4 + 3] = mip_level;
weight += light_vec.z;
index++;
}
glUniform4fv(material_storage->shaders.cubemap_filter_shader.version_get_uniform(CubemapFilterShaderGLES3::SAMPLE_DIRECTIONS_MIP, scene_globals.cubemap_filter_shader_version, mode), sample_count, sample_directions.ptr());
material_storage->shaders.cubemap_filter_shader.version_set_uniform(CubemapFilterShaderGLES3::WEIGHT, weight, scene_globals.cubemap_filter_shader_version, mode);
material_storage->shaders.cubemap_filter_shader.version_set_uniform(CubemapFilterShaderGLES3::SAMPLE_COUNT, index, scene_globals.cubemap_filter_shader_version, mode);
}
for (int i = 0; i < 6; i++) {
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, p_sky->radiance, p_base_layer);
#ifdef DEBUG_ENABLED
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (status != GL_FRAMEBUFFER_COMPLETE) {
WARN_PRINT("Could not bind sky radiance face: " + itos(i) + ", status: " + GLES3::TextureStorage::get_singleton()->get_framebuffer_error(status));
}
#endif
material_storage->shaders.cubemap_filter_shader.version_set_uniform(CubemapFilterShaderGLES3::FACE_ID, i, scene_globals.cubemap_filter_shader_version, mode);
glDrawArrays(GL_TRIANGLES, 0, 3);
}
glBindVertexArray(0);
glViewport(0, 0, p_sky->screen_size.x, p_sky->screen_size.y);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
}
Ref<Image> RasterizerSceneGLES3::sky_bake_panorama(RID p_sky, float p_energy, bool p_bake_irradiance, const Size2i &p_size) {
return Ref<Image>();
}
/* ENVIRONMENT API */
void RasterizerSceneGLES3::environment_glow_set_use_bicubic_upscale(bool p_enable) {
glow_bicubic_upscale = p_enable;
}
void RasterizerSceneGLES3::environment_set_ssr_roughness_quality(RS::EnvironmentSSRRoughnessQuality p_quality) {
}
void RasterizerSceneGLES3::environment_set_ssao_quality(RS::EnvironmentSSAOQuality p_quality, bool p_half_size, float p_adaptive_target, int p_blur_passes, float p_fadeout_from, float p_fadeout_to) {
}
void RasterizerSceneGLES3::environment_set_ssil_quality(RS::EnvironmentSSILQuality p_quality, bool p_half_size, float p_adaptive_target, int p_blur_passes, float p_fadeout_from, float p_fadeout_to) {
}
void RasterizerSceneGLES3::environment_set_sdfgi_ray_count(RS::EnvironmentSDFGIRayCount p_ray_count) {
}
void RasterizerSceneGLES3::environment_set_sdfgi_frames_to_converge(RS::EnvironmentSDFGIFramesToConverge p_frames) {
}
void RasterizerSceneGLES3::environment_set_sdfgi_frames_to_update_light(RS::EnvironmentSDFGIFramesToUpdateLight p_update) {
}
void RasterizerSceneGLES3::environment_set_volumetric_fog_volume_size(int p_size, int p_depth) {
}
void RasterizerSceneGLES3::environment_set_volumetric_fog_filter_active(bool p_enable) {
}
Ref<Image> RasterizerSceneGLES3::environment_bake_panorama(RID p_env, bool p_bake_irradiance, const Size2i &p_size) {
return Ref<Image>();
}
void RasterizerSceneGLES3::positional_soft_shadow_filter_set_quality(RS::ShadowQuality p_quality) {
scene_state.positional_shadow_quality = p_quality;
}
void RasterizerSceneGLES3::directional_soft_shadow_filter_set_quality(RS::ShadowQuality p_quality) {
scene_state.directional_shadow_quality = p_quality;
}
RID RasterizerSceneGLES3::fog_volume_instance_create(RID p_fog_volume) {
return RID();
}
void RasterizerSceneGLES3::fog_volume_instance_set_transform(RID p_fog_volume_instance, const Transform3D &p_transform) {
}
void RasterizerSceneGLES3::fog_volume_instance_set_active(RID p_fog_volume_instance, bool p_active) {
}
RID RasterizerSceneGLES3::fog_volume_instance_get_volume(RID p_fog_volume_instance) const {
return RID();
}
Vector3 RasterizerSceneGLES3::fog_volume_instance_get_position(RID p_fog_volume_instance) const {
return Vector3();
}
RID RasterizerSceneGLES3::voxel_gi_instance_create(RID p_voxel_gi) {
return RID();
}
void RasterizerSceneGLES3::voxel_gi_instance_set_transform_to_data(RID p_probe, const Transform3D &p_xform) {
}
bool RasterizerSceneGLES3::voxel_gi_needs_update(RID p_probe) const {
return false;
}
void RasterizerSceneGLES3::voxel_gi_update(RID p_probe, bool p_update_light_instances, const Vector<RID> &p_light_instances, const PagedArray<RenderGeometryInstance *> &p_dynamic_objects) {
}
void RasterizerSceneGLES3::voxel_gi_set_quality(RS::VoxelGIQuality) {
}
_FORCE_INLINE_ static uint32_t _indices_to_primitives(RS::PrimitiveType p_primitive, uint32_t p_indices) {
static const uint32_t divisor[RS::PRIMITIVE_MAX] = { 1, 2, 1, 3, 1 };
static const uint32_t subtractor[RS::PRIMITIVE_MAX] = { 0, 0, 1, 0, 1 };
return (p_indices - subtractor[p_primitive]) / divisor[p_primitive];
}
void RasterizerSceneGLES3::_fill_render_list(RenderListType p_render_list, const RenderDataGLES3 *p_render_data, PassMode p_pass_mode, bool p_append) {
GLES3::MeshStorage *mesh_storage = GLES3::MeshStorage::get_singleton();
if (p_render_list == RENDER_LIST_OPAQUE) {
scene_state.used_screen_texture = false;
scene_state.used_normal_texture = false;
scene_state.used_depth_texture = false;
}
Plane near_plane;
if (p_render_data->cam_orthogonal) {
near_plane = Plane(-p_render_data->cam_transform.basis.get_column(Vector3::AXIS_Z), p_render_data->cam_transform.origin);
near_plane.d += p_render_data->cam_projection.get_z_near();
}
float z_max = p_render_data->cam_projection.get_z_far() - p_render_data->cam_projection.get_z_near();
RenderList *rl = &render_list[p_render_list];
// Parse any updates on our geometry, updates surface caches and such
_update_dirty_geometry_instances();
if (!p_append) {
rl->clear();
if (p_render_list == RENDER_LIST_OPAQUE) {
render_list[RENDER_LIST_ALPHA].clear(); //opaque fills alpha too
}
}
//fill list
for (int i = 0; i < (int)p_render_data->instances->size(); i++) {
GeometryInstanceGLES3 *inst = static_cast<GeometryInstanceGLES3 *>((*p_render_data->instances)[i]);
Vector3 center = inst->transform.origin;
if (p_render_data->cam_orthogonal) {
if (inst->use_aabb_center) {
center = inst->transformed_aabb.get_support(-near_plane.normal);
}
inst->depth = near_plane.distance_to(center) - inst->sorting_offset;
} else {
if (inst->use_aabb_center) {
center = inst->transformed_aabb.position + (inst->transformed_aabb.size * 0.5);
}
inst->depth = p_render_data->cam_transform.origin.distance_to(center) - inst->sorting_offset;
}
uint32_t depth_layer = CLAMP(int(inst->depth * 16 / z_max), 0, 15);
uint32_t flags = inst->base_flags; //fill flags if appropriate
if (inst->non_uniform_scale) {
flags |= INSTANCE_DATA_FLAGS_NON_UNIFORM_SCALE;
}
// Sets the index values for lookup in the shader
// This has to be done after _setup_lights was called this frame
if (p_pass_mode == PASS_MODE_COLOR) {
inst->light_passes.clear();
inst->spot_light_gl_cache.clear();
inst->omni_light_gl_cache.clear();
uint64_t current_frame = RSG::rasterizer->get_frame_number();
if (inst->paired_omni_light_count) {
for (uint32_t j = 0; j < inst->paired_omni_light_count; j++) {
RID light_instance = inst->paired_omni_lights[j];
if (GLES3::LightStorage::get_singleton()->light_instance_get_render_pass(light_instance) != current_frame) {
continue;
}
RID light = GLES3::LightStorage::get_singleton()->light_instance_get_base_light(light_instance);
int32_t shadow_id = GLES3::LightStorage::get_singleton()->light_instance_get_shadow_id(light_instance);
if (GLES3::LightStorage::get_singleton()->light_has_shadow(light) && shadow_id >= 0) {
GeometryInstanceGLES3::LightPass pass;
pass.light_id = GLES3::LightStorage::get_singleton()->light_instance_get_gl_id(light_instance);
pass.shadow_id = shadow_id;
pass.light_instance_rid = light_instance;
pass.is_omni = true;
inst->light_passes.push_back(pass);
} else {
// Lights without shadow can all go in base pass.
inst->omni_light_gl_cache.push_back((uint32_t)GLES3::LightStorage::get_singleton()->light_instance_get_gl_id(light_instance));
}
}
}
if (inst->paired_spot_light_count) {
for (uint32_t j = 0; j < inst->paired_spot_light_count; j++) {
RID light_instance = inst->paired_spot_lights[j];
if (GLES3::LightStorage::get_singleton()->light_instance_get_render_pass(light_instance) != current_frame) {
continue;
}
RID light = GLES3::LightStorage::get_singleton()->light_instance_get_base_light(light_instance);
int32_t shadow_id = GLES3::LightStorage::get_singleton()->light_instance_get_shadow_id(light_instance);
if (GLES3::LightStorage::get_singleton()->light_has_shadow(light) && shadow_id >= 0) {
GeometryInstanceGLES3::LightPass pass;
pass.light_id = GLES3::LightStorage::get_singleton()->light_instance_get_gl_id(light_instance);
pass.shadow_id = shadow_id;
pass.light_instance_rid = light_instance;
inst->light_passes.push_back(pass);
} else {
// Lights without shadow can all go in base pass.
inst->spot_light_gl_cache.push_back((uint32_t)GLES3::LightStorage::get_singleton()->light_instance_get_gl_id(light_instance));
}
}
}
}
inst->flags_cache = flags;
GeometryInstanceSurface *surf = inst->surface_caches;
while (surf) {
// LOD
if (p_render_data->screen_mesh_lod_threshold > 0.0 && mesh_storage->mesh_surface_has_lod(surf->surface)) {
// Get the LOD support points on the mesh AABB.
Vector3 lod_support_min = inst->transformed_aabb.get_support(p_render_data->cam_transform.basis.get_column(Vector3::AXIS_Z));
Vector3 lod_support_max = inst->transformed_aabb.get_support(-p_render_data->cam_transform.basis.get_column(Vector3::AXIS_Z));
// Get the distances to those points on the AABB from the camera origin.
float distance_min = (float)p_render_data->cam_transform.origin.distance_to(lod_support_min);
float distance_max = (float)p_render_data->cam_transform.origin.distance_to(lod_support_max);
float distance = 0.0;
if (distance_min * distance_max < 0.0) {
//crossing plane
distance = 0.0;
} else if (distance_min >= 0.0) {
distance = distance_min;
} else if (distance_max <= 0.0) {
distance = -distance_max;
}
if (p_render_data->cam_orthogonal) {
distance = 1.0;
}
uint32_t indices = 0;
surf->lod_index = mesh_storage->mesh_surface_get_lod(surf->surface, inst->lod_model_scale * inst->lod_bias, distance * p_render_data->lod_distance_multiplier, p_render_data->screen_mesh_lod_threshold, indices);
surf->index_count = indices;
if (p_render_data->render_info) {
indices = _indices_to_primitives(surf->primitive, indices);
if (p_render_list == RENDER_LIST_OPAQUE) { //opaque
p_render_data->render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_VISIBLE][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += indices;
} else if (p_render_list == RENDER_LIST_SECONDARY) { //shadow
p_render_data->render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_SHADOW][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += indices;
}
}
} else {
surf->lod_index = 0;
if (p_render_data->render_info) {
uint32_t to_draw = mesh_storage->mesh_surface_get_vertices_drawn_count(surf->surface);
to_draw = _indices_to_primitives(surf->primitive, to_draw);
to_draw *= inst->instance_count > 0 ? inst->instance_count : 1;
if (p_render_list == RENDER_LIST_OPAQUE) { //opaque
p_render_data->render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_VISIBLE][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += to_draw;
} else if (p_render_list == RENDER_LIST_SECONDARY) { //shadow
p_render_data->render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_SHADOW][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += to_draw;
}
}
}
// ADD Element
if (p_pass_mode == PASS_MODE_COLOR) {
#ifdef DEBUG_ENABLED
bool force_alpha = unlikely(get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_OVERDRAW);
#else
bool force_alpha = false;
#endif
if (!force_alpha && (surf->flags & GeometryInstanceSurface::FLAG_PASS_OPAQUE)) {
rl->add_element(surf);
}
if (force_alpha || (surf->flags & GeometryInstanceSurface::FLAG_PASS_ALPHA)) {
render_list[RENDER_LIST_ALPHA].add_element(surf);
}
if (surf->flags & GeometryInstanceSurface::FLAG_USES_SCREEN_TEXTURE) {
scene_state.used_screen_texture = true;
}
if (surf->flags & GeometryInstanceSurface::FLAG_USES_NORMAL_TEXTURE) {
scene_state.used_normal_texture = true;
}
if (surf->flags & GeometryInstanceSurface::FLAG_USES_DEPTH_TEXTURE) {
scene_state.used_depth_texture = true;
}
} else if (p_pass_mode == PASS_MODE_SHADOW) {
if (surf->flags & GeometryInstanceSurface::FLAG_PASS_SHADOW) {
rl->add_element(surf);
}
} else {
if (surf->flags & (GeometryInstanceSurface::FLAG_PASS_DEPTH | GeometryInstanceSurface::FLAG_PASS_OPAQUE)) {
rl->add_element(surf);
}
}
surf->sort.depth_layer = depth_layer;
surf->finished_base_pass = false;
surf->light_pass_index = 0;
surf = surf->next;
}
}
}
// Needs to be called after _setup_lights so that directional_light_count is accurate.
