godot/modules/navigation/nav_map.cpp

1291 lines
46 KiB
C++

/**************************************************************************/
/* nav_map.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "nav_map.h"
#include "nav_agent.h"
#include "nav_link.h"
#include "nav_obstacle.h"
#include "nav_region.h"
#include "core/config/project_settings.h"
#include "core/object/worker_thread_pool.h"
#include <Obstacle2d.h>
#define THREE_POINTS_CROSS_PRODUCT(m_a, m_b, m_c) (((m_c) - (m_a)).cross((m_b) - (m_a)))
// Helper macro
#define APPEND_METADATA(poly) \
if (r_path_types) { \
r_path_types->push_back(poly->owner->get_type()); \
} \
if (r_path_rids) { \
r_path_rids->push_back(poly->owner->get_self()); \
} \
if (r_path_owners) { \
r_path_owners->push_back(poly->owner->get_owner_id()); \
}
void NavMap::set_up(Vector3 p_up) {
if (up == p_up) {
return;
}
up = p_up;
regenerate_polygons = true;
}
void NavMap::set_cell_size(real_t p_cell_size) {
if (cell_size == p_cell_size) {
return;
}
cell_size = p_cell_size;
regenerate_polygons = true;
}
void NavMap::set_cell_height(real_t p_cell_height) {
if (cell_height == p_cell_height) {
return;
}
cell_height = p_cell_height;
regenerate_polygons = true;
}
void NavMap::set_use_edge_connections(bool p_enabled) {
if (use_edge_connections == p_enabled) {
return;
}
use_edge_connections = p_enabled;
regenerate_links = true;
}
void NavMap::set_edge_connection_margin(real_t p_edge_connection_margin) {
if (edge_connection_margin == p_edge_connection_margin) {
return;
}
edge_connection_margin = p_edge_connection_margin;
regenerate_links = true;
}
void NavMap::set_link_connection_radius(real_t p_link_connection_radius) {
if (link_connection_radius == p_link_connection_radius) {
return;
}
link_connection_radius = p_link_connection_radius;
regenerate_links = true;
}
gd::PointKey NavMap::get_point_key(const Vector3 &p_pos) const {
const int x = static_cast<int>(Math::floor(p_pos.x / cell_size));
const int y = static_cast<int>(Math::floor(p_pos.y / cell_height));
const int z = static_cast<int>(Math::floor(p_pos.z / cell_size));
gd::PointKey p;
p.key = 0;
p.x = x;
p.y = y;
p.z = z;
return p;
}
Vector<Vector3> NavMap::get_path(Vector3 p_origin, Vector3 p_destination, bool p_optimize, uint32_t p_navigation_layers, Vector<int32_t> *r_path_types, TypedArray<RID> *r_path_rids, Vector<int64_t> *r_path_owners) const {
ERR_FAIL_COND_V_MSG(map_update_id == 0, Vector<Vector3>(), "NavigationServer map query failed because it was made before first map synchronization.");
// Clear metadata outputs.
if (r_path_types) {
r_path_types->clear();
}
if (r_path_rids) {
r_path_rids->clear();
}
if (r_path_owners) {
r_path_owners->clear();
}
// Find the start poly and the end poly on this map.
const gd::Polygon *begin_poly = nullptr;
const gd::Polygon *end_poly = nullptr;
Vector3 begin_point;
Vector3 end_point;
real_t begin_d = FLT_MAX;
real_t end_d = FLT_MAX;
// Find the initial poly and the end poly on this map.
for (const gd::Polygon &p : polygons) {
// Only consider the polygon if it in a region with compatible layers.
if ((p_navigation_layers & p.owner->get_navigation_layers()) == 0) {
continue;
}
// For each face check the distance between the origin/destination
for (size_t point_id = 2; point_id < p.points.size(); point_id++) {
const Face3 face(p.points[0].pos, p.points[point_id - 1].pos, p.points[point_id].pos);
Vector3 point = face.get_closest_point_to(p_origin);
real_t distance_to_point = point.distance_to(p_origin);
if (distance_to_point < begin_d) {
begin_d = distance_to_point;
begin_poly = &p;
begin_point = point;
}
point = face.get_closest_point_to(p_destination);
distance_to_point = point.distance_to(p_destination);
if (distance_to_point < end_d) {
end_d = distance_to_point;
end_poly = &p;
end_point = point;
}
}
}
// Check for trivial cases
if (!begin_poly || !end_poly) {
return Vector<Vector3>();
}
if (begin_poly == end_poly) {
if (r_path_types) {
r_path_types->resize(2);
r_path_types->write[0] = begin_poly->owner->get_type();
r_path_types->write[1] = end_poly->owner->get_type();
}
if (r_path_rids) {
r_path_rids->resize(2);
(*r_path_rids)[0] = begin_poly->owner->get_self();
(*r_path_rids)[1] = end_poly->owner->get_self();
}
if (r_path_owners) {
r_path_owners->resize(2);
r_path_owners->write[0] = begin_poly->owner->get_owner_id();
r_path_owners->write[1] = end_poly->owner->get_owner_id();
}
Vector<Vector3> path;
path.resize(2);
path.write[0] = begin_point;
path.write[1] = end_point;
return path;
}
// List of all reachable navigation polys.
LocalVector<gd::NavigationPoly> navigation_polys;
navigation_polys.reserve(polygons.size() * 0.75);
// Add the start polygon to the reachable navigation polygons.
gd::NavigationPoly begin_navigation_poly = gd::NavigationPoly(begin_poly);
begin_navigation_poly.self_id = 0;
begin_navigation_poly.entry = begin_point;
begin_navigation_poly.back_navigation_edge_pathway_start = begin_point;
begin_navigation_poly.back_navigation_edge_pathway_end = begin_point;
navigation_polys.push_back(begin_navigation_poly);
// List of polygon IDs to visit.