void RasterizerSceneGLES3::_setup_environment(const RenderDataGLES3 *p_render_data, bool p_no_fog, const Size2i &p_screen_size, bool p_flip_y, const Color &p_default_bg_color, bool p_pancake_shadows, float p_shadow_bias) {
Projection correction;
correction.columns[1][1] = p_flip_y ? -1.0 : 1.0;
Projection projection = correction * p_render_data->cam_projection;
//store camera into ubo
GLES3::MaterialStorage::store_camera(projection, scene_state.ubo.projection_matrix);
GLES3::MaterialStorage::store_camera(projection.inverse(), scene_state.ubo.inv_projection_matrix);
GLES3::MaterialStorage::store_transform(p_render_data->cam_transform, scene_state.ubo.inv_view_matrix);
GLES3::MaterialStorage::store_transform(p_render_data->inv_cam_transform, scene_state.ubo.view_matrix);
scene_state.ubo.camera_visible_layers = p_render_data->camera_visible_layers;
if (p_render_data->view_count > 1) {
for (uint32_t v = 0; v < p_render_data->view_count; v++) {
projection = correction * p_render_data->view_projection[v];
GLES3::MaterialStorage::store_camera(projection, scene_state.multiview_ubo.projection_matrix_view[v]);
GLES3::MaterialStorage::store_camera(projection.inverse(), scene_state.multiview_ubo.inv_projection_matrix_view[v]);
scene_state.multiview_ubo.eye_offset[v][0] = p_render_data->view_eye_offset[v].x;
scene_state.multiview_ubo.eye_offset[v][1] = p_render_data->view_eye_offset[v].y;
scene_state.multiview_ubo.eye_offset[v][2] = p_render_data->view_eye_offset[v].z;
scene_state.multiview_ubo.eye_offset[v][3] = 0.0;
}
}
// Only render the lights without shadows in the base pass.
scene_state.ubo.directional_light_count = p_render_data->directional_light_count - p_render_data->directional_shadow_count;
scene_state.ubo.z_far = p_render_data->z_far;
scene_state.ubo.z_near = p_render_data->z_near;
scene_state.ubo.viewport_size[0] = p_screen_size.x;
scene_state.ubo.viewport_size[1] = p_screen_size.y;
Size2 screen_pixel_size = Vector2(1.0, 1.0) / Size2(p_screen_size);
scene_state.ubo.screen_pixel_size[0] = screen_pixel_size.x;
scene_state.ubo.screen_pixel_size[1] = screen_pixel_size.y;
scene_state.ubo.shadow_bias = p_shadow_bias;
scene_state.ubo.pancake_shadows = p_pancake_shadows;
//time global variables
scene_state.ubo.time = time;
if (is_environment(p_render_data->environment)) {
RS::EnvironmentBG env_bg = environment_get_background(p_render_data->environment);
RS::EnvironmentAmbientSource ambient_src = environment_get_ambient_source(p_render_data->environment);
float bg_energy_multiplier = environment_get_bg_energy_multiplier(p_render_data->environment);
scene_state.ubo.ambient_light_color_energy[3] = bg_energy_multiplier;
scene_state.ubo.ambient_color_sky_mix = environment_get_ambient_sky_contribution(p_render_data->environment);
//ambient
if (ambient_src == RS::ENV_AMBIENT_SOURCE_BG && (env_bg == RS::ENV_BG_CLEAR_COLOR || env_bg == RS::ENV_BG_COLOR)) {
Color color = env_bg == RS::ENV_BG_CLEAR_COLOR ? p_default_bg_color : environment_get_bg_color(p_render_data->environment);
color = color.srgb_to_linear();
scene_state.ubo.ambient_light_color_energy[0] = color.r * bg_energy_multiplier;
scene_state.ubo.ambient_light_color_energy[1] = color.g * bg_energy_multiplier;
scene_state.ubo.ambient_light_color_energy[2] = color.b * bg_energy_multiplier;
scene_state.ubo.use_ambient_light = true;
scene_state.ubo.use_ambient_cubemap = false;
} else {
float energy = environment_get_ambient_light_energy(p_render_data->environment);
Color color = environment_get_ambient_light(p_render_data->environment);
color = color.srgb_to_linear();
scene_state.ubo.ambient_light_color_energy[0] = color.r * energy;
scene_state.ubo.ambient_light_color_energy[1] = color.g * energy;
scene_state.ubo.ambient_light_color_energy[2] = color.b * energy;
Basis sky_transform = environment_get_sky_orientation(p_render_data->environment);
sky_transform = sky_transform.inverse() * p_render_data->cam_transform.basis;
GLES3::MaterialStorage::store_transform_3x3(sky_transform, scene_state.ubo.radiance_inverse_xform);
scene_state.ubo.use_ambient_cubemap = (ambient_src == RS::ENV_AMBIENT_SOURCE_BG && env_bg == RS::ENV_BG_SKY) || ambient_src == RS::ENV_AMBIENT_SOURCE_SKY;
scene_state.ubo.use_ambient_light = scene_state.ubo.use_ambient_cubemap || ambient_src == RS::ENV_AMBIENT_SOURCE_COLOR;
}
//specular
RS::EnvironmentReflectionSource ref_src = environment_get_reflection_source(p_render_data->environment);
if ((ref_src == RS::ENV_REFLECTION_SOURCE_BG && env_bg == RS::ENV_BG_SKY) || ref_src == RS::ENV_REFLECTION_SOURCE_SKY) {
scene_state.ubo.use_reflection_cubemap = true;
} else {
scene_state.ubo.use_reflection_cubemap = false;
}
scene_state.ubo.fog_enabled = environment_get_fog_enabled(p_render_data->environment);
scene_state.ubo.fog_density = environment_get_fog_density(p_render_data->environment);
scene_state.ubo.fog_height = environment_get_fog_height(p_render_data->environment);
scene_state.ubo.fog_height_density = environment_get_fog_height_density(p_render_data->environment);
scene_state.ubo.fog_aerial_perspective = environment_get_fog_aerial_perspective(p_render_data->environment);
Color fog_color = environment_get_fog_light_color(p_render_data->environment).srgb_to_linear();
float fog_energy = environment_get_fog_light_energy(p_render_data->environment);
scene_state.ubo.fog_light_color[0] = fog_color.r * fog_energy;
scene_state.ubo.fog_light_color[1] = fog_color.g * fog_energy;
scene_state.ubo.fog_light_color[2] = fog_color.b * fog_energy;
scene_state.ubo.fog_sun_scatter = environment_get_fog_sun_scatter(p_render_data->environment);
} else {
}
if (p_render_data->camera_attributes.is_valid()) {
scene_state.ubo.emissive_exposure_normalization = RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes);
scene_state.ubo.IBL_exposure_normalization = 1.0;
if (is_environment(p_render_data->environment)) {
RID sky_rid = environment_get_sky(p_render_data->environment);
if (sky_rid.is_valid()) {
float current_exposure = RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes) * environment_get_bg_intensity(p_render_data->environment);
scene_state.ubo.IBL_exposure_normalization = current_exposure / MAX(0.001, sky_get_baked_exposure(sky_rid));
}
}
} else if (scene_state.ubo.emissive_exposure_normalization > 0.0) {
// This branch is triggered when using render_material().
// Emissive is set outside the function, so don't set it.
// IBL isn't used don't set it.
} else {
scene_state.ubo.emissive_exposure_normalization = 1.0;
scene_state.ubo.IBL_exposure_normalization = 1.0;
}
if (scene_state.ubo_buffer == 0) {
glGenBuffers(1, &scene_state.ubo_buffer);
glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_DATA_UNIFORM_LOCATION, scene_state.ubo_buffer);
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, scene_state.ubo_buffer, sizeof(SceneState::UBO), &scene_state.ubo, GL_STREAM_DRAW, "Scene state UBO");
glBindBuffer(GL_UNIFORM_BUFFER, 0);
} else {
glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_DATA_UNIFORM_LOCATION, scene_state.ubo_buffer);
glBufferData(GL_UNIFORM_BUFFER, sizeof(SceneState::UBO), &scene_state.ubo, GL_STREAM_DRAW);
}
glBindBuffer(GL_UNIFORM_BUFFER, 0);
if (p_render_data->view_count > 1) {
if (scene_state.multiview_buffer == 0) {
glGenBuffers(1, &scene_state.multiview_buffer);
glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_MULTIVIEW_UNIFORM_LOCATION, scene_state.multiview_buffer);
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, scene_state.multiview_buffer, sizeof(SceneState::MultiviewUBO), &scene_state.multiview_ubo, GL_STREAM_DRAW, "Multiview UBO");
} else {
glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_MULTIVIEW_UNIFORM_LOCATION, scene_state.multiview_buffer);
glBufferData(GL_UNIFORM_BUFFER, sizeof(SceneState::MultiviewUBO), &scene_state.multiview_ubo, GL_STREAM_DRAW);
}
glBindBuffer(GL_UNIFORM_BUFFER, 0);
}
}
// Puts lights into Uniform Buffers. Needs to be called before _fill_list as this caches the index of each light in the Uniform Buffer
void RasterizerSceneGLES3::_setup_lights(const RenderDataGLES3 *p_render_data, bool p_using_shadows, uint32_t &r_directional_light_count, uint32_t &r_omni_light_count, uint32_t &r_spot_light_count, uint32_t &r_directional_shadow_count) {
GLES3::LightStorage *light_storage = GLES3::LightStorage::get_singleton();
GLES3::Config *config = GLES3::Config::get_singleton();
const Transform3D inverse_transform = p_render_data->inv_cam_transform;
const PagedArray<RID> &lights = *p_render_data->lights;
r_directional_light_count = 0;
r_omni_light_count = 0;
r_spot_light_count = 0;
r_directional_shadow_count = 0;
int num_lights = lights.size();
for (int i = 0; i < num_lights; i++) {
GLES3::LightInstance *li = GLES3::LightStorage::get_singleton()->get_light_instance(lights[i]);
if (!li) {
continue;
}
RID base = li->light;
ERR_CONTINUE(base.is_null());
RS::LightType type = light_storage->light_get_type(base);
switch (type) {
case RS::LIGHT_DIRECTIONAL: {
if (r_directional_light_count >= RendererSceneRender::MAX_DIRECTIONAL_LIGHTS || light_storage->light_directional_get_sky_mode(base) == RS::LIGHT_DIRECTIONAL_SKY_MODE_SKY_ONLY) {
continue;
}
// If a DirectionalLight has shadows, we will add it to the end of the array and work in.
bool has_shadow = light_storage->light_has_shadow(base);
int index = r_directional_light_count - r_directional_shadow_count;
if (has_shadow) {
// Lights with shadow are incremented from the end of the array.
index = MAX_DIRECTIONAL_LIGHTS - 1 - r_directional_shadow_count;
}
DirectionalLightData &light_data = scene_state.directional_lights[index];
Transform3D light_transform = li->transform;
Vector3 direction = inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, 1))).normalized();
light_data.direction[0] = direction.x;
light_data.direction[1] = direction.y;
light_data.direction[2] = direction.z;
float sign = light_storage->light_is_negative(base) ? -1 : 1;
light_data.energy = sign * light_storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY);
if (is_using_physical_light_units()) {
light_data.energy *= light_storage->light_get_param(base, RS::LIGHT_PARAM_INTENSITY);
} else {
light_data.energy *= Math_PI;
}
if (p_render_data->camera_attributes.is_valid()) {
light_data.energy *= RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes);
}
Color linear_col = light_storage->light_get_color(base).srgb_to_linear();
light_data.color[0] = linear_col.r;
light_data.color[1] = linear_col.g;
light_data.color[2] = linear_col.b;
float size = light_storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
light_data.size = 1.0 - Math::cos(Math::deg_to_rad(size)); //angle to cosine offset
light_data.specular = light_storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR);
light_data.shadow_opacity = (p_using_shadows && light_storage->light_has_shadow(base))
? light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_OPACITY)
: 0.0;
if (has_shadow) {
DirectionalShadowData &shadow_data = scene_state.directional_shadows[MAX_DIRECTIONAL_LIGHTS - 1 - r_directional_shadow_count];
RS::LightDirectionalShadowMode shadow_mode = light_storage->light_directional_get_shadow_mode(base);
int limit = shadow_mode == RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL ? 0 : (shadow_mode == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS ? 1 : 3);
shadow_data.shadow_atlas_pixel_size = 1.0 / light_storage->directional_shadow_get_size();
shadow_data.blend_splits = uint32_t((shadow_mode != RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL) && light_storage->light_directional_get_blend_splits(base));
for (int j = 0; j < 4; j++) {
Rect2 atlas_rect = li->shadow_transform[j].atlas_rect;
Projection matrix = li->shadow_transform[j].camera;
float split = li->shadow_transform[MIN(limit, j)].split;
Projection bias;
bias.set_light_bias();
Projection rectm;
rectm.set_light_atlas_rect(atlas_rect);
Transform3D modelview = (inverse_transform * li->shadow_transform[j].transform).inverse();
shadow_data.direction[0] = light_data.direction[0];
shadow_data.direction[1] = light_data.direction[1];
shadow_data.direction[2] = light_data.direction[2];
Projection shadow_mtx = rectm * bias * matrix * modelview;
shadow_data.shadow_split_offsets[j] = split;
shadow_data.shadow_normal_bias[j] = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * li->shadow_transform[j].shadow_texel_size;
GLES3::MaterialStorage::store_camera(shadow_mtx, shadow_data.shadow_matrices[j]);
}
float fade_start = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_FADE_START);
shadow_data.fade_from = -shadow_data.shadow_split_offsets[3] * MIN(fade_start, 0.999);
shadow_data.fade_to = -shadow_data.shadow_split_offsets[3];
r_directional_shadow_count++;
}
r_directional_light_count++;
} break;
case RS::LIGHT_OMNI: {
if (r_omni_light_count >= (uint32_t)config->max_renderable_lights) {
continue;
}
const real_t distance = p_render_data->cam_transform.origin.distance_to(li->transform.origin);
if (light_storage->light_is_distance_fade_enabled(li->light)) {
const float fade_begin = light_storage->light_get_distance_fade_begin(li->light);
const float fade_length = light_storage->light_get_distance_fade_length(li->light);
if (distance > fade_begin) {
if (distance > fade_begin + fade_length) {
// Out of range, don't draw this light to improve performance.