List<uint32_t> to_visit;
to_visit.push_back(0);
// This is an implementation of the A* algorithm.
int least_cost_id = 0;
int prev_least_cost_id = -1;
bool found_route = false;
const gd::Polygon *reachable_end = nullptr;
real_t reachable_d = FLT_MAX;
bool is_reachable = true;
while (true) {
// Takes the current least_cost_poly neighbors (iterating over its edges) and compute the traveled_distance.
for (const gd::Edge &edge : navigation_polys[least_cost_id].poly->edges) {
// Iterate over connections in this edge, then compute the new optimized travel distance assigned to this polygon.
for (int connection_index = 0; connection_index < edge.connections.size(); connection_index++) {
const gd::Edge::Connection &connection = edge.connections[connection_index];
// Only consider the connection to another polygon if this polygon is in a region with compatible layers.
if ((p_navigation_layers & connection.polygon->owner->get_navigation_layers()) == 0) {
continue;
}
const gd::NavigationPoly &least_cost_poly = navigation_polys[least_cost_id];
real_t poly_enter_cost = 0.0;
real_t poly_travel_cost = least_cost_poly.poly->owner->get_travel_cost();
if (prev_least_cost_id != -1 && (navigation_polys[prev_least_cost_id].poly->owner->get_self() != least_cost_poly.poly->owner->get_self())) {
poly_enter_cost = least_cost_poly.poly->owner->get_enter_cost();
}
prev_least_cost_id = least_cost_id;
Vector3 pathway[2] = { connection.pathway_start, connection.pathway_end };
const Vector3 new_entry = Geometry3D::get_closest_point_to_segment(least_cost_poly.entry, pathway);
const real_t new_distance = (least_cost_poly.entry.distance_to(new_entry) * poly_travel_cost) + poly_enter_cost + least_cost_poly.traveled_distance;
int64_t already_visited_polygon_index = navigation_polys.find(gd::NavigationPoly(connection.polygon));
if (already_visited_polygon_index != -1) {
// Polygon already visited, check if we can reduce the travel cost.
gd::NavigationPoly &avp = navigation_polys[already_visited_polygon_index];
if (new_distance < avp.traveled_distance) {
avp.back_navigation_poly_id = least_cost_id;
avp.back_navigation_edge = connection.edge;
avp.back_navigation_edge_pathway_start = connection.pathway_start;
avp.back_navigation_edge_pathway_end = connection.pathway_end;
avp.traveled_distance = new_distance;
avp.entry = new_entry;
}
} else {
// Add the neighbor polygon to the reachable ones.
gd::NavigationPoly new_navigation_poly = gd::NavigationPoly(connection.polygon);
new_navigation_poly.self_id = navigation_polys.size();
new_navigation_poly.back_navigation_poly_id = least_cost_id;
new_navigation_poly.back_navigation_edge = connection.edge;
new_navigation_poly.back_navigation_edge_pathway_start = connection.pathway_start;
new_navigation_poly.back_navigation_edge_pathway_end = connection.pathway_end;
new_navigation_poly.traveled_distance = new_distance;
new_navigation_poly.entry = new_entry;
navigation_polys.push_back(new_navigation_poly);
// Add the neighbor polygon to the polygons to visit.
to_visit.push_back(navigation_polys.size() - 1);
}
}
}
// Removes the least cost polygon from the list of polygons to visit so we can advance.
to_visit.erase(least_cost_id);
// When the list of polygons to visit is empty at this point it means the End Polygon is not reachable
if (to_visit.size() == 0) {
// Thus use the further reachable polygon
ERR_BREAK_MSG(is_reachable == false, "It's not expect to not find the most reachable polygons");
is_reachable = false;
if (reachable_end == nullptr) {
// The path is not found and there is not a way out.
break;
}
// Set as end point the furthest reachable point.
end_poly = reachable_end;
end_d = FLT_MAX;
for (size_t point_id = 2; point_id < end_poly->points.size(); point_id++) {
Face3 f(end_poly->points[0].pos, end_poly->points[point_id - 1].pos, end_poly->points[point_id].pos);
Vector3 spoint = f.get_closest_point_to(p_destination);
real_t dpoint = spoint.distance_to(p_destination);
if (dpoint < end_d) {
end_point = spoint;
end_d = dpoint;
}
}
// Search all faces of start polygon as well.
bool closest_point_on_start_poly = false;
for (size_t point_id = 2; point_id < begin_poly->points.size(); point_id++) {
Face3 f(begin_poly->points[0].pos, begin_poly->points[point_id - 1].pos, begin_poly->points[point_id].pos);
Vector3 spoint = f.get_closest_point_to(p_destination);
real_t dpoint = spoint.distance_to(p_destination);
if (dpoint < end_d) {
end_point = spoint;
end_d = dpoint;
closest_point_on_start_poly = true;
}
}
if (closest_point_on_start_poly) {
// No point to run PostProcessing when start and end convex polygon is the same.
if (r_path_types) {
r_path_types->resize(2);
r_path_types->write[0] = begin_poly->owner->get_type();
r_path_types->write[1] = begin_poly->owner->get_type();
}
if (r_path_rids) {
r_path_rids->resize(2);
(*r_path_rids)[0] = begin_poly->owner->get_self();
(*r_path_rids)[1] = begin_poly->owner->get_self();
}
if (r_path_owners) {
r_path_owners->resize(2);
r_path_owners->write[0] = begin_poly->owner->get_owner_id();
r_path_owners->write[1] = begin_poly->owner->get_owner_id();
}
Vector<Vector3> path;
path.resize(2);
path.write[0] = begin_point;
path.write[1] = end_point;
return path;
}
// Reset open and navigation_polys
gd::NavigationPoly np = navigation_polys[0];
navigation_polys.clear();
navigation_polys.push_back(np);
to_visit.clear();
to_visit.push_back(0);
least_cost_id = 0;
prev_least_cost_id = -1;
reachable_end = nullptr;
continue;
}
// Find the polygon with the minimum cost from the list of polygons to visit.
least_cost_id = -1;
real_t least_cost = FLT_MAX;
for (List<uint32_t>::Element *element = to_visit.front(); element != nullptr; element = element->next()) {
gd::NavigationPoly *np = &navigation_polys[element->get()];
real_t cost = np->traveled_distance;
cost += (np->entry.distance_to(end_point) * np->poly->owner->get_travel_cost());
if (cost < least_cost) {
least_cost_id = np->self_id;
least_cost = cost;
}
}
ERR_BREAK(least_cost_id == -1);
// Stores the further reachable end polygon, in case our goal is not reachable.
if (is_reachable) {
real_t d = navigation_polys[least_cost_id].entry.distance_to(p_destination) * navigation_polys[least_cost_id].poly->owner->get_travel_cost();
if (reachable_d > d) {
reachable_d = d;
reachable_end = navigation_polys[least_cost_id].poly;
}
}
// Check if we reached the end
if (navigation_polys[least_cost_id].poly == end_poly) {
found_route = true;
break;
}
}
// We did not find a route but we have both a start polygon and an end polygon at this point.
// Usually this happens because there was not a single external or internal connected edge, e.g. our start polygon is an isolated, single convex polygon.
if (!found_route) {
end_d = FLT_MAX;
// Search all faces of the start polygon for the closest point to our target position.
for (size_t point_id = 2; point_id < begin_poly->points.size(); point_id++) {
Face3 f(begin_poly->points[0].pos, begin_poly->points[point_id - 1].pos, begin_poly->points[point_id].pos);
Vector3 spoint = f.get_closest_point_to(p_destination);
real_t dpoint = spoint.distance_to(p_destination);
if (dpoint < end_d) {
end_point = spoint;
end_d = dpoint;
}
}
if (r_path_types) {
r_path_types->resize(2);
r_path_types->write[0] = begin_poly->owner->get_type();
r_path_types->write[1] = begin_poly->owner->get_type();
}
if (r_path_rids) {
r_path_rids->resize(2);
(*r_path_rids)[0] = begin_poly->owner->get_self();
(*r_path_rids)[1] = begin_poly->owner->get_self();
}
if (r_path_owners) {
r_path_owners->resize(2);
r_path_owners->write[0] = begin_poly->owner->get_owner_id();
r_path_owners->write[1] = begin_poly->owner->get_owner_id();
}
Vector<Vector3> path;
path.resize(2);
path.write[0] = begin_point;
path.write[1] = end_point;
return path;
}
Vector<Vector3> path;
// Optimize the path.
if (p_optimize) {
// Set the apex poly/point to the end point
gd::NavigationPoly *apex_poly = &navigation_polys[least_cost_id];
Vector3 back_pathway[2] = { apex_poly->back_navigation_edge_pathway_start, apex_poly->back_navigation_edge_pathway_end };
const Vector3 back_edge_closest_point = Geometry3D::get_closest_point_to_segment(end_point, back_pathway);
if (end_point.is_equal_approx(back_edge_closest_point)) {
// The end point is basically on top of the last crossed edge, funneling around the corners would at best do nothing.
// At worst it would add an unwanted path point before the last point due to precision issues so skip to the next polygon.
if (apex_poly->back_navigation_poly_id != -1) {
apex_poly = &navigation_polys[apex_poly->back_navigation_poly_id];
}
}
Vector3 apex_point = end_point;
gd::NavigationPoly *left_poly = apex_poly;
Vector3 left_portal = apex_point;
gd::NavigationPoly *right_poly = apex_poly;
Vector3 right_portal = apex_point;
gd::NavigationPoly *p = apex_poly;
path.push_back(end_point);
APPEND_METADATA(end_poly);
while (p) {
// Set left and right points of the pathway between polygons.
Vector3 left = p->back_navigation_edge_pathway_start;
Vector3 right = p->back_navigation_edge_pathway_end;
if (THREE_POINTS_CROSS_PRODUCT(apex_point, left, right).dot(up) < 0) {
SWAP(left, right);
}
bool skip = false;
if (THREE_POINTS_CROSS_PRODUCT(apex_point, left_portal, left).dot(up) >= 0) {
//process
if (left_portal == apex_point || THREE_POINTS_CROSS_PRODUCT(apex_point, left, right_portal).dot(up) > 0) {
left_poly = p;
left_portal = left;
} else {
clip_path(navigation_polys, path, apex_poly, right_portal, right_poly, r_path_types, r_path_rids, r_path_owners);
apex_point = right_portal;
p = right_poly;
left_poly = p;
apex_poly = p;
left_portal = apex_point;
right_portal = apex_point;
path.push_back(apex_point);
APPEND_METADATA(apex_poly->poly);
skip = true;
}
}
if (!skip && THREE_POINTS_CROSS_PRODUCT(apex_point, right_portal, right).dot(up) <= 0) {
//process
if (right_portal == apex_point || THREE_POINTS_CROSS_PRODUCT(apex_point, right, left_portal).dot(up) < 0) {
right_poly = p;
right_portal = right;
} else {
clip_path(navigation_polys, path, apex_poly, left_portal, left_poly, r_path_types, r_path_rids, r_path_owners);
apex_point = left_portal;
p = left_poly;
right_poly = p;
apex_poly = p;
right_portal = apex_point;
left_portal = apex_point;
path.push_back(apex_point);
APPEND_METADATA(apex_poly->poly);
}
}
// Go to the previous polygon.
if (p->back_navigation_poly_id != -1) {
p = &navigation_polys[p->back_navigation_poly_id];
} else {
// The end
p = nullptr;
}
}
// If the last point is not the begin point, add it to the list.