continue;
}
}
}
scene_state.omni_light_sort[r_omni_light_count].instance = li;
scene_state.omni_light_sort[r_omni_light_count].depth = distance;
r_omni_light_count++;
} break;
case RS::LIGHT_SPOT: {
if (r_spot_light_count >= (uint32_t)config->max_renderable_lights) {
continue;
}
const real_t distance = p_render_data->cam_transform.origin.distance_to(li->transform.origin);
if (light_storage->light_is_distance_fade_enabled(li->light)) {
const float fade_begin = light_storage->light_get_distance_fade_begin(li->light);
const float fade_length = light_storage->light_get_distance_fade_length(li->light);
if (distance > fade_begin) {
if (distance > fade_begin + fade_length) {
// Out of range, don't draw this light to improve performance.
continue;
}
}
}
scene_state.spot_light_sort[r_spot_light_count].instance = li;
scene_state.spot_light_sort[r_spot_light_count].depth = distance;
r_spot_light_count++;
} break;
}
li->last_pass = RSG::rasterizer->get_frame_number();
}
if (r_omni_light_count) {
SortArray<InstanceSort<GLES3::LightInstance>> sorter;
sorter.sort(scene_state.omni_light_sort, r_omni_light_count);
}
if (r_spot_light_count) {
SortArray<InstanceSort<GLES3::LightInstance>> sorter;
sorter.sort(scene_state.spot_light_sort, r_spot_light_count);
}
int num_positional_shadows = 0;
for (uint32_t i = 0; i < (r_omni_light_count + r_spot_light_count); i++) {
uint32_t index = (i < r_omni_light_count) ? i : i - (r_omni_light_count);
LightData &light_data = (i < r_omni_light_count) ? scene_state.omni_lights[index] : scene_state.spot_lights[index];
RS::LightType type = (i < r_omni_light_count) ? RS::LIGHT_OMNI : RS::LIGHT_SPOT;
GLES3::LightInstance *li = (i < r_omni_light_count) ? scene_state.omni_light_sort[index].instance : scene_state.spot_light_sort[index].instance;
real_t distance = (i < r_omni_light_count) ? scene_state.omni_light_sort[index].depth : scene_state.spot_light_sort[index].depth;
RID base = li->light;
li->gl_id = index;
Transform3D light_transform = li->transform;
Vector3 pos = inverse_transform.xform(light_transform.origin);
light_data.position[0] = pos.x;
light_data.position[1] = pos.y;
light_data.position[2] = pos.z;
float radius = MAX(0.001, light_storage->light_get_param(base, RS::LIGHT_PARAM_RANGE));
light_data.inv_radius = 1.0 / radius;
Vector3 direction = inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, -1))).normalized();
light_data.direction[0] = direction.x;
light_data.direction[1] = direction.y;
light_data.direction[2] = direction.z;
float size = light_storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
light_data.size = size;
float sign = light_storage->light_is_negative(base) ? -1 : 1;
Color linear_col = light_storage->light_get_color(base).srgb_to_linear();
// Reuse fade begin, fade length and distance for shadow LOD determination later.
float fade_begin = 0.0;
float fade_shadow = 0.0;
float fade_length = 0.0;
float fade = 1.0;
float shadow_opacity_fade = 1.0;
if (light_storage->light_is_distance_fade_enabled(base)) {
fade_begin = light_storage->light_get_distance_fade_begin(base);
fade_shadow = light_storage->light_get_distance_fade_shadow(base);
fade_length = light_storage->light_get_distance_fade_length(base);
if (distance > fade_begin) {
// Use `smoothstep()` to make opacity changes more gradual and less noticeable to the player.
fade = Math::smoothstep(0.0f, 1.0f, 1.0f - float(distance - fade_begin) / fade_length);
}
if (distance > fade_shadow) {
shadow_opacity_fade = Math::smoothstep(0.0f, 1.0f, 1.0f - float(distance - fade_shadow) / fade_length);
}
}
float energy = sign * light_storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY) * fade;
if (is_using_physical_light_units()) {
energy *= light_storage->light_get_param(base, RS::LIGHT_PARAM_INTENSITY);
// Convert from Luminous Power to Luminous Intensity
if (type == RS::LIGHT_OMNI) {
energy *= 1.0 / (Math_PI * 4.0);
} else {
// Spot Lights are not physically accurate, Luminous Intensity should change in relation to the cone angle.
// We make this assumption to keep them easy to control.
energy *= 1.0 / Math_PI;
}
} else {
energy *= Math_PI;
}
if (p_render_data->camera_attributes.is_valid()) {
energy *= RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes);
}
light_data.color[0] = linear_col.r * energy;
light_data.color[1] = linear_col.g * energy;
light_data.color[2] = linear_col.b * energy;
light_data.attenuation = light_storage->light_get_param(base, RS::LIGHT_PARAM_ATTENUATION);
light_data.inv_spot_attenuation = 1.0f / light_storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ATTENUATION);
float spot_angle = light_storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ANGLE);
light_data.cos_spot_angle = Math::cos(Math::deg_to_rad(spot_angle));
light_data.specular_amount = light_storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR) * 2.0;
// Setup shadows
const bool needs_shadow =
p_using_shadows &&
light_storage->owns_shadow_atlas(p_render_data->shadow_atlas) &&
light_storage->shadow_atlas_owns_light_instance(p_render_data->shadow_atlas, li->self) &&
light_storage->light_has_shadow(base);
bool in_shadow_range = true;
if (needs_shadow && light_storage->light_is_distance_fade_enabled(base)) {
if (distance > fade_shadow + fade_length) {
// Out of range, don't draw shadows to improve performance.
in_shadow_range = false;
}
}
// Fill in the shadow information.
if (needs_shadow && in_shadow_range) {
if (num_positional_shadows >= config->max_renderable_lights) {
continue;
}
ShadowData &shadow_data = scene_state.positional_shadows[num_positional_shadows];
li->shadow_id = num_positional_shadows;
num_positional_shadows++;
light_data.shadow_opacity = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_OPACITY) * shadow_opacity_fade;
float shadow_texel_size = light_storage->light_instance_get_shadow_texel_size(li->self, p_render_data->shadow_atlas);
shadow_data.shadow_atlas_pixel_size = shadow_texel_size;
shadow_data.shadow_normal_bias = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * shadow_texel_size * 10.0;
shadow_data.light_position[0] = light_data.position[0];
shadow_data.light_position[1] = light_data.position[1];
shadow_data.light_position[2] = light_data.position[2];
if (type == RS::LIGHT_OMNI) {
Transform3D proj = (inverse_transform * light_transform).inverse();
GLES3::MaterialStorage::store_transform(proj, shadow_data.shadow_matrix);
} else if (type == RS::LIGHT_SPOT) {
Transform3D modelview = (inverse_transform * light_transform).inverse();
Projection bias;
bias.set_light_bias();
Projection cm = li->shadow_transform[0].camera;
Projection shadow_mtx = bias * cm * modelview;
GLES3::MaterialStorage::store_camera(shadow_mtx, shadow_data.shadow_matrix);
}
}
}
// TODO, to avoid stalls, should rotate between 3 buffers based on frame index.
// TODO, consider mapping the buffer as in 2D
glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_OMNILIGHT_UNIFORM_LOCATION, scene_state.omni_light_buffer);
if (r_omni_light_count) {
glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(LightData) * r_omni_light_count, scene_state.omni_lights);
}
glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_SPOTLIGHT_UNIFORM_LOCATION, scene_state.spot_light_buffer);
if (r_spot_light_count) {
glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(LightData) * r_spot_light_count, scene_state.spot_lights);
}
glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_DIRECTIONAL_LIGHT_UNIFORM_LOCATION, scene_state.directional_light_buffer);
if (r_directional_light_count) {
glBufferData(GL_UNIFORM_BUFFER, sizeof(DirectionalLightData) * MAX_DIRECTIONAL_LIGHTS, scene_state.directional_lights, GL_STREAM_DRAW);
}
glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_POSITIONAL_SHADOW_UNIFORM_LOCATION, scene_state.positional_shadow_buffer);
if (num_positional_shadows) {
glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(ShadowData) * num_positional_shadows, scene_state.positional_shadows);
}
glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_DIRECTIONAL_SHADOW_UNIFORM_LOCATION, scene_state.directional_shadow_buffer);
if (r_directional_shadow_count) {
glBufferData(GL_UNIFORM_BUFFER, sizeof(DirectionalShadowData) * MAX_DIRECTIONAL_LIGHTS, scene_state.directional_shadows, GL_STREAM_DRAW);
}
glBindBuffer(GL_UNIFORM_BUFFER, 0);
}
// Render shadows
void RasterizerSceneGLES3::_render_shadows(const RenderDataGLES3 *p_render_data, const Size2i &p_viewport_size) {
GLES3::LightStorage *light_storage = GLES3::LightStorage::get_singleton();
LocalVector<int> cube_shadows;
LocalVector<int> shadows;
LocalVector<int> directional_shadows;
Plane camera_plane(-p_render_data->cam_transform.basis.get_column(Vector3::AXIS_Z), p_render_data->cam_transform.origin);
float lod_distance_multiplier = p_render_data->cam_projection.get_lod_multiplier();
// Put lights into buckets for omni (cube shadows), directional, and spot.
{
for (int i = 0; i < p_render_data->render_shadow_count; i++) {
RID li = p_render_data->render_shadows[i].light;
RID base = light_storage->light_instance_get_base_light(li);
if (light_storage->light_get_type(base) == RS::LIGHT_DIRECTIONAL) {
directional_shadows.push_back(i);
} else if (light_storage->light_get_type(base) == RS::LIGHT_OMNI && light_storage->light_omni_get_shadow_mode(base) == RS::LIGHT_OMNI_SHADOW_CUBE) {
cube_shadows.push_back(i);
} else {
shadows.push_back(i);
}
}
if (directional_shadows.size()) {
light_storage->update_directional_shadow_atlas();
}
}
bool render_shadows = directional_shadows.size() || shadows.size() || cube_shadows.size();
if (render_shadows) {
RENDER_TIMESTAMP("Render Shadows");
// Render cubemap shadows.
for (const int &index : cube_shadows) {
_render_shadow_pass(p_render_data->render_shadows[index].light, p_render_data->shadow_atlas, p_render_data->render_shadows[index].pass, p_render_data->render_shadows[index].instances, camera_plane, lod_distance_multiplier, p_render_data->screen_mesh_lod_threshold, p_render_data->render_info, p_viewport_size);
}
// Render directional shadows.
for (uint32_t i = 0; i < directional_shadows.size(); i++) {
_render_shadow_pass(p_render_data->render_shadows[directional_shadows[i]].light, p_render_data->shadow_atlas, p_render_data->render_shadows[directional_shadows[i]].pass, p_render_data->render_shadows[directional_shadows[i]].instances, camera_plane, lod_distance_multiplier, p_render_data->screen_mesh_lod_threshold, p_render_data->render_info, p_viewport_size);
}
// Render positional shadows (Spotlight and Omnilight with dual-paraboloid).
for (uint32_t i = 0; i < shadows.size(); i++) {
_render_shadow_pass(p_render_data->render_shadows[shadows[i]].light, p_render_data->shadow_atlas, p_render_data->render_shadows[shadows[i]].pass, p_render_data->render_shadows[shadows[i]].instances, camera_plane, lod_distance_multiplier, p_render_data->screen_mesh_lod_threshold, p_render_data->render_info, p_viewport_size);
}
}
}
void RasterizerSceneGLES3::_render_shadow_pass(RID p_light, RID p_shadow_atlas, int p_pass, const PagedArray<RenderGeometryInstance *> &p_instances, const Plane &p_camera_plane, float p_lod_distance_multiplier, float p_screen_mesh_lod_threshold, RenderingMethod::RenderInfo *p_render_info, const Size2i &p_viewport_size) {
GLES3::LightStorage *light_storage = GLES3::LightStorage::get_singleton();
ERR_FAIL_COND(!light_storage->owns_light_instance(p_light));
RID base = light_storage->light_instance_get_base_light(p_light);
float zfar = 0.0;
bool use_pancake = false;
float shadow_bias = 0.0;
bool reverse_cull = false;
bool needs_clear = false;
Projection light_projection;
Transform3D light_transform;
GLuint shadow_fb = 0;
Rect2i atlas_rect;
if (light_storage->light_get_type(base) == RS::LIGHT_DIRECTIONAL) {
// Set pssm stuff.
uint64_t last_scene_shadow_pass = light_storage->light_instance_get_shadow_pass(p_light);
if (last_scene_shadow_pass != get_scene_pass()) {
light_storage->light_instance_set_directional_rect(p_light, light_storage->get_directional_shadow_rect());
light_storage->directional_shadow_increase_current_light();
light_storage->light_instance_set_shadow_pass(p_light, get_scene_pass());
}
atlas_rect = light_storage->light_instance_get_directional_rect(p_light);
if (light_storage->light_directional_get_shadow_mode(base) == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) {
atlas_rect.size.width /= 2;
atlas_rect.size.height /= 2;
if (p_pass == 1) {
atlas_rect.position.x += atlas_rect.size.width;
} else if (p_pass == 2) {
atlas_rect.position.y += atlas_rect.size.height;
} else if (p_pass == 3) {
atlas_rect.position += atlas_rect.size;
}
} else if (light_storage->light_directional_get_shadow_mode(base) == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) {
atlas_rect.size.height /= 2;
if (p_pass == 0) {
} else {
atlas_rect.position.y += atlas_rect.size.height;
}
}
use_pancake = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_PANCAKE_SIZE) > 0;
light_projection = light_storage->light_instance_get_shadow_camera(p_light, p_pass);
light_transform = light_storage->light_instance_get_shadow_transform(p_light, p_pass);
float directional_shadow_size = light_storage->directional_shadow_get_size();
Rect2 atlas_rect_norm = atlas_rect;
atlas_rect_norm.position /= directional_shadow_size;
atlas_rect_norm.size /= directional_shadow_size;
light_storage->light_instance_set_directional_shadow_atlas_rect(p_light, p_pass, atlas_rect_norm);
zfar = RSG::light_storage->light_get_param(base, RS::LIGHT_PARAM_RANGE);
shadow_fb = light_storage->direction_shadow_get_fb();
reverse_cull = !light_storage->light_get_reverse_cull_face_mode(base);
float bias_scale = light_storage->light_instance_get_shadow_bias_scale(p_light, p_pass);
shadow_bias = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) / 100.0 * bias_scale;
} else {
// Set from shadow atlas.
ERR_FAIL_COND(!light_storage->owns_shadow_atlas(p_shadow_atlas));
ERR_FAIL_COND(!light_storage->shadow_atlas_owns_light_instance(p_shadow_atlas, p_light));
uint32_t key = light_storage->shadow_atlas_get_light_instance_key(p_shadow_atlas, p_light);
uint32_t quadrant = (key >> GLES3::LightStorage::QUADRANT_SHIFT) & 0x3;
uint32_t shadow = key & GLES3::LightStorage::SHADOW_INDEX_MASK;
ERR_FAIL_INDEX((int)shadow, light_storage->shadow_atlas_get_quadrant_shadows_length(p_shadow_atlas, quadrant));
int shadow_size = light_storage->shadow_atlas_get_quadrant_shadow_size(p_shadow_atlas, quadrant);
shadow_fb = light_storage->shadow_atlas_get_quadrant_shadow_fb(p_shadow_atlas, quadrant, shadow);
zfar = light_storage->light_get_param(base, RS::LIGHT_PARAM_RANGE);
reverse_cull = !light_storage->light_get_reverse_cull_face_mode(base);
if (light_storage->light_get_type(base) == RS::LIGHT_OMNI) {
if (light_storage->light_omni_get_shadow_mode(base) == RS::LIGHT_OMNI_SHADOW_CUBE) {
GLuint shadow_texture = light_storage->shadow_atlas_get_quadrant_shadow_texture(p_shadow_atlas, quadrant, shadow);
glBindFramebuffer(GL_FRAMEBUFFER, shadow_fb);
static GLenum cube_map_faces[6] = {
GL_TEXTURE_CUBE_MAP_POSITIVE_X,
GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
// Flipped order for Y to match what the RD renderer expects
// (and thus what is given to us by the Rendering Server).
GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
GL_TEXTURE_CUBE_MAP_POSITIVE_Z,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z
};
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, cube_map_faces[p_pass], shadow_texture, 0);
light_projection = light_storage->light_instance_get_shadow_camera(p_light, p_pass);
light_transform = light_storage->light_instance_get_shadow_transform(p_light, p_pass);
shadow_size = shadow_size / 2;
} else {
ERR_FAIL_MSG("Dual paraboloid shadow mode not supported in GL Compatibility renderer. Please use Cubemap shadow mode instead.");
}
shadow_bias = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS);
} else if (light_storage->light_get_type(base) == RS::LIGHT_SPOT) {
light_projection = light_storage->light_instance_get_shadow_camera(p_light, 0);
light_transform = light_storage->light_instance_get_shadow_transform(p_light, 0);
shadow_bias = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) / 10.0;
// Prebake range into bias so we can scale based on distance easily.
shadow_bias *= light_storage->light_get_param(base, RS::LIGHT_PARAM_RANGE);
}
atlas_rect.size.x = shadow_size;
atlas_rect.size.y = shadow_size;
needs_clear = true;
}
RenderDataGLES3 render_data;
render_data.cam_projection = light_projection;
render_data.cam_transform = light_transform;
render_data.inv_cam_transform = light_transform.affine_inverse();
render_data.z_far = zfar; // Only used by OmniLights.
render_data.z_near = 0.0;
render_data.lod_distance_multiplier = p_lod_distance_multiplier;
render_data.instances = &p_instances;
render_data.render_info = p_render_info;
_setup_environment(&render_data, true, p_viewport_size, false, Color(), use_pancake, shadow_bias);
if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_DISABLE_LOD) {
render_data.screen_mesh_lod_threshold = 0.0;
} else {
render_data.screen_mesh_lod_threshold = p_screen_mesh_lod_threshold;
}
_fill_render_list(RENDER_LIST_SECONDARY, &render_data, PASS_MODE_SHADOW);
render_list[RENDER_LIST_SECONDARY].sort_by_key();
glBindFramebuffer(GL_FRAMEBUFFER, shadow_fb);
glViewport(atlas_rect.position.x, atlas_rect.position.y, atlas_rect.size.x, atlas_rect.size.y);
GLuint global_buffer = GLES3::MaterialStorage::get_singleton()->global_shader_parameters_get_uniform_buffer();
glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_GLOBALS_UNIFORM_LOCATION, global_buffer);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
glDisable(GL_BLEND);
glDepthMask(GL_TRUE);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LESS);
glDisable(GL_SCISSOR_TEST);
glCullFace(GL_BACK);
glEnable(GL_CULL_FACE);
scene_state.cull_mode = GLES3::SceneShaderData::CULL_BACK;
glColorMask(0, 0, 0, 0);
RasterizerGLES3::clear_depth(1.0);
if (needs_clear) {
glClear(GL_DEPTH_BUFFER_BIT);
}
uint64_t spec_constant_base_flags = SceneShaderGLES3::DISABLE_LIGHTMAP |
SceneShaderGLES3::DISABLE_LIGHT_DIRECTIONAL |
SceneShaderGLES3::DISABLE_LIGHT_OMNI |
SceneShaderGLES3::DISABLE_LIGHT_SPOT |
SceneShaderGLES3::DISABLE_FOG |
SceneShaderGLES3::RENDER_SHADOWS;
if (light_storage->light_get_type(base) == RS::LIGHT_OMNI) {
spec_constant_base_flags |= SceneShaderGLES3::RENDER_SHADOWS_LINEAR;
}
RenderListParameters render_list_params(render_list[RENDER_LIST_SECONDARY].elements.ptr(), render_list[RENDER_LIST_SECONDARY].elements.size(), reverse_cull, spec_constant_base_flags, false);
_render_list_template<PASS_MODE_SHADOW>(&render_list_params, &render_data, 0, render_list[RENDER_LIST_SECONDARY].elements.size());
glColorMask(1, 1, 1, 1);
glDisable(GL_DEPTH_TEST);
glDepthMask(GL_FALSE);
glDisable(GL_CULL_FACE);
scene_state.cull_mode = GLES3::SceneShaderData::CULL_DISABLED;
glBindFramebuffer(GL_FRAMEBUFFER, 0);
}
void RasterizerSceneGLES3::render_scene(const Ref<RenderSceneBuffers> &p_render_buffers, const CameraData *p_camera_data, const CameraData *p_prev_camera_data, const PagedArray<RenderGeometryInstance *> &p_instances, const PagedArray<RID> &p_lights, const PagedArray<RID> &p_reflection_probes, const PagedArray<RID> &p_voxel_gi_instances, const PagedArray<RID> &p_decals, const PagedArray<RID> &p_lightmaps, const PagedArray<RID> &p_fog_volumes, RID p_environment, RID p_camera_attributes, RID p_shadow_atlas, RID p_occluder_debug_tex, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass, float p_screen_mesh_lod_threshold, const RenderShadowData *p_render_shadows, int p_render_shadow_count, const RenderSDFGIData *p_render_sdfgi_regions, int p_render_sdfgi_region_count, const RenderSDFGIUpdateData *p_sdfgi_update_data, RenderingMethod::RenderInfo *r_render_info) {
GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton();
GLES3::Config *config = GLES3::Config::get_singleton();
RENDER_TIMESTAMP("Setup 3D Scene");
Ref<RenderSceneBuffersGLES3> rb;
if (p_render_buffers.is_valid()) {
rb = p_render_buffers;
ERR_FAIL_COND(rb.is_null());
}
GLES3::RenderTarget *rt = texture_storage->get_render_target(rb->render_target);
ERR_FAIL_NULL(rt);
// Assign render data
// Use the format from rendererRD
RenderDataGLES3 render_data;
{
render_data.render_buffers = rb;
render_data.transparent_bg = rb.is_valid() ? rt->is_transparent : false;
// Our first camera is used by default
render_data.cam_transform = p_camera_data->main_transform;
render_data.inv_cam_transform = render_data.cam_transform.affine_inverse();
render_data.cam_projection = p_camera_data->main_projection;
render_data.cam_orthogonal = p_camera_data->is_orthogonal;
render_data.camera_visible_layers = p_camera_data->visible_layers;
render_data.view_count = p_camera_data->view_count;
for (uint32_t v = 0; v < p_camera_data->view_count; v++) {
render_data.view_eye_offset[v] = p_camera_data->view_offset[v].origin;
render_data.view_projection[v] = p_camera_data->view_projection[v];
}
render_data.z_near = p_camera_data->main_projection.get_z_near();
render_data.z_far = p_camera_data->main_projection.get_z_far();
render_data.instances = &p_instances;
render_data.lights = &p_lights;
render_data.reflection_probes = &p_reflection_probes;
render_data.environment = p_environment;
render_data.camera_attributes = p_camera_attributes;
render_data.shadow_atlas = p_shadow_atlas;
render_data.reflection_probe = p_reflection_probe;
render_data.reflection_probe_pass = p_reflection_probe_pass;
// this should be the same for all cameras..
render_data.lod_distance_multiplier = p_camera_data->main_projection.get_lod_multiplier();
if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_DISABLE_LOD) {
render_data.screen_mesh_lod_threshold = 0.0;
} else {
render_data.screen_mesh_lod_threshold = p_screen_mesh_lod_threshold;
}
render_data.render_info = r_render_info;
render_data.render_shadows = p_render_shadows;
render_data.render_shadow_count = p_render_shadow_count;
}
PagedArray<RID> empty;
if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_UNSHADED) {
render_data.lights = &empty;
render_data.reflection_probes = &empty;
}
bool reverse_cull = render_data.cam_transform.basis.determinant() < 0;
///////////
// Fill Light lists here
//////////
GLuint global_buffer = GLES3::MaterialStorage::get_singleton()->global_shader_parameters_get_uniform_buffer();
glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_GLOBALS_UNIFORM_LOCATION, global_buffer);
Color clear_color;
if (p_render_buffers.is_valid()) {
clear_color = texture_storage->render_target_get_clear_request_color(rb->render_target);
} else {
clear_color = texture_storage->get_default_clear_color();
}
bool fb_cleared = false;
Size2i screen_size;
screen_size.x = rb->width;
screen_size.y = rb->height;
bool use_wireframe = get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_WIREFRAME;
SceneState::TonemapUBO tonemap_ubo;
if (render_data.environment.is_valid()) {
tonemap_ubo.exposure = environment_get_exposure(render_data.environment);
tonemap_ubo.white = environment_get_white(render_data.environment);
tonemap_ubo.tonemapper = int32_t(environment_get_tone_mapper(render_data.environment));
}
if (scene_state.tonemap_buffer == 0) {
// Only create if using 3D
glGenBuffers(1, &scene_state.tonemap_buffer);
glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_TONEMAP_UNIFORM_LOCATION, scene_state.tonemap_buffer);
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, scene_state.tonemap_buffer, sizeof(SceneState::TonemapUBO), &tonemap_ubo, GL_STREAM_DRAW, "Tonemap UBO");
} else {
glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_TONEMAP_UNIFORM_LOCATION, scene_state.tonemap_buffer);
glBufferData(GL_UNIFORM_BUFFER, sizeof(SceneState::TonemapUBO), &tonemap_ubo, GL_STREAM_DRAW);
}
glBindBuffer(GL_UNIFORM_BUFFER, 0);
scene_state.ubo.emissive_exposure_normalization = -1.0; // Use default exposure normalization.
bool flip_y = !render_data.reflection_probe.is_valid();
if (rt->overridden.color.is_valid()) {
// If we've overridden the render target's color texture, then don't render upside down.