if (path[path.size() - 1] != begin_point) {
path.push_back(begin_point);
APPEND_METADATA(begin_poly);
}
path.reverse();
if (r_path_types) {
r_path_types->reverse();
}
if (r_path_rids) {
r_path_rids->reverse();
}
if (r_path_owners) {
r_path_owners->reverse();
}
} else {
path.push_back(end_point);
APPEND_METADATA(end_poly);
// Add mid points
int np_id = least_cost_id;
while (np_id != -1 && navigation_polys[np_id].back_navigation_poly_id != -1) {
if (navigation_polys[np_id].back_navigation_edge != -1) {
int prev = navigation_polys[np_id].back_navigation_edge;
int prev_n = (navigation_polys[np_id].back_navigation_edge + 1) % navigation_polys[np_id].poly->points.size();
Vector3 point = (navigation_polys[np_id].poly->points[prev].pos + navigation_polys[np_id].poly->points[prev_n].pos) * 0.5;
path.push_back(point);
APPEND_METADATA(navigation_polys[np_id].poly);
} else {
path.push_back(navigation_polys[np_id].entry);
APPEND_METADATA(navigation_polys[np_id].poly);
}
np_id = navigation_polys[np_id].back_navigation_poly_id;
}
path.push_back(begin_point);
APPEND_METADATA(begin_poly);
path.reverse();
if (r_path_types) {
r_path_types->reverse();
}
if (r_path_rids) {
r_path_rids->reverse();
}
if (r_path_owners) {
r_path_owners->reverse();
}
}
// Ensure post conditions (path arrays MUST match in size).
CRASH_COND(r_path_types && path.size() != r_path_types->size());
CRASH_COND(r_path_rids && path.size() != r_path_rids->size());
CRASH_COND(r_path_owners && path.size() != r_path_owners->size());
return path;
}
Vector3 NavMap::get_closest_point_to_segment(const Vector3 &p_from, const Vector3 &p_to, const bool p_use_collision) const {
ERR_FAIL_COND_V_MSG(map_update_id == 0, Vector3(), "NavigationServer map query failed because it was made before first map synchronization.");
bool use_collision = p_use_collision;
Vector3 closest_point;
real_t closest_point_d = FLT_MAX;
for (const gd::Polygon &p : polygons) {
// For each face check the distance to the segment
for (size_t point_id = 2; point_id < p.points.size(); point_id += 1) {
const Face3 f(p.points[0].pos, p.points[point_id - 1].pos, p.points[point_id].pos);
Vector3 inters;
if (f.intersects_segment(p_from, p_to, &inters)) {
const real_t d = closest_point_d = p_from.distance_to(inters);
if (use_collision == false) {
closest_point = inters;
use_collision = true;
closest_point_d = d;
} else if (closest_point_d > d) {
closest_point = inters;
closest_point_d = d;
}
}
}
if (use_collision == false) {
for (size_t point_id = 0; point_id < p.points.size(); point_id += 1) {
Vector3 a, b;
Geometry3D::get_closest_points_between_segments(
p_from,
p_to,
p.points[point_id].pos,
p.points[(point_id + 1) % p.points.size()].pos,
a,
b);
const real_t d = a.distance_to(b);
if (d < closest_point_d) {
closest_point_d = d;
closest_point = b;
}
}
}
}
return closest_point;
}
Vector3 NavMap::get_closest_point(const Vector3 &p_point) const {
ERR_FAIL_COND_V_MSG(map_update_id == 0, Vector3(), "NavigationServer map query failed because it was made before first map synchronization.");
gd::ClosestPointQueryResult cp = get_closest_point_info(p_point);
return cp.point;
}
Vector3 NavMap::get_closest_point_normal(const Vector3 &p_point) const {
ERR_FAIL_COND_V_MSG(map_update_id == 0, Vector3(), "NavigationServer map query failed because it was made before first map synchronization.");
gd::ClosestPointQueryResult cp = get_closest_point_info(p_point);
return cp.normal;
}
RID NavMap::get_closest_point_owner(const Vector3 &p_point) const {
ERR_FAIL_COND_V_MSG(map_update_id == 0, RID(), "NavigationServer map query failed because it was made before first map synchronization.");
gd::ClosestPointQueryResult cp = get_closest_point_info(p_point);
return cp.owner;
}
gd::ClosestPointQueryResult NavMap::get_closest_point_info(const Vector3 &p_point) const {
gd::ClosestPointQueryResult result;
real_t closest_point_ds = FLT_MAX;
for (const gd::Polygon &p : polygons) {
// For each face check the distance to the point
for (size_t point_id = 2; point_id < p.points.size(); point_id += 1) {
const Face3 f(p.points[0].pos, p.points[point_id - 1].pos, p.points[point_id].pos);
const Vector3 inters = f.get_closest_point_to(p_point);
const real_t ds = inters.distance_squared_to(p_point);
if (ds < closest_point_ds) {
result.point = inters;
result.normal = f.get_plane().normal;
result.owner = p.owner->get_self();
closest_point_ds = ds;
}
}
}
return result;
}
void NavMap::add_region(NavRegion *p_region) {
regions.push_back(p_region);
regenerate_links = true;
}
void NavMap::remove_region(NavRegion *p_region) {
int64_t region_index = regions.find(p_region);
if (region_index >= 0) {
regions.remove_at_unordered(region_index);
regenerate_links = true;
}
}
void NavMap::add_link(NavLink *p_link) {
links.push_back(p_link);
regenerate_links = true;
}
void NavMap::remove_link(NavLink *p_link) {
int64_t link_index = links.find(p_link);
if (link_index >= 0) {
links.remove_at_unordered(link_index);
regenerate_links = true;
}
}
bool NavMap::has_agent(NavAgent *agent) const {
return (agents.find(agent) >= 0);
}
void NavMap::add_agent(NavAgent *agent) {
if (!has_agent(agent)) {
agents.push_back(agent);
agents_dirty = true;
}
}
void NavMap::remove_agent(NavAgent *agent) {
remove_agent_as_controlled(agent);
int64_t agent_index = agents.find(agent);
if (agent_index >= 0) {
agents.remove_at_unordered(agent_index);
agents_dirty = true;
}
}
bool NavMap::has_obstacle(NavObstacle *obstacle) const {
return (obstacles.find(obstacle) >= 0);
}
void NavMap::add_obstacle(NavObstacle *obstacle) {
if (obstacle->get_paused()) {
// No point in adding a paused obstacle, it will add itself when unpaused again.
return;
}
if (!has_obstacle(obstacle)) {
obstacles.push_back(obstacle);
obstacles_dirty = true;
}
}
void NavMap::remove_obstacle(NavObstacle *obstacle) {
int64_t obstacle_index = obstacles.find(obstacle);
if (obstacle_index >= 0) {
obstacles.remove_at_unordered(obstacle_index);
obstacles_dirty = true;
}
}
void NavMap::set_agent_as_controlled(NavAgent *agent) {
remove_agent_as_controlled(agent);
if (agent->get_paused()) {
// No point in adding a paused agent, it will add itself when unpaused again.
return;
}
if (agent->get_use_3d_avoidance()) {
int64_t agent_3d_index = active_3d_avoidance_agents.find(agent);
if (agent_3d_index < 0) {
active_3d_avoidance_agents.push_back(agent);
agents_dirty = true;
}
} else {
int64_t agent_2d_index = active_2d_avoidance_agents.find(agent);
if (agent_2d_index < 0) {
active_2d_avoidance_agents.push_back(agent);
agents_dirty = true;
}
}
}
void NavMap::remove_agent_as_controlled(NavAgent *agent) {
int64_t agent_3d_index = active_3d_avoidance_agents.find(agent);
if (agent_3d_index >= 0) {
active_3d_avoidance_agents.remove_at_unordered(agent_3d_index);
agents_dirty = true;
}
int64_t agent_2d_index = active_2d_avoidance_agents.find(agent);
if (agent_2d_index >= 0) {
active_2d_avoidance_agents.remove_at_unordered(agent_2d_index);
agents_dirty = true;
}
}
void NavMap::sync() {
// Performance Monitor
int _new_pm_region_count = regions.size();
int _new_pm_agent_count = agents.size();
int _new_pm_link_count = links.size();
int _new_pm_polygon_count = pm_polygon_count;
int _new_pm_edge_count = pm_edge_count;
int _new_pm_edge_merge_count = pm_edge_merge_count;
int _new_pm_edge_connection_count = pm_edge_connection_count;
int _new_pm_edge_free_count = pm_edge_free_count;
// Check if we need to update the links.
if (regenerate_polygons) {
for (NavRegion *region : regions) {
region->scratch_polygons();
}
regenerate_links = true;
}
for (NavRegion *region : regions) {
if (region->sync()) {
regenerate_links = true;
}
}
for (NavLink *link : links) {
if (link->check_dirty()) {
regenerate_links = true;
}
}
if (regenerate_links) {
_new_pm_polygon_count = 0;
_new_pm_edge_count = 0;
_new_pm_edge_merge_count = 0;
_new_pm_edge_connection_count = 0;
_new_pm_edge_free_count = 0;
// Remove regions connections.
for (NavRegion *region : regions) {
region->get_connections().clear();
}
// Resize the polygon count.
int count = 0;
for (const NavRegion *region : regions) {
count += region->get_polygons().size();
}
polygons.resize(count);
// Copy all region polygons in the map.
count = 0;
for (const NavRegion *region : regions) {
const LocalVector<gd::Polygon> &polygons_source = region->get_polygons();
for (uint32_t n = 0; n < polygons_source.size(); n++) {
polygons[count + n] = polygons_source[n];
}
count += region->get_polygons().size();
}
_new_pm_polygon_count = polygons.size();
// Group all edges per key.
HashMap<gd::EdgeKey, Vector<gd::Edge::Connection>, gd::EdgeKey> connections;
for (gd::Polygon &poly : polygons) {
for (uint32_t p = 0; p < poly.points.size(); p++) {
int next_point = (p + 1) % poly.points.size();
gd::EdgeKey ek(poly.points[p].key, poly.points[next_point].key);
HashMap<gd::EdgeKey, Vector<gd::Edge::Connection>, gd::EdgeKey>::Iterator connection = connections.find(ek);
if (!connection) {
connections[ek] = Vector<gd::Edge::Connection>();
_new_pm_edge_count += 1;
}
if (connections[ek].size() <= 1) {
// Add the polygon/edge tuple to this key.
gd::Edge::Connection new_connection;
new_connection.polygon = &poly;
new_connection.edge = p;
new_connection.pathway_start = poly.points[p].pos;
new_connection.pathway_end = poly.points[next_point].pos;
connections[ek].push_back(new_connection);
} else {
// The edge is already connected with another edge, skip.
ERR_PRINT_ONCE("Navigation map synchronization error. Attempted to merge a navigation mesh polygon edge with another already-merged edge. This is usually caused by crossing edges, overlapping polygons, or a mismatch of the NavigationMesh / NavigationPolygon baked 'cell_size' and navigation map 'cell_size'.");
}
}
}
Vector<gd::Edge::Connection> free_edges;
for (KeyValue<gd::EdgeKey, Vector<gd::Edge::Connection>> &E : connections) {
if (E.value.size() == 2) {
// Connect edge that are shared in different polygons.
gd::Edge::Connection &c1 = E.value.write[0];
gd::Edge::Connection &c2 = E.value.write[1];
c1.polygon->edges[c1.edge].connections.push_back(c2);
c2.polygon->edges[c2.edge].connections.push_back(c1);
// Note: The pathway_start/end are full for those connection and do not need to be modified.
_new_pm_edge_merge_count += 1;
} else {
CRASH_COND_MSG(E.value.size() != 1, vformat("Number of connection != 1. Found: %d", E.value.size()));
if (use_edge_connections && E.value[0].polygon->owner->get_use_edge_connections()) {
free_edges.push_back(E.value[0]);
}
}
}
// Find the compatible near edges.
//
// Note:
// Considering that the edges must be compatible (for obvious reasons)
// to be connected, create new polygons to remove that small gap is
// not really useful and would result in wasteful computation during
// connection, integration and path finding.