// We're probably rendering directly to an XR device.
flip_y = false;
}
if (!flip_y) {
// If we're rendering right-side up, then we need to change the winding order.
glFrontFace(GL_CW);
}
_render_shadows(&render_data, screen_size);
_setup_lights(&render_data, true, render_data.directional_light_count, render_data.omni_light_count, render_data.spot_light_count, render_data.directional_shadow_count);
_setup_environment(&render_data, render_data.reflection_probe.is_valid(), screen_size, flip_y, clear_color, false);
_fill_render_list(RENDER_LIST_OPAQUE, &render_data, PASS_MODE_COLOR);
render_list[RENDER_LIST_OPAQUE].sort_by_key();
render_list[RENDER_LIST_ALPHA].sort_by_reverse_depth_and_priority();
bool draw_sky = false;
bool draw_sky_fog_only = false;
bool keep_color = false;
float sky_energy_multiplier = 1.0;
if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_OVERDRAW) {
clear_color = Color(0, 0, 0, 1); //in overdraw mode, BG should always be black
} else if (render_data.environment.is_valid()) {
RS::EnvironmentBG bg_mode = environment_get_background(render_data.environment);
float bg_energy_multiplier = environment_get_bg_energy_multiplier(render_data.environment);
bg_energy_multiplier *= environment_get_bg_intensity(render_data.environment);
if (render_data.camera_attributes.is_valid()) {
bg_energy_multiplier *= RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(render_data.camera_attributes);
}
switch (bg_mode) {
case RS::ENV_BG_CLEAR_COLOR: {
clear_color.r *= bg_energy_multiplier;
clear_color.g *= bg_energy_multiplier;
clear_color.b *= bg_energy_multiplier;
if (environment_get_fog_enabled(render_data.environment)) {
draw_sky_fog_only = true;
GLES3::MaterialStorage::get_singleton()->material_set_param(sky_globals.fog_material, "clear_color", Variant(clear_color));
}
} break;
case RS::ENV_BG_COLOR: {
clear_color = environment_get_bg_color(render_data.environment);
clear_color.r *= bg_energy_multiplier;
clear_color.g *= bg_energy_multiplier;
clear_color.b *= bg_energy_multiplier;
if (environment_get_fog_enabled(render_data.environment)) {
draw_sky_fog_only = true;
GLES3::MaterialStorage::get_singleton()->material_set_param(sky_globals.fog_material, "clear_color", Variant(clear_color));
}
} break;
case RS::ENV_BG_SKY: {
draw_sky = true;
} break;
case RS::ENV_BG_CANVAS: {
keep_color = true;
} break;
case RS::ENV_BG_KEEP: {
keep_color = true;
} break;
case RS::ENV_BG_CAMERA_FEED: {
} break;
default: {
}
}
// setup sky if used for ambient, reflections, or background
if (draw_sky || draw_sky_fog_only || environment_get_reflection_source(render_data.environment) == RS::ENV_REFLECTION_SOURCE_SKY || environment_get_ambient_source(render_data.environment) == RS::ENV_AMBIENT_SOURCE_SKY) {
RENDER_TIMESTAMP("Setup Sky");
Projection projection = render_data.cam_projection;
if (render_data.reflection_probe.is_valid()) {
Projection correction;
correction.columns[1][1] = -1.0;
projection = correction * render_data.cam_projection;
}
sky_energy_multiplier *= bg_energy_multiplier;
_setup_sky(&render_data, *render_data.lights, projection, render_data.cam_transform, screen_size);
if (environment_get_sky(render_data.environment).is_valid()) {
if (environment_get_reflection_source(render_data.environment) == RS::ENV_REFLECTION_SOURCE_SKY || environment_get_ambient_source(render_data.environment) == RS::ENV_AMBIENT_SOURCE_SKY || (environment_get_reflection_source(render_data.environment) == RS::ENV_REFLECTION_SOURCE_BG && environment_get_background(render_data.environment) == RS::ENV_BG_SKY)) {
_update_sky_radiance(render_data.environment, projection, render_data.cam_transform, sky_energy_multiplier);
}
} else {
// do not try to draw sky if invalid
draw_sky = false;
}
}
}
glBindFramebuffer(GL_FRAMEBUFFER, rt->fbo);
glViewport(0, 0, rb->width, rb->height);
glCullFace(GL_BACK);
glEnable(GL_CULL_FACE);
scene_state.cull_mode = GLES3::SceneShaderData::CULL_BACK;
// Do depth prepass if it's explicitly enabled
bool use_depth_prepass = config->use_depth_prepass;
// Don't do depth prepass we are rendering overdraw
use_depth_prepass = use_depth_prepass && get_debug_draw_mode() != RS::VIEWPORT_DEBUG_DRAW_OVERDRAW;
if (use_depth_prepass) {
RENDER_TIMESTAMP("Depth Prepass");
//pre z pass
glDisable(GL_BLEND);
glDepthMask(GL_TRUE);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LEQUAL);
glDisable(GL_SCISSOR_TEST);
glColorMask(0, 0, 0, 0);
RasterizerGLES3::clear_depth(1.0);
glClear(GL_DEPTH_BUFFER_BIT);
uint64_t spec_constant = SceneShaderGLES3::DISABLE_FOG | SceneShaderGLES3::DISABLE_LIGHT_DIRECTIONAL |
SceneShaderGLES3::DISABLE_LIGHTMAP | SceneShaderGLES3::DISABLE_LIGHT_OMNI |
SceneShaderGLES3::DISABLE_LIGHT_SPOT;
RenderListParameters render_list_params(render_list[RENDER_LIST_OPAQUE].elements.ptr(), render_list[RENDER_LIST_OPAQUE].elements.size(), reverse_cull, spec_constant, use_wireframe);
_render_list_template<PASS_MODE_DEPTH>(&render_list_params, &render_data, 0, render_list[RENDER_LIST_OPAQUE].elements.size());
glColorMask(1, 1, 1, 1);
fb_cleared = true;
scene_state.used_depth_prepass = true;
} else {
scene_state.used_depth_prepass = false;
}
glBlendEquation(GL_FUNC_ADD);
if (render_data.transparent_bg) {
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_BLEND);
} else {
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ZERO, GL_ONE);
glDisable(GL_BLEND);
}
scene_state.current_blend_mode = GLES3::SceneShaderData::BLEND_MODE_MIX;
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LEQUAL);
glDepthMask(GL_TRUE);
scene_state.current_depth_test = GLES3::SceneShaderData::DEPTH_TEST_ENABLED;
scene_state.current_depth_draw = GLES3::SceneShaderData::DEPTH_DRAW_ALWAYS;
if (!fb_cleared) {
RasterizerGLES3::clear_depth(1.0);
glClear(GL_DEPTH_BUFFER_BIT);
}
if (!keep_color) {
clear_color.a = render_data.transparent_bg ? 0.0f : 1.0f;
glClearBufferfv(GL_COLOR, 0, clear_color.components);
}
RENDER_TIMESTAMP("Render Opaque Pass");
uint64_t spec_constant_base_flags = 0;
{
// Specialization Constants that apply for entire rendering pass.
if (render_data.directional_light_count == 0) {
spec_constant_base_flags |= SceneShaderGLES3::DISABLE_LIGHT_DIRECTIONAL;
}
if (render_data.environment.is_null() || (render_data.environment.is_valid() && !environment_get_fog_enabled(render_data.environment))) {
spec_constant_base_flags |= SceneShaderGLES3::DISABLE_FOG;
}
}
// Render Opaque Objects.
RenderListParameters render_list_params(render_list[RENDER_LIST_OPAQUE].elements.ptr(), render_list[RENDER_LIST_OPAQUE].elements.size(), reverse_cull, spec_constant_base_flags, use_wireframe);
_render_list_template<PASS_MODE_COLOR>(&render_list_params, &render_data, 0, render_list[RENDER_LIST_OPAQUE].elements.size());
glDepthMask(GL_FALSE);
scene_state.current_depth_draw = GLES3::SceneShaderData::DEPTH_DRAW_DISABLED;
if (draw_sky) {
RENDER_TIMESTAMP("Render Sky");
glEnable(GL_DEPTH_TEST);
glDisable(GL_BLEND);
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);
scene_state.current_depth_test = GLES3::SceneShaderData::DEPTH_TEST_ENABLED;
scene_state.cull_mode = GLES3::SceneShaderData::CULL_BACK;
_draw_sky(render_data.environment, render_data.cam_projection, render_data.cam_transform, sky_energy_multiplier, p_camera_data->view_count > 1, flip_y);
}
if (scene_state.used_screen_texture || scene_state.used_depth_texture) {
texture_storage->copy_scene_to_backbuffer(rt, scene_state.used_screen_texture, scene_state.used_depth_texture);
glBindFramebuffer(GL_READ_FRAMEBUFFER, rt->fbo);
glReadBuffer(GL_COLOR_ATTACHMENT0);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, rt->backbuffer_fbo);
if (scene_state.used_screen_texture) {
glBlitFramebuffer(0, 0, rt->size.x, rt->size.y,
0, 0, rt->size.x, rt->size.y,
GL_COLOR_BUFFER_BIT, GL_NEAREST);
glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 5);
glBindTexture(GL_TEXTURE_2D, rt->backbuffer);
}
if (scene_state.used_depth_texture) {
glBlitFramebuffer(0, 0, rt->size.x, rt->size.y,
0, 0, rt->size.x, rt->size.y,
GL_DEPTH_BUFFER_BIT, GL_NEAREST);
glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 6);
glBindTexture(GL_TEXTURE_2D, rt->backbuffer_depth);
}
glBindFramebuffer(GL_FRAMEBUFFER, rt->fbo);
}
RENDER_TIMESTAMP("Render 3D Transparent Pass");
glEnable(GL_BLEND);
//Render transparent pass
RenderListParameters render_list_params_alpha(render_list[RENDER_LIST_ALPHA].elements.ptr(), render_list[RENDER_LIST_ALPHA].elements.size(), reverse_cull, spec_constant_base_flags, use_wireframe);
_render_list_template<PASS_MODE_COLOR_TRANSPARENT>(&render_list_params_alpha, &render_data, 0, render_list[RENDER_LIST_ALPHA].elements.size(), true);
if (!flip_y) {
// Restore the default winding order.
glFrontFace(GL_CCW);
}
if (rb.is_valid()) {
_render_buffers_debug_draw(rb, p_shadow_atlas);
}
glDisable(GL_BLEND);
texture_storage->render_target_disable_clear_request(rb->render_target);
glActiveTexture(GL_TEXTURE0);
}
template <PassMode p_pass_mode>
void RasterizerSceneGLES3::_render_list_template(RenderListParameters *p_params, const RenderDataGLES3 *p_render_data, uint32_t p_from_element, uint32_t p_to_element, bool p_alpha_pass) {
GLES3::MeshStorage *mesh_storage = GLES3::MeshStorage::get_singleton();
GLES3::ParticlesStorage *particles_storage = GLES3::ParticlesStorage::get_singleton();
GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton();
GLuint prev_vertex_array_gl = 0;
GLuint prev_index_array_gl = 0;
GLES3::SceneMaterialData *prev_material_data = nullptr;
GLES3::SceneShaderData *prev_shader = nullptr;
GeometryInstanceGLES3 *prev_inst = nullptr;
SceneShaderGLES3::ShaderVariant prev_variant = SceneShaderGLES3::ShaderVariant::MODE_COLOR;
SceneShaderGLES3::ShaderVariant shader_variant = SceneShaderGLES3::MODE_COLOR; // Assigned to silence wrong -Wmaybe-initialized
uint64_t prev_spec_constants = 0;
// Specializations constants used by all instances in the scene.
uint64_t base_spec_constants = p_params->spec_constant_base_flags;
if constexpr (p_pass_mode == PASS_MODE_COLOR || p_pass_mode == PASS_MODE_COLOR_TRANSPARENT) {
GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton();
GLES3::Config *config = GLES3::Config::get_singleton();
glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 2);
GLuint texture_to_bind = texture_storage->get_texture(texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_CUBEMAP_BLACK))->tex_id;
if (p_render_data->environment.is_valid()) {
Sky *sky = sky_owner.get_or_null(environment_get_sky(p_render_data->environment));
if (sky && sky->radiance != 0) {
texture_to_bind = sky->radiance;
base_spec_constants |= SceneShaderGLES3::USE_RADIANCE_MAP;
}
glBindTexture(GL_TEXTURE_CUBE_MAP, texture_to_bind);
}
} else if constexpr (p_pass_mode == PASS_MODE_DEPTH || p_pass_mode == PASS_MODE_SHADOW) {
shader_variant = SceneShaderGLES3::MODE_DEPTH;
}
if (p_render_data->view_count > 1) {
base_spec_constants |= SceneShaderGLES3::USE_MULTIVIEW;
}
bool should_request_redraw = false;
if constexpr (p_pass_mode != PASS_MODE_DEPTH) {
// Don't count elements during depth pre-pass to match the RD renderers.
if (p_render_data->render_info) {
p_render_data->render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_VISIBLE][RS::VIEWPORT_RENDER_INFO_OBJECTS_IN_FRAME] += p_to_element - p_from_element;
}
}
for (uint32_t i = p_from_element; i < p_to_element; i++) {
GeometryInstanceSurface *surf = p_params->elements[i];
GeometryInstanceGLES3 *inst = surf->owner;
if (p_pass_mode == PASS_MODE_COLOR && !(surf->flags & GeometryInstanceSurface::FLAG_PASS_OPAQUE)) {
continue; // Objects with "Depth-prepass" transparency are included in both render lists, but should only be rendered in the transparent pass
}
if (inst->instance_count == 0) {
continue;
}
GLES3::SceneShaderData *shader;
GLES3::SceneMaterialData *material_data;
void *mesh_surface;
if constexpr (p_pass_mode == PASS_MODE_SHADOW) {
shader = surf->shader_shadow;
material_data = surf->material_shadow;
mesh_surface = surf->surface_shadow;
} else {
shader = surf->shader;
material_data = surf->material;
mesh_surface = surf->surface;
}
if (!mesh_surface) {
continue;
}
//request a redraw if one of the shaders uses TIME
if (shader->uses_time) {
should_request_redraw = true;
}
if constexpr (p_pass_mode == PASS_MODE_COLOR_TRANSPARENT) {
if (scene_state.current_depth_test != shader->depth_test) {
if (shader->depth_test == GLES3::SceneShaderData::DEPTH_TEST_DISABLED) {
glDisable(GL_DEPTH_TEST);
} else {
glEnable(GL_DEPTH_TEST);
}
scene_state.current_depth_test = shader->depth_test;
}
}
if constexpr (p_pass_mode != PASS_MODE_SHADOW) {
if (scene_state.current_depth_draw != shader->depth_draw) {
switch (shader->depth_draw) {
case GLES3::SceneShaderData::DEPTH_DRAW_OPAQUE: {
glDepthMask((p_pass_mode == PASS_MODE_COLOR && !GLES3::Config::get_singleton()->use_depth_prepass) ||
p_pass_mode == PASS_MODE_DEPTH);
} break;
case GLES3::SceneShaderData::DEPTH_DRAW_ALWAYS: {
glDepthMask(GL_TRUE);
} break;
case GLES3::SceneShaderData::DEPTH_DRAW_DISABLED: {
glDepthMask(GL_FALSE);
} break;
}
}
scene_state.current_depth_draw = shader->depth_draw;
}
bool uses_additive_lighting = (inst->light_passes.size() + p_render_data->directional_shadow_count) > 0;
uses_additive_lighting = uses_additive_lighting && !shader->unshaded;
// TODOS
/*
* Still a bug when atlas space is limited. Somehow need to evict light when it doesn't have a spot on the atlas, current check isn't enough
* Disable depth draw
*/
for (int32_t pass = 0; pass < MAX(1, int32_t(inst->light_passes.size() + p_render_data->directional_shadow_count)); pass++) {
if constexpr (p_pass_mode == PASS_MODE_DEPTH || p_pass_mode == PASS_MODE_SHADOW) {
if (pass > 0) {
// Don't render shadow passes when doing depth or shadow pass.