_new_pm_edge_free_count = free_edges.size();
for (int i = 0; i < free_edges.size(); i++) {
const gd::Edge::Connection &free_edge = free_edges[i];
Vector3 edge_p1 = free_edge.polygon->points[free_edge.edge].pos;
Vector3 edge_p2 = free_edge.polygon->points[(free_edge.edge + 1) % free_edge.polygon->points.size()].pos;
for (int j = 0; j < free_edges.size(); j++) {
const gd::Edge::Connection &other_edge = free_edges[j];
if (i == j || free_edge.polygon->owner == other_edge.polygon->owner) {
continue;
}
Vector3 other_edge_p1 = other_edge.polygon->points[other_edge.edge].pos;
Vector3 other_edge_p2 = other_edge.polygon->points[(other_edge.edge + 1) % other_edge.polygon->points.size()].pos;
// Compute the projection of the opposite edge on the current one
Vector3 edge_vector = edge_p2 - edge_p1;
real_t projected_p1_ratio = edge_vector.dot(other_edge_p1 - edge_p1) / (edge_vector.length_squared());
real_t projected_p2_ratio = edge_vector.dot(other_edge_p2 - edge_p1) / (edge_vector.length_squared());
if ((projected_p1_ratio < 0.0 && projected_p2_ratio < 0.0) || (projected_p1_ratio > 1.0 && projected_p2_ratio > 1.0)) {
continue;
}
// Check if the two edges are close to each other enough and compute a pathway between the two regions.
Vector3 self1 = edge_vector * CLAMP(projected_p1_ratio, 0.0, 1.0) + edge_p1;
Vector3 other1;
if (projected_p1_ratio >= 0.0 && projected_p1_ratio <= 1.0) {
other1 = other_edge_p1;
} else {
other1 = other_edge_p1.lerp(other_edge_p2, (1.0 - projected_p1_ratio) / (projected_p2_ratio - projected_p1_ratio));
}
if (other1.distance_to(self1) > edge_connection_margin) {
continue;
}
Vector3 self2 = edge_vector * CLAMP(projected_p2_ratio, 0.0, 1.0) + edge_p1;
Vector3 other2;
if (projected_p2_ratio >= 0.0 && projected_p2_ratio <= 1.0) {
other2 = other_edge_p2;
} else {
other2 = other_edge_p1.lerp(other_edge_p2, (0.0 - projected_p1_ratio) / (projected_p2_ratio - projected_p1_ratio));
}
if (other2.distance_to(self2) > edge_connection_margin) {
continue;
}
// The edges can now be connected.
gd::Edge::Connection new_connection = other_edge;
new_connection.pathway_start = (self1 + other1) / 2.0;
new_connection.pathway_end = (self2 + other2) / 2.0;
free_edge.polygon->edges[free_edge.edge].connections.push_back(new_connection);
// Add the connection to the region_connection map.
((NavRegion *)free_edge.polygon->owner)->get_connections().push_back(new_connection);
_new_pm_edge_connection_count += 1;
}
}
uint32_t link_poly_idx = 0;
link_polygons.resize(links.size());
// Search for polygons within range of a nav link.
for (const NavLink *link : links) {
const Vector3 start = link->get_start_position();
const Vector3 end = link->get_end_position();
gd::Polygon *closest_start_polygon = nullptr;
real_t closest_start_distance = link_connection_radius;
Vector3 closest_start_point;
gd::Polygon *closest_end_polygon = nullptr;
real_t closest_end_distance = link_connection_radius;
Vector3 closest_end_point;
// Create link to any polygons within the search radius of the start point.
for (uint32_t start_index = 0; start_index < polygons.size(); start_index++) {
gd::Polygon &start_poly = polygons[start_index];
// For each face check the distance to the start
for (uint32_t start_point_id = 2; start_point_id < start_poly.points.size(); start_point_id += 1) {
const Face3 start_face(start_poly.points[0].pos, start_poly.points[start_point_id - 1].pos, start_poly.points[start_point_id].pos);
const Vector3 start_point = start_face.get_closest_point_to(start);
const real_t start_distance = start_point.distance_to(start);
// Pick the polygon that is within our radius and is closer than anything we've seen yet.
if (start_distance <= link_connection_radius && start_distance < closest_start_distance) {
closest_start_distance = start_distance;
closest_start_point = start_point;
closest_start_polygon = &start_poly;
}
}
}
// Find any polygons within the search radius of the end point.
for (gd::Polygon &end_poly : polygons) {
// For each face check the distance to the end
for (uint32_t end_point_id = 2; end_point_id < end_poly.points.size(); end_point_id += 1) {
const Face3 end_face(end_poly.points[0].pos, end_poly.points[end_point_id - 1].pos, end_poly.points[end_point_id].pos);
const Vector3 end_point = end_face.get_closest_point_to(end);
const real_t end_distance = end_point.distance_to(end);
// Pick the polygon that is within our radius and is closer than anything we've seen yet.
if (end_distance <= link_connection_radius && end_distance < closest_end_distance) {
closest_end_distance = end_distance;
closest_end_point = end_point;
closest_end_polygon = &end_poly;
}
}
}
// If we have both a start and end point, then create a synthetic polygon to route through.
if (closest_start_polygon && closest_end_polygon) {
gd::Polygon &new_polygon = link_polygons[link_poly_idx++];
new_polygon.owner = link;
new_polygon.edges.clear();
new_polygon.edges.resize(4);
new_polygon.points.clear();
new_polygon.points.reserve(4);
// Build a set of vertices that create a thin polygon going from the start to the end point.
new_polygon.points.push_back({ closest_start_point, get_point_key(closest_start_point) });
new_polygon.points.push_back({ closest_start_point, get_point_key(closest_start_point) });
new_polygon.points.push_back({ closest_end_point, get_point_key(closest_end_point) });
new_polygon.points.push_back({ closest_end_point, get_point_key(closest_end_point) });
Vector3 center;
for (int p = 0; p < 4; ++p) {
center += new_polygon.points[p].pos;
}
new_polygon.center = center / real_t(new_polygon.points.size());
new_polygon.clockwise = true;
// Setup connections to go forward in the link.
{
gd::Edge::Connection entry_connection;
entry_connection.polygon = &new_polygon;
entry_connection.edge = -1;
entry_connection.pathway_start = new_polygon.points[0].pos;
entry_connection.pathway_end = new_polygon.points[1].pos;
closest_start_polygon->edges[0].connections.push_back(entry_connection);
gd::Edge::Connection exit_connection;
exit_connection.polygon = closest_end_polygon;
exit_connection.edge = -1;
exit_connection.pathway_start = new_polygon.points[2].pos;
exit_connection.pathway_end = new_polygon.points[3].pos;
new_polygon.edges[2].connections.push_back(exit_connection);
}
// If the link is bi-directional, create connections from the end to the start.
if (link->is_bidirectional()) {
gd::Edge::Connection entry_connection;
entry_connection.polygon = &new_polygon;
entry_connection.edge = -1;
entry_connection.pathway_start = new_polygon.points[2].pos;
entry_connection.pathway_end = new_polygon.points[3].pos;
closest_end_polygon->edges[0].connections.push_back(entry_connection);
gd::Edge::Connection exit_connection;
exit_connection.polygon = closest_start_polygon;
exit_connection.edge = -1;
exit_connection.pathway_start = new_polygon.points[0].pos;
exit_connection.pathway_end = new_polygon.points[1].pos;
new_polygon.edges[0].connections.push_back(exit_connection);
}
}
}
// Update the update ID.
// Some code treats 0 as a failure case, so we avoid returning 0.
map_update_id = map_update_id % 9999999 + 1;
}
// Do we have modified obstacle positions?
for (NavObstacle *obstacle : obstacles) {
if (obstacle->check_dirty()) {
obstacles_dirty = true;
}
}
// Do we have modified agent arrays?
for (NavAgent *agent : agents) {
if (agent->check_dirty()) {
agents_dirty = true;
}
}
// Update avoidance worlds.
if (obstacles_dirty || agents_dirty) {
_update_rvo_simulation();
}
regenerate_polygons = false;
regenerate_links = false;
obstacles_dirty = false;
agents_dirty = false;
// Performance Monitor.
pm_region_count = _new_pm_region_count;
pm_agent_count = _new_pm_agent_count;
pm_link_count = _new_pm_link_count;
pm_polygon_count = _new_pm_polygon_count;
pm_edge_count = _new_pm_edge_count;
pm_edge_merge_count = _new_pm_edge_merge_count;
pm_edge_connection_count = _new_pm_edge_connection_count;
pm_edge_free_count = _new_pm_edge_free_count;
}
void NavMap::_update_rvo_obstacles_tree_2d() {
int obstacle_vertex_count = 0;
for (NavObstacle *obstacle : obstacles) {
obstacle_vertex_count += obstacle->get_vertices().size();
}
// Cannot use LocalVector here as RVO library expects std::vector to build KdTree
std::vector<RVO2D::Obstacle2D *> raw_obstacles;
raw_obstacles.reserve(obstacle_vertex_count);
// The following block is modified copy from RVO2D::AddObstacle()
// Obstacles are linked and depend on all other obstacles.
for (NavObstacle *obstacle : obstacles) {
const Vector3 &_obstacle_position = obstacle->get_position();
const Vector<Vector3> &_obstacle_vertices = obstacle->get_vertices();
if (_obstacle_vertices.size() < 2) {
continue;
}
std::vector<RVO2D::Vector2> rvo_2d_vertices;
rvo_2d_vertices.reserve(_obstacle_vertices.size());
uint32_t _obstacle_avoidance_layers = obstacle->get_avoidance_layers();
real_t _obstacle_height = obstacle->get_height();
for (const Vector3 &_obstacle_vertex : _obstacle_vertices) {
rvo_2d_vertices.push_back(RVO2D::Vector2(_obstacle_vertex.x + _obstacle_position.x, _obstacle_vertex.z + _obstacle_position.z));
}
const size_t obstacleNo = raw_obstacles.size();
for (size_t i = 0; i < rvo_2d_vertices.size(); i++) {
RVO2D::Obstacle2D *rvo_2d_obstacle = new RVO2D::Obstacle2D();
rvo_2d_obstacle->point_ = rvo_2d_vertices[i];
rvo_2d_obstacle->height_ = _obstacle_height;
rvo_2d_obstacle->elevation_ = _obstacle_position.y;
rvo_2d_obstacle->avoidance_layers_ = _obstacle_avoidance_layers;
if (i != 0) {
rvo_2d_obstacle->prevObstacle_ = raw_obstacles.back();
rvo_2d_obstacle->prevObstacle_->nextObstacle_ = rvo_2d_obstacle;
}
if (i == rvo_2d_vertices.size() - 1) {
rvo_2d_obstacle->nextObstacle_ = raw_obstacles[obstacleNo];
rvo_2d_obstacle->nextObstacle_->prevObstacle_ = rvo_2d_obstacle;
}
rvo_2d_obstacle->unitDir_ = normalize(rvo_2d_vertices[(i == rvo_2d_vertices.size() - 1 ? 0 : i + 1)] - rvo_2d_vertices[i]);
if (rvo_2d_vertices.size() == 2) {
rvo_2d_obstacle->isConvex_ = true;
} else {
rvo_2d_obstacle->isConvex_ = (leftOf(rvo_2d_vertices[(i == 0 ? rvo_2d_vertices.size() - 1 : i - 1)], rvo_2d_vertices[i], rvo_2d_vertices[(i == rvo_2d_vertices.size() - 1 ? 0 : i + 1)]) >= 0.0f);
}
rvo_2d_obstacle->id_ = raw_obstacles.size();
raw_obstacles.push_back(rvo_2d_obstacle);
}
}
rvo_simulation_2d.kdTree_->buildObstacleTree(raw_obstacles);
}
void NavMap::_update_rvo_agents_tree_2d() {
// Cannot use LocalVector here as RVO library expects std::vector to build KdTree.