break;
}
}
if constexpr (p_pass_mode == PASS_MODE_COLOR || p_pass_mode == PASS_MODE_COLOR_TRANSPARENT) {
if (!uses_additive_lighting && pass == 1) {
// Don't render additive passes if not using additive lighting.
break;
}
if (uses_additive_lighting && pass == 1 && !p_render_data->transparent_bg) {
// Enable blending if in opaque pass and not already enabled.
glEnable(GL_BLEND);
}
if (pass < int32_t(inst->light_passes.size())) {
RID light_instance_rid = inst->light_passes[pass].light_instance_rid;
if (!GLES3::LightStorage::get_singleton()->light_instance_has_shadow_atlas(light_instance_rid, p_render_data->shadow_atlas)) {
// Shadow wasn't able to get a spot on the atlas. So skip it.
continue;
}
}
}
if constexpr (p_pass_mode == PASS_MODE_COLOR || p_pass_mode == PASS_MODE_COLOR_TRANSPARENT) {
GLES3::SceneShaderData::BlendMode desired_blend_mode;
if (pass > 0) {
desired_blend_mode = GLES3::SceneShaderData::BLEND_MODE_ADD;
} else {
desired_blend_mode = shader->blend_mode;
}
if (desired_blend_mode != scene_state.current_blend_mode) {
switch (desired_blend_mode) {
case GLES3::SceneShaderData::BLEND_MODE_MIX: {
glBlendEquation(GL_FUNC_ADD);
if (p_render_data->transparent_bg) {
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
} else {
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ZERO, GL_ONE);
}
} break;
case GLES3::SceneShaderData::BLEND_MODE_ADD: {
glBlendEquation(GL_FUNC_ADD);
glBlendFunc(p_pass_mode == PASS_MODE_COLOR_TRANSPARENT ? GL_SRC_ALPHA : GL_ONE, GL_ONE);
} break;
case GLES3::SceneShaderData::BLEND_MODE_SUB: {
glBlendEquation(GL_FUNC_REVERSE_SUBTRACT);
glBlendFunc(GL_SRC_ALPHA, GL_ONE);
} break;
case GLES3::SceneShaderData::BLEND_MODE_MUL: {
glBlendEquation(GL_FUNC_ADD);
if (p_render_data->transparent_bg) {
glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_DST_ALPHA, GL_ZERO);
} else {
glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_ZERO, GL_ONE);
}
} break;
case GLES3::SceneShaderData::BLEND_MODE_ALPHA_TO_COVERAGE: {
// Do nothing for now.
} break;
}
scene_state.current_blend_mode = desired_blend_mode;
}
}
// Find cull variant.
GLES3::SceneShaderData::Cull cull_mode = shader->cull_mode;
if ((surf->flags & GeometryInstanceSurface::FLAG_USES_DOUBLE_SIDED_SHADOWS)) {
cull_mode = GLES3::SceneShaderData::CULL_DISABLED;
} else {
bool mirror = inst->mirror;
if (p_params->reverse_cull) {
mirror = !mirror;
}
if (cull_mode == GLES3::SceneShaderData::CULL_FRONT && mirror) {
cull_mode = GLES3::SceneShaderData::CULL_BACK;
} else if (cull_mode == GLES3::SceneShaderData::CULL_BACK && mirror) {
cull_mode = GLES3::SceneShaderData::CULL_FRONT;
}
}
if (scene_state.cull_mode != cull_mode) {
if (cull_mode == GLES3::SceneShaderData::CULL_DISABLED) {
glDisable(GL_CULL_FACE);
} else {
if (scene_state.cull_mode == GLES3::SceneShaderData::CULL_DISABLED) {
// Last time was disabled, so enable and set proper face.
glEnable(GL_CULL_FACE);
}
glCullFace(cull_mode == GLES3::SceneShaderData::CULL_FRONT ? GL_FRONT : GL_BACK);
}
scene_state.cull_mode = cull_mode;
}
RS::PrimitiveType primitive = surf->primitive;
if (shader->uses_point_size) {
primitive = RS::PRIMITIVE_POINTS;
}
static const GLenum prim[5] = { GL_POINTS, GL_LINES, GL_LINE_STRIP, GL_TRIANGLES, GL_TRIANGLE_STRIP };
GLenum primitive_gl = prim[int(primitive)];
GLuint vertex_array_gl = 0;
GLuint index_array_gl = 0;
//skeleton and blend shape
if (surf->owner->mesh_instance.is_valid()) {
mesh_storage->mesh_instance_surface_get_vertex_arrays_and_format(surf->owner->mesh_instance, surf->surface_index, shader->vertex_input_mask, vertex_array_gl);
} else {
mesh_storage->mesh_surface_get_vertex_arrays_and_format(mesh_surface, shader->vertex_input_mask, vertex_array_gl);
}
index_array_gl = mesh_storage->mesh_surface_get_index_buffer(mesh_surface, surf->lod_index);
if (prev_vertex_array_gl != vertex_array_gl) {
if (vertex_array_gl != 0) {
glBindVertexArray(vertex_array_gl);
}
prev_vertex_array_gl = vertex_array_gl;
// Invalidate the previous index array
prev_index_array_gl = 0;
}
bool use_index_buffer = index_array_gl != 0;
if (prev_index_array_gl != index_array_gl) {
if (index_array_gl != 0) {
// Bind index each time so we can use LODs
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, index_array_gl);
}
prev_index_array_gl = index_array_gl;
}
Transform3D world_transform;
if (inst->store_transform_cache) {
world_transform = inst->transform;
}
if (prev_material_data != material_data) {
material_data->bind_uniforms();
prev_material_data = material_data;
}
SceneShaderGLES3::ShaderVariant instance_variant = shader_variant;
if (inst->instance_count > 0) {
// Will need to use instancing to draw (either MultiMesh or Particles).
instance_variant = SceneShaderGLES3::ShaderVariant(1 + int(instance_variant));
}
uint64_t spec_constants = base_spec_constants;
// Set up spec constants for lighting.
if constexpr (p_pass_mode == PASS_MODE_COLOR || p_pass_mode == PASS_MODE_COLOR_TRANSPARENT) {
// Only check during color passes as light shader code is compiled out during depth-only pass anyway.
if (pass == 0) {
spec_constants |= SceneShaderGLES3::BASE_PASS;
if (inst->omni_light_gl_cache.size() == 0) {
spec_constants |= SceneShaderGLES3::DISABLE_LIGHT_OMNI;
}
if (inst->spot_light_gl_cache.size() == 0) {
spec_constants |= SceneShaderGLES3::DISABLE_LIGHT_SPOT;
}
if (p_render_data->directional_light_count == p_render_data->directional_shadow_count) {
spec_constants |= SceneShaderGLES3::DISABLE_LIGHT_DIRECTIONAL;
}
} else {
// Only base pass uses the radiance map.
spec_constants &= ~SceneShaderGLES3::USE_RADIANCE_MAP;
spec_constants |= SceneShaderGLES3::DISABLE_LIGHT_OMNI;
spec_constants |= SceneShaderGLES3::DISABLE_LIGHT_SPOT;
spec_constants |= SceneShaderGLES3::DISABLE_LIGHT_DIRECTIONAL;
}
if (uses_additive_lighting) {
spec_constants |= SceneShaderGLES3::USE_ADDITIVE_LIGHTING;
if (pass < int32_t(inst->light_passes.size())) {
// Rendering positional lights.
if (inst->light_passes[pass].is_omni) {
spec_constants |= SceneShaderGLES3::ADDITIVE_OMNI;
} else {
spec_constants |= SceneShaderGLES3::ADDITIVE_SPOT;
}
if (scene_state.positional_shadow_quality >= RS::SHADOW_QUALITY_SOFT_HIGH) {
spec_constants |= SceneShaderGLES3::SHADOW_MODE_PCF_13;
} else if (scene_state.positional_shadow_quality >= RS::SHADOW_QUALITY_SOFT_LOW) {
spec_constants |= SceneShaderGLES3::SHADOW_MODE_PCF_5;
}
} else {
// Render directional lights.
uint32_t shadow_id = MAX_DIRECTIONAL_LIGHTS - 1 - (pass - int32_t(inst->light_passes.size()));
if (scene_state.directional_shadows[shadow_id].shadow_split_offsets[0] == scene_state.directional_shadows[shadow_id].shadow_split_offsets[1]) {
// Orthogonal, do nothing.
} else if (scene_state.directional_shadows[shadow_id].shadow_split_offsets[1] == scene_state.directional_shadows[shadow_id].shadow_split_offsets[2]) {
spec_constants |= SceneShaderGLES3::LIGHT_USE_PSSM2;
} else {
spec_constants |= SceneShaderGLES3::LIGHT_USE_PSSM4;
}
if (scene_state.directional_shadows[shadow_id].blend_splits) {
spec_constants |= SceneShaderGLES3::LIGHT_USE_PSSM_BLEND;
}
if (scene_state.directional_shadow_quality >= RS::SHADOW_QUALITY_SOFT_HIGH) {
spec_constants |= SceneShaderGLES3::SHADOW_MODE_PCF_13;
} else if (scene_state.directional_shadow_quality >= RS::SHADOW_QUALITY_SOFT_LOW) {
spec_constants |= SceneShaderGLES3::SHADOW_MODE_PCF_5;
}
}
}
}
if (prev_shader != shader || prev_variant != instance_variant || spec_constants != prev_spec_constants) {
bool success = material_storage->shaders.scene_shader.version_bind_shader(shader->version, instance_variant, spec_constants);
if (!success) {
break;
}
float opaque_prepass_threshold = 0.0;
if constexpr (p_pass_mode == PASS_MODE_DEPTH) {
opaque_prepass_threshold = 0.99;
} else if constexpr (p_pass_mode == PASS_MODE_SHADOW) {
opaque_prepass_threshold = 0.1;
}
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::OPAQUE_PREPASS_THRESHOLD, opaque_prepass_threshold, shader->version, instance_variant, spec_constants);
prev_shader = shader;
prev_variant = instance_variant;
prev_spec_constants = spec_constants;
}
// Pass in lighting uniforms.
if constexpr (p_pass_mode == PASS_MODE_COLOR || p_pass_mode == PASS_MODE_COLOR_TRANSPARENT) {
GLES3::Config *config = GLES3::Config::get_singleton();
// Pass light and shadow index and bind shadow texture.
if (uses_additive_lighting) {
if (pass < int32_t(inst->light_passes.size())) {
int32_t shadow_id = inst->light_passes[pass].shadow_id;
if (shadow_id >= 0) {
uint32_t light_id = inst->light_passes[pass].light_id;
bool is_omni = inst->light_passes[pass].is_omni;
SceneShaderGLES3::Uniforms uniform_name = is_omni ? SceneShaderGLES3::OMNI_LIGHT_INDEX : SceneShaderGLES3::SPOT_LIGHT_INDEX;
material_storage->shaders.scene_shader.version_set_uniform(uniform_name, uint32_t(light_id), shader->version, instance_variant, spec_constants);
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::POSITIONAL_SHADOW_INDEX, uint32_t(shadow_id), shader->version, instance_variant, spec_constants);
glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 3);
RID light_instance_rid = inst->light_passes[pass].light_instance_rid;
GLuint tex = GLES3::LightStorage::get_singleton()->light_instance_get_shadow_texture(light_instance_rid, p_render_data->shadow_atlas);
if (is_omni) {
glBindTexture(GL_TEXTURE_CUBE_MAP, tex);
} else {
glBindTexture(GL_TEXTURE_2D, tex);
}
}
} else {
uint32_t shadow_id = MAX_DIRECTIONAL_LIGHTS - 1 - (pass - int32_t(inst->light_passes.size()));
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::DIRECTIONAL_SHADOW_INDEX, shadow_id, shader->version, instance_variant, spec_constants);
GLuint tex = GLES3::LightStorage::get_singleton()->directional_shadow_get_texture();
glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 3);
glBindTexture(GL_TEXTURE_2D, tex);
}
}
// Pass light count and array of light indices for base pass.
if ((prev_inst != inst || prev_shader != shader || prev_variant != instance_variant) && pass == 0) {
// Rebind the light indices.
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::OMNI_LIGHT_COUNT, inst->omni_light_gl_cache.size(), shader->version, instance_variant, spec_constants);
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::SPOT_LIGHT_COUNT, inst->spot_light_gl_cache.size(), shader->version, instance_variant, spec_constants);
if (inst->omni_light_gl_cache.size()) {
glUniform1uiv(material_storage->shaders.scene_shader.version_get_uniform(SceneShaderGLES3::OMNI_LIGHT_INDICES, shader->version, instance_variant, spec_constants), inst->omni_light_gl_cache.size(), inst->omni_light_gl_cache.ptr());
}
if (inst->spot_light_gl_cache.size()) {
glUniform1uiv(material_storage->shaders.scene_shader.version_get_uniform(SceneShaderGLES3::SPOT_LIGHT_INDICES, shader->version, instance_variant, spec_constants), inst->spot_light_gl_cache.size(), inst->spot_light_gl_cache.ptr());
}
prev_inst = inst;
}
}
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::WORLD_TRANSFORM, world_transform, shader->version, instance_variant, spec_constants);
{
GLES3::Mesh::Surface *s = reinterpret_cast<GLES3::Mesh::Surface *>(surf->surface);
if (s->format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::COMPRESSED_AABB_POSITION, s->aabb.position, shader->version, instance_variant, spec_constants);
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::COMPRESSED_AABB_SIZE, s->aabb.size, shader->version, instance_variant, spec_constants);
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::UV_SCALE, s->uv_scale, shader->version, instance_variant, spec_constants);
} else {
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::COMPRESSED_AABB_POSITION, Vector3(0.0, 0.0, 0.0), shader->version, instance_variant, spec_constants);
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::COMPRESSED_AABB_SIZE, Vector3(1.0, 1.0, 1.0), shader->version, instance_variant, spec_constants);
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::UV_SCALE, Vector4(0.0, 0.0, 0.0, 0.0), shader->version, instance_variant, spec_constants);
}
}
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::MODEL_FLAGS, inst->flags_cache, shader->version, instance_variant, spec_constants);
// Can be index count or vertex count
uint32_t count = 0;
if (surf->lod_index > 0) {
count = surf->index_count;
} else {
count = mesh_storage->mesh_surface_get_vertices_drawn_count(mesh_surface);
}
if constexpr (p_pass_mode != PASS_MODE_DEPTH) {
// Don't count draw calls during depth pre-pass to match the RD renderers.
if (p_render_data->render_info) {
p_render_data->render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_VISIBLE][RS::VIEWPORT_RENDER_INFO_DRAW_CALLS_IN_FRAME]++;
}
}
if (inst->instance_count > 0) {
// Using MultiMesh or Particles.
// Bind instance buffers.
GLuint instance_buffer = 0;
uint32_t stride = 0;
if (inst->flags_cache & INSTANCE_DATA_FLAG_PARTICLES) {
instance_buffer = particles_storage->particles_get_gl_buffer(inst->data->base);
stride = 16; // 12 bytes for instance transform and 4 bytes for packed color and custom.
} else {
instance_buffer = mesh_storage->multimesh_get_gl_buffer(inst->data->base);
stride = mesh_storage->multimesh_get_stride(inst->data->base);
}
if (instance_buffer == 0) {
// Instance buffer not initialized yet. Skip rendering for now.
break;
}
glBindBuffer(GL_ARRAY_BUFFER, instance_buffer);
glEnableVertexAttribArray(12);
glVertexAttribPointer(12, 4, GL_FLOAT, GL_FALSE, stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(0));
glVertexAttribDivisor(12, 1);
glEnableVertexAttribArray(13);
glVertexAttribPointer(13, 4, GL_FLOAT, GL_FALSE, stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(sizeof(float) * 4));
glVertexAttribDivisor(13, 1);
if (!(inst->flags_cache & INSTANCE_DATA_FLAG_MULTIMESH_FORMAT_2D)) {
glEnableVertexAttribArray(14);
glVertexAttribPointer(14, 4, GL_FLOAT, GL_FALSE, stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(sizeof(float) * 8));
glVertexAttribDivisor(14, 1);
}
if ((inst->flags_cache & INSTANCE_DATA_FLAG_MULTIMESH_HAS_COLOR) || (inst->flags_cache & INSTANCE_DATA_FLAG_MULTIMESH_HAS_CUSTOM_DATA)) {
uint32_t color_custom_offset = inst->flags_cache & INSTANCE_DATA_FLAG_MULTIMESH_FORMAT_2D ? 8 : 12;
glEnableVertexAttribArray(15);
glVertexAttribIPointer(15, 4, GL_UNSIGNED_INT, stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(color_custom_offset * sizeof(float)));
glVertexAttribDivisor(15, 1);
} else {
// Set all default instance color and custom data values to 1.0 or 0.0 using a compressed format.
uint16_t zero = Math::make_half_float(0.0f);
uint16_t one = Math::make_half_float(1.0f);
GLuint default_color = (uint32_t(one) << 16) | one;
GLuint default_custom = (uint32_t(zero) << 16) | zero;
glVertexAttribI4ui(15, default_color, default_color, default_custom, default_custom);
}
if (use_index_buffer) {
glDrawElementsInstanced(primitive_gl, count, mesh_storage->mesh_surface_get_index_type(mesh_surface), 0, inst->instance_count);
} else {
glDrawArraysInstanced(primitive_gl, 0, count, inst->instance_count);
}
} else {
// Using regular Mesh.
if (use_index_buffer) {
glDrawElements(primitive_gl, count, mesh_storage->mesh_surface_get_index_type(mesh_surface), 0);
} else {
glDrawArrays(primitive_gl, 0, count);
}
}
if (inst->instance_count > 0) {
glDisableVertexAttribArray(12);
glDisableVertexAttribArray(13);
glDisableVertexAttribArray(14);
glDisableVertexAttribArray(15);
}
}
if constexpr (p_pass_mode == PASS_MODE_COLOR) {
if (uses_additive_lighting && !p_render_data->transparent_bg) {
// Disable additive blending if enabled for additive lights.
glDisable(GL_BLEND);
}
}
}
// Make the actual redraw request
if (should_request_redraw) {
RenderingServerDefault::redraw_request();
}
}
void RasterizerSceneGLES3::render_material(const Transform3D &p_cam_transform, const Projection &p_cam_projection, bool p_cam_orthogonal, const PagedArray<RenderGeometryInstance *> &p_instances, RID p_framebuffer, const Rect2i &p_region) {
}
void RasterizerSceneGLES3::render_particle_collider_heightfield(RID p_collider, const Transform3D &p_transform, const PagedArray<RenderGeometryInstance *> &p_instances) {
GLES3::ParticlesStorage *particles_storage = GLES3::ParticlesStorage::get_singleton();
ERR_FAIL_COND(!particles_storage->particles_collision_is_heightfield(p_collider));
Vector3 extents = particles_storage->particles_collision_get_extents(p_collider) * p_transform.basis.get_scale();
Projection cm;
cm.set_orthogonal(-extents.x, extents.x, -extents.z, extents.z, 0, extents.y * 2.0);
Vector3 cam_pos = p_transform.origin;
cam_pos.y += extents.y;
Transform3D cam_xform;
cam_xform.set_look_at(cam_pos, cam_pos - p_transform.basis.get_column(Vector3::AXIS_Y), -p_transform.basis.get_column(Vector3::AXIS_Z).normalized());
GLuint fb = particles_storage->particles_collision_get_heightfield_framebuffer(p_collider);
Size2i fb_size = particles_storage->particles_collision_get_heightfield_size(p_collider);
RENDER_TIMESTAMP("Setup GPUParticlesCollisionHeightField3D");
RenderDataGLES3 render_data;
render_data.cam_projection = cm;
render_data.cam_transform = cam_xform;
render_data.view_projection[0] = cm;
render_data.inv_cam_transform = render_data.cam_transform.affine_inverse();
render_data.cam_orthogonal = true;
render_data.z_near = 0.0;
render_data.z_far = cm.get_z_far();
render_data.instances = &p_instances;
_setup_environment(&render_data, true, Vector2(fb_size), true, Color(), false);
PassMode pass_mode = PASS_MODE_SHADOW;
_fill_render_list(RENDER_LIST_SECONDARY, &render_data, pass_mode);
render_list[RENDER_LIST_SECONDARY].sort_by_key();
RENDER_TIMESTAMP("Render Collider Heightfield");
glBindFramebuffer(GL_FRAMEBUFFER, fb);
glViewport(0, 0, fb_size.width, fb_size.height);
GLuint global_buffer = GLES3::MaterialStorage::get_singleton()->global_shader_parameters_get_uniform_buffer();
glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_GLOBALS_UNIFORM_LOCATION, global_buffer);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
glDisable(GL_BLEND);
glDepthMask(GL_TRUE);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LESS);
glDisable(GL_SCISSOR_TEST);
glCullFace(GL_BACK);
glEnable(GL_CULL_FACE);
scene_state.cull_mode = GLES3::SceneShaderData::CULL_BACK;
glColorMask(0, 0, 0, 0);
RasterizerGLES3::clear_depth(1.0);
glClear(GL_DEPTH_BUFFER_BIT);
RenderListParameters render_list_params(render_list[RENDER_LIST_SECONDARY].elements.ptr(), render_list[RENDER_LIST_SECONDARY].elements.size(), false, 31, false);
_render_list_template<PASS_MODE_SHADOW>(&render_list_params, &render_data, 0, render_list[RENDER_LIST_SECONDARY].elements.size());
glColorMask(1, 1, 1, 1);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
}
void RasterizerSceneGLES3::set_time(double p_time, double p_step) {
time = p_time;
time_step = p_step;
}
void RasterizerSceneGLES3::set_debug_draw_mode(RS::ViewportDebugDraw p_debug_draw) {
debug_draw = p_debug_draw;
}
Ref<RenderSceneBuffers> RasterizerSceneGLES3::render_buffers_create() {
Ref<RenderSceneBuffersGLES3> rb;
rb.instantiate();
return rb;
}
void RasterizerSceneGLES3::_render_buffers_debug_draw(Ref<RenderSceneBuffersGLES3> p_render_buffers, RID p_shadow_atlas) {
GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton();
GLES3::LightStorage *light_storage = GLES3::LightStorage::get_singleton();
GLES3::CopyEffects *copy_effects = GLES3::CopyEffects::get_singleton();
ERR_FAIL_COND(p_render_buffers.is_null());
RID render_target = p_render_buffers->render_target;
GLES3::RenderTarget *rt = texture_storage->get_render_target(render_target);
ERR_FAIL_NULL(rt);
if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SHADOW_ATLAS) {
if (p_shadow_atlas.is_valid()) {
// Get or create debug textures to display shadow maps as an atlas.
GLuint shadow_atlas_texture = light_storage->shadow_atlas_get_debug_texture(p_shadow_atlas);
GLuint shadow_atlas_fb = light_storage->shadow_atlas_get_debug_fb(p_shadow_atlas);
uint32_t shadow_atlas_size = light_storage->shadow_atlas_get_size(p_shadow_atlas);
uint32_t quadrant_size = shadow_atlas_size >> 1;
glBindFramebuffer(GL_FRAMEBUFFER, shadow_atlas_fb);
glViewport(0, 0, shadow_atlas_size, shadow_atlas_size);
glActiveTexture(GL_TEXTURE0);
glDepthMask(GL_TRUE);
glDepthFunc(GL_ALWAYS);
glDisable(GL_CULL_FACE);
scene_state.cull_mode = GLES3::SceneShaderData::CULL_DISABLED;
// Loop through quadrants and copy shadows over.
for (int quadrant = 0; quadrant < 4; quadrant++) {
uint32_t subdivision = light_storage->shadow_atlas_get_quadrant_subdivision(p_shadow_atlas, quadrant);
if (subdivision == 0) {
continue;
}
Rect2i atlas_rect;
Rect2 atlas_uv_rect;
uint32_t shadow_size = (quadrant_size / subdivision);
float size = float(shadow_size) / float(shadow_atlas_size);
uint32_t length = light_storage->shadow_atlas_get_quadrant_shadows_allocated(p_shadow_atlas, quadrant);
for (uint32_t shadow_idx = 0; shadow_idx < length; shadow_idx++) {
bool is_omni = light_storage->shadow_atlas_get_quadrant_shadow_is_omni(p_shadow_atlas, quadrant, shadow_idx);
// Calculate shadow's position in the debug atlas.
atlas_rect.position.x = (quadrant & 1) * quadrant_size;
atlas_rect.position.y = (quadrant >> 1) * quadrant_size;
atlas_rect.position.x += (shadow_idx % subdivision) * shadow_size;
atlas_rect.position.y += (shadow_idx / subdivision) * shadow_size;
atlas_uv_rect.position = Vector2(atlas_rect.position) / float(shadow_atlas_size);
atlas_uv_rect.size = Vector2(size, size);
GLuint shadow_tex = light_storage->shadow_atlas_get_quadrant_shadow_texture(p_shadow_atlas, quadrant, shadow_idx);
// Copy from shadowmap to debug atlas.
if (is_omni) {
glBindTexture(GL_TEXTURE_CUBE_MAP, shadow_tex);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_COMPARE_MODE, GL_NONE);
copy_effects->copy_cube_to_rect(atlas_uv_rect);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_COMPARE_FUNC, GL_LESS);
} else {
glBindTexture(GL_TEXTURE_2D, shadow_tex);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_NONE);
copy_effects->copy_to_rect(atlas_uv_rect);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_LESS);
}
}
}
glBindFramebuffer(GL_FRAMEBUFFER, rt->fbo);
glViewport(0, 0, rt->size.width, rt->size.height);
glBindTexture(GL_TEXTURE_2D, shadow_atlas_texture);
copy_effects->copy_to_rect(Rect2(Vector2(), Vector2(0.5, 0.5)));
glBindTexture(GL_TEXTURE_2D, 0);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
}
}
if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_DIRECTIONAL_SHADOW_ATLAS) {
if (light_storage->directional_shadow_get_texture() != 0) {
GLuint shadow_atlas_texture = light_storage->directional_shadow_get_texture();
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, shadow_atlas_texture);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_NONE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_R, GL_RED);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_G, GL_RED);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_B, GL_RED);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_A, GL_ONE);
glDisable(GL_DEPTH_TEST);
glDepthMask(GL_FALSE);
copy_effects->copy_to_rect(Rect2(Vector2(), Vector2(0.5, 0.5)));
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_R, GL_RED);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_G, GL_GREEN);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_B, GL_BLUE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_A, GL_ALPHA);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_LESS);
glBindTexture(GL_TEXTURE_2D, 0);
}
}
}
void RasterizerSceneGLES3::gi_set_use_half_resolution(bool p_enable) {
}
void RasterizerSceneGLES3::screen_space_roughness_limiter_set_active(bool p_enable, float p_amount, float p_curve) {
}
bool RasterizerSceneGLES3::screen_space_roughness_limiter_is_active() const {
return false;
}
void RasterizerSceneGLES3::sub_surface_scattering_set_quality(RS::SubSurfaceScatteringQuality p_quality) {
}
void RasterizerSceneGLES3::sub_surface_scattering_set_scale(float p_scale, float p_depth_scale) {
}
TypedArray<Image> RasterizerSceneGLES3::bake_render_uv2(RID p_base, const TypedArray<RID> &p_material_overrides, const Size2i &p_image_size) {
return TypedArray<Image>();
}
bool RasterizerSceneGLES3::free(RID p_rid) {
if (is_environment(p_rid)) {
environment_free(p_rid);
} else if (sky_owner.owns(p_rid)) {
Sky *sky = sky_owner.get_or_null(p_rid);
ERR_FAIL_NULL_V(sky, false);
_free_sky_data(sky);
sky_owner.free(p_rid);
} else if (GLES3::LightStorage::get_singleton()->owns_light_instance(p_rid)) {
GLES3::LightStorage::get_singleton()->light_instance_free(p_rid);
} else if (RSG::camera_attributes->owns_camera_attributes(p_rid)) {
//not much to delete, just free it
RSG::camera_attributes->camera_attributes_free(p_rid);
} else {
return false;
}
return true;
}
void RasterizerSceneGLES3::update() {
_update_dirty_skys();
}
void RasterizerSceneGLES3::sdfgi_set_debug_probe_select(const Vector3 &p_position, const Vector3 &p_dir) {
}
void RasterizerSceneGLES3::decals_set_filter(RS::DecalFilter p_filter) {
}
void RasterizerSceneGLES3::light_projectors_set_filter(RS::LightProjectorFilter p_filter) {
}
RasterizerSceneGLES3::RasterizerSceneGLES3() {
singleton = this;
GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton();
GLES3::Config *config = GLES3::Config::get_singleton();
// Quality settings.
use_physical_light_units = GLOBAL_GET("rendering/lights_and_shadows/use_physical_light_units");
positional_soft_shadow_filter_set_quality((RS::ShadowQuality)(int)GLOBAL_GET("rendering/lights_and_shadows/positional_shadow/soft_shadow_filter_quality"));
directional_soft_shadow_filter_set_quality((RS::ShadowQuality)(int)GLOBAL_GET("rendering/lights_and_shadows/directional_shadow/soft_shadow_filter_quality"));
{
// Setup Lights
config->max_renderable_lights = MIN(config->max_renderable_lights, config->max_uniform_buffer_size / (int)sizeof(RasterizerSceneGLES3::LightData));
config->max_lights_per_object = MIN(config->max_lights_per_object, config->max_renderable_lights);
uint32_t light_buffer_size = config->max_renderable_lights * sizeof(LightData);
scene_state.omni_lights = memnew_arr(LightData, config->max_renderable_lights);
scene_state.omni_light_sort = memnew_arr(InstanceSort<GLES3::LightInstance>, config->max_renderable_lights);
glGenBuffers(1, &scene_state.omni_light_buffer);
glBindBuffer(GL_UNIFORM_BUFFER, scene_state.omni_light_buffer);
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, scene_state.omni_light_buffer, light_buffer_size, nullptr, GL_STREAM_DRAW, "OmniLight UBO");
scene_state.spot_lights = memnew_arr(LightData, config->max_renderable_lights);
scene_state.spot_light_sort = memnew_arr(InstanceSort<GLES3::LightInstance>, config->max_renderable_lights);
glGenBuffers(1, &scene_state.spot_light_buffer);
glBindBuffer(GL_UNIFORM_BUFFER, scene_state.spot_light_buffer);
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, scene_state.spot_light_buffer, light_buffer_size, nullptr, GL_STREAM_DRAW, "SpotLight UBO");
uint32_t directional_light_buffer_size = MAX_DIRECTIONAL_LIGHTS * sizeof(DirectionalLightData);
scene_state.directional_lights = memnew_arr(DirectionalLightData, MAX_DIRECTIONAL_LIGHTS);
glGenBuffers(1, &scene_state.directional_light_buffer);
glBindBuffer(GL_UNIFORM_BUFFER, scene_state.directional_light_buffer);
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, scene_state.directional_light_buffer, directional_light_buffer_size, nullptr, GL_STREAM_DRAW, "DirectionalLight UBO");
uint32_t shadow_buffer_size = config->max_renderable_lights * sizeof(ShadowData) * 2;
scene_state.positional_shadows = memnew_arr(ShadowData, config->max_renderable_lights * 2);
glGenBuffers(1, &scene_state.positional_shadow_buffer);
glBindBuffer(GL_UNIFORM_BUFFER, scene_state.positional_shadow_buffer);
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, scene_state.positional_shadow_buffer, shadow_buffer_size, nullptr, GL_STREAM_DRAW, "Positional Shadow UBO");
uint32_t directional_shadow_buffer_size = MAX_DIRECTIONAL_LIGHTS * sizeof(DirectionalShadowData);
scene_state.directional_shadows = memnew_arr(DirectionalShadowData, MAX_DIRECTIONAL_LIGHTS);
glGenBuffers(1, &scene_state.directional_shadow_buffer);
glBindBuffer(GL_UNIFORM_BUFFER, scene_state.directional_shadow_buffer);
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, scene_state.directional_shadow_buffer, directional_shadow_buffer_size, nullptr, GL_STREAM_DRAW, "Directional Shadow UBO");
glBindBuffer(GL_UNIFORM_BUFFER, 0);
}
{
sky_globals.max_directional_lights = 4;
uint32_t directional_light_buffer_size = sky_globals.max_directional_lights * sizeof(DirectionalLightData);
sky_globals.directional_lights = memnew_arr(DirectionalLightData, sky_globals.max_directional_lights);
sky_globals.last_frame_directional_lights = memnew_arr(DirectionalLightData, sky_globals.max_directional_lights);
sky_globals.last_frame_directional_light_count = sky_globals.max_directional_lights + 1;
glGenBuffers(1, &sky_globals.directional_light_buffer);
glBindBuffer(GL_UNIFORM_BUFFER, sky_globals.directional_light_buffer);
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, sky_globals.directional_light_buffer, directional_light_buffer_size, nullptr, GL_STREAM_DRAW, "Sky DirectionalLight UBO");
glBindBuffer(GL_UNIFORM_BUFFER, 0);
}
{
String global_defines;
global_defines += "#define MAX_GLOBAL_SHADER_UNIFORMS 256\n"; // TODO: this is arbitrary for now
global_defines += "\n#define MAX_LIGHT_DATA_STRUCTS " + itos(config->max_renderable_lights) + "\n";
global_defines += "\n#define MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS " + itos(MAX_DIRECTIONAL_LIGHTS) + "\n";
global_defines += "\n#define MAX_FORWARD_LIGHTS " + itos(config->max_lights_per_object) + "u\n";
material_storage->shaders.scene_shader.initialize(global_defines);
scene_globals.shader_default_version = material_storage->shaders.scene_shader.version_create();
material_storage->shaders.scene_shader.version_bind_shader(scene_globals.shader_default_version, SceneShaderGLES3::MODE_COLOR);
}
{
//default material and shader
scene_globals.default_shader = material_storage->shader_allocate();
material_storage->shader_initialize(scene_globals.default_shader);
material_storage->shader_set_code(scene_globals.default_shader, R"(
// Default 3D material shader.
shader_type spatial;
void vertex() {
ROUGHNESS = 0.8;
}
void fragment() {
ALBEDO = vec3(0.6);
ROUGHNESS = 0.8;
METALLIC = 0.2;
}
)");
scene_globals.default_material = material_storage->material_allocate();
material_storage->material_initialize(scene_globals.default_material);
material_storage->material_set_shader(scene_globals.default_material, scene_globals.default_shader);
}
{
// Initialize Sky stuff
sky_globals.roughness_layers = GLOBAL_GET("rendering/reflections/sky_reflections/roughness_layers");
sky_globals.ggx_samples = GLOBAL_GET("rendering/reflections/sky_reflections/ggx_samples");
String global_defines;
global_defines += "#define MAX_GLOBAL_SHADER_UNIFORMS 256\n"; // TODO: this is arbitrary for now
global_defines += "\n#define MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS " + itos(sky_globals.max_directional_lights) + "\n";
material_storage->shaders.sky_shader.initialize(global_defines);
sky_globals.shader_default_version = material_storage->shaders.sky_shader.version_create();
}
{
String global_defines;
global_defines += "\n#define MAX_SAMPLE_COUNT " + itos(sky_globals.ggx_samples) + "\n";
material_storage->shaders.cubemap_filter_shader.initialize(global_defines);
scene_globals.cubemap_filter_shader_version = material_storage->shaders.cubemap_filter_shader.version_create();
}
{
sky_globals.default_shader = material_storage->shader_allocate();
material_storage->shader_initialize(sky_globals.default_shader);
material_storage->shader_set_code(sky_globals.default_shader, R"(
// Default sky shader.
shader_type sky;
void sky() {
COLOR = vec3(0.0);
}
)");
sky_globals.default_material = material_storage->material_allocate();
material_storage->material_initialize(sky_globals.default_material);
material_storage->material_set_shader(sky_globals.default_material, sky_globals.default_shader);
}
{
sky_globals.fog_shader = material_storage->shader_allocate();
material_storage->shader_initialize(sky_globals.fog_shader);
material_storage->shader_set_code(sky_globals.fog_shader, R"(
// Default clear color sky shader.
shader_type sky;
uniform vec4 clear_color;
void sky() {
COLOR = clear_color.rgb;
}
)");
sky_globals.fog_material = material_storage->material_allocate();
material_storage->material_initialize(sky_globals.fog_material);
material_storage->material_set_shader(sky_globals.fog_material, sky_globals.fog_shader);
}
{
glGenVertexArrays(1, &sky_globals.screen_triangle_array);
glBindVertexArray(sky_globals.screen_triangle_array);
glGenBuffers(1, &sky_globals.screen_triangle);
glBindBuffer(GL_ARRAY_BUFFER, sky_globals.screen_triangle);
const float qv[6] = {
-1.0f,
-1.0f,
3.0f,
-1.0f,
-1.0f,
3.0f,
};
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, sky_globals.screen_triangle, sizeof(float) * 6, qv, GL_STATIC_DRAW, "Screen triangle vertex buffer");
glVertexAttribPointer(RS::ARRAY_VERTEX, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 2, nullptr);
glEnableVertexAttribArray(RS::ARRAY_VERTEX);
glBindVertexArray(0);
glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
}
#ifdef GL_API_ENABLED
if (RasterizerGLES3::is_gles_over_gl()) {
glEnable(_EXT_TEXTURE_CUBE_MAP_SEAMLESS);
}
#endif // GL_API_ENABLED
// MultiMesh may read from color when color is disabled, so make sure that the color defaults to white instead of black;
glVertexAttrib4f(RS::ARRAY_COLOR, 1.0, 1.0, 1.0, 1.0);
}
RasterizerSceneGLES3::~RasterizerSceneGLES3() {
GLES3::Utilities::get_singleton()->buffer_free_data(scene_state.directional_light_buffer);
GLES3::Utilities::get_singleton()->buffer_free_data(scene_state.omni_light_buffer);
GLES3::Utilities::get_singleton()->buffer_free_data(scene_state.spot_light_buffer);
GLES3::Utilities::get_singleton()->buffer_free_data(scene_state.positional_shadow_buffer);
GLES3::Utilities::get_singleton()->buffer_free_data(scene_state.directional_shadow_buffer);
memdelete_arr(scene_state.directional_lights);
memdelete_arr(scene_state.omni_lights);
memdelete_arr(scene_state.spot_lights);
memdelete_arr(scene_state.omni_light_sort);
memdelete_arr(scene_state.spot_light_sort);
memdelete_arr(scene_state.positional_shadows);
memdelete_arr(scene_state.directional_shadows);
// Scene Shader
GLES3::MaterialStorage::get_singleton()->shaders.scene_shader.version_free(scene_globals.shader_default_version);
GLES3::MaterialStorage::get_singleton()->shaders.cubemap_filter_shader.version_free(scene_globals.cubemap_filter_shader_version);
RSG::material_storage->material_free(scene_globals.default_material);
RSG::material_storage->shader_free(scene_globals.default_shader);
// Sky Shader
GLES3::MaterialStorage::get_singleton()->shaders.sky_shader.version_free(sky_globals.shader_default_version);
RSG::material_storage->material_free(sky_globals.default_material);
RSG::material_storage->shader_free(sky_globals.default_shader);
RSG::material_storage->material_free(sky_globals.fog_material);
RSG::material_storage->shader_free(sky_globals.fog_shader);
GLES3::Utilities::get_singleton()->buffer_free_data(sky_globals.screen_triangle);
glDeleteVertexArrays(1, &sky_globals.screen_triangle_array);
glDeleteTextures(1, &sky_globals.radical_inverse_vdc_cache_tex);
GLES3::Utilities::get_singleton()->buffer_free_data(sky_globals.directional_light_buffer);
memdelete_arr(sky_globals.directional_lights);
memdelete_arr(sky_globals.last_frame_directional_lights);
// UBOs
if (scene_state.ubo_buffer != 0) {
GLES3::Utilities::get_singleton()->buffer_free_data(scene_state.ubo_buffer);
}
if (scene_state.multiview_buffer != 0) {
GLES3::Utilities::get_singleton()->buffer_free_data(scene_state.multiview_buffer);
}
if (scene_state.tonemap_buffer != 0) {
GLES3::Utilities::get_singleton()->buffer_free_data(scene_state.tonemap_buffer);
}
singleton = nullptr;
}
#endif // GLES3_ENABLED