std::vector<RVO2D::Agent2D *> raw_agents;
raw_agents.reserve(active_2d_avoidance_agents.size());
for (NavAgent *agent : active_2d_avoidance_agents) {
raw_agents.push_back(agent->get_rvo_agent_2d());
}
rvo_simulation_2d.kdTree_->buildAgentTree(raw_agents);
}
void NavMap::_update_rvo_agents_tree_3d() {
// Cannot use LocalVector here as RVO library expects std::vector to build KdTree.
std::vector<RVO3D::Agent3D *> raw_agents;
raw_agents.reserve(active_3d_avoidance_agents.size());
for (NavAgent *agent : active_3d_avoidance_agents) {
raw_agents.push_back(agent->get_rvo_agent_3d());
}
rvo_simulation_3d.kdTree_->buildAgentTree(raw_agents);
}
void NavMap::_update_rvo_simulation() {
if (obstacles_dirty) {
_update_rvo_obstacles_tree_2d();
}
if (agents_dirty) {
_update_rvo_agents_tree_2d();
_update_rvo_agents_tree_3d();
}
}
void NavMap::compute_single_avoidance_step_2d(uint32_t index, NavAgent **agent) {
(*(agent + index))->get_rvo_agent_2d()->computeNeighbors(&rvo_simulation_2d);
(*(agent + index))->get_rvo_agent_2d()->computeNewVelocity(&rvo_simulation_2d);
(*(agent + index))->get_rvo_agent_2d()->update(&rvo_simulation_2d);
(*(agent + index))->update();
}
void NavMap::compute_single_avoidance_step_3d(uint32_t index, NavAgent **agent) {
(*(agent + index))->get_rvo_agent_3d()->computeNeighbors(&rvo_simulation_3d);
(*(agent + index))->get_rvo_agent_3d()->computeNewVelocity(&rvo_simulation_3d);
(*(agent + index))->get_rvo_agent_3d()->update(&rvo_simulation_3d);
(*(agent + index))->update();
}
void NavMap::step(real_t p_deltatime) {
deltatime = p_deltatime;
rvo_simulation_2d.setTimeStep(float(deltatime));
rvo_simulation_3d.setTimeStep(float(deltatime));
if (active_2d_avoidance_agents.size() > 0) {
if (use_threads && avoidance_use_multiple_threads) {
WorkerThreadPool::GroupID group_task = WorkerThreadPool::get_singleton()->add_template_group_task(this, &NavMap::compute_single_avoidance_step_2d, active_2d_avoidance_agents.ptr(), active_2d_avoidance_agents.size(), -1, true, SNAME("RVOAvoidanceAgents2D"));
WorkerThreadPool::get_singleton()->wait_for_group_task_completion(group_task);
} else {
for (NavAgent *agent : active_2d_avoidance_agents) {
agent->get_rvo_agent_2d()->computeNeighbors(&rvo_simulation_2d);
agent->get_rvo_agent_2d()->computeNewVelocity(&rvo_simulation_2d);
agent->get_rvo_agent_2d()->update(&rvo_simulation_2d);
agent->update();
}
}
}
if (active_3d_avoidance_agents.size() > 0) {
if (use_threads && avoidance_use_multiple_threads) {
WorkerThreadPool::GroupID group_task = WorkerThreadPool::get_singleton()->add_template_group_task(this, &NavMap::compute_single_avoidance_step_3d, active_3d_avoidance_agents.ptr(), active_3d_avoidance_agents.size(), -1, true, SNAME("RVOAvoidanceAgents3D"));
WorkerThreadPool::get_singleton()->wait_for_group_task_completion(group_task);
} else {
for (NavAgent *agent : active_3d_avoidance_agents) {
agent->get_rvo_agent_3d()->computeNeighbors(&rvo_simulation_3d);
agent->get_rvo_agent_3d()->computeNewVelocity(&rvo_simulation_3d);
agent->get_rvo_agent_3d()->update(&rvo_simulation_3d);
agent->update();
}
}
}
}
void NavMap::dispatch_callbacks() {
for (NavAgent *agent : active_2d_avoidance_agents) {
agent->dispatch_avoidance_callback();
}
for (NavAgent *agent : active_3d_avoidance_agents) {
agent->dispatch_avoidance_callback();
}
}
void NavMap::clip_path(const LocalVector<gd::NavigationPoly> &p_navigation_polys, Vector<Vector3> &path, const gd::NavigationPoly *from_poly, const Vector3 &p_to_point, const gd::NavigationPoly *p_to_poly, Vector<int32_t> *r_path_types, TypedArray<RID> *r_path_rids, Vector<int64_t> *r_path_owners) const {
Vector3 from = path[path.size() - 1];
if (from.is_equal_approx(p_to_point)) {
return;
}
Plane cut_plane;
cut_plane.normal = (from - p_to_point).cross(up);
if (cut_plane.normal == Vector3()) {
return;
}
cut_plane.normal.normalize();
cut_plane.d = cut_plane.normal.dot(from);
while (from_poly != p_to_poly) {
Vector3 pathway_start = from_poly->back_navigation_edge_pathway_start;
Vector3 pathway_end = from_poly->back_navigation_edge_pathway_end;
ERR_FAIL_COND(from_poly->back_navigation_poly_id == -1);
from_poly = &p_navigation_polys[from_poly->back_navigation_poly_id];
if (!pathway_start.is_equal_approx(pathway_end)) {
Vector3 inters;
if (cut_plane.intersects_segment(pathway_start, pathway_end, &inters)) {
if (!inters.is_equal_approx(p_to_point) && !inters.is_equal_approx(path[path.size() - 1])) {
path.push_back(inters);
APPEND_METADATA(from_poly->poly);
}
}
}
}
}
NavMap::NavMap() {
avoidance_use_multiple_threads = GLOBAL_GET("navigation/avoidance/thread_model/avoidance_use_multiple_threads");
avoidance_use_high_priority_threads = GLOBAL_GET("navigation/avoidance/thread_model/avoidance_use_high_priority_threads");
}
NavMap::~NavMap() {
